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Abstract
We review a recently developed formalism for computing thermoelectric coefficients in
correlated matter. The usual difficulties of such a calculation are circumvented by a careful
generalization of the transport formalism to finite frequencies, from which one can extract the
high frequency objects. The technical parallel between the Hall constant and the Seebeck
coefficient is explored and used to advantage. For small clusters, exact diagonalization gives
the full spectrum for the Hubbard and especially the t–J model, a prototypical model for
strong correlations, and this spectrum can be used to compute the exact finite frequency
transport coefficients and hence to benchmark various approximations.

An application of this formalism to the physically important case of sodium cobaltate
NaxCoO2 is made, and interesting predictions for new materials are highlighted.

(Some figures in this article are in colour only in the electronic version)
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Nomenclature

t (�η) Hopping matrix element for a distance �η
〈i, j〉 Nearest neighbour sites Ri, Rj

cj,σ Electron destruction operator at site Ri

for spin σ

Ns, N, n Number of sites, electrons and density
v, � Volume per cell and total volume

qe, c Carrier charge and the velocity of light
U, J Interaction coupling constants in

the Hubbard and t–J models
PG Gutzwiller projection operator

removing doubly occupied sites
µ, ρ0(µ) Chemical potential and density

of states per spin at that energy
K = H − µN̂ Grand canonical Hamiltonian
C(T ), T Specific heat and temperature T
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ωc = ω + i0+ Frequency with small imaginary part
RH, R∗

H Hall constant and high frequency
Hall constant

S, L, Z Seebeck coefficient, Lorentz number
and figure of merit

Lij Onsager response coefficients
M1, M2 Response of charge and energy currents

to external input power
N1, N2 Response of charge and energy densities

to external input power
κ, κzc The nominal thermal conductivity (L22)

and zero current thermal conductivity
Ex, B Electric and magnetic fields
σα,β Electrical conductivity tensor
Ĵx, Ĵ

Q
x Charge and heat current operators

along x axis
τXX Stress tensor or effective mass tensor

xx, �xx Thermoelectric and thermal operators
ψ(�x), φ(�x) Luttinger’s gravitational field

and electric potential
K(q), ρ(q) Heat and charge densities
DQ, Dc Heat and charge diffusion constants
χA,B Susceptibility of operators A, B

εn Energy levels of the Hamiltonian
�Sj Spin vector at site Rj

1. Introduction

1.1. The challenge of correlated electron systems

Correlated electron systems [1–7] stand at the frontier
of condensed matter physics, posing conceptual as well
as calculational hurdles that have seriously engaged the
theoretical community in the last few decades. Experimental
results on several classes of new materials have provided
great impetus to this study, and often given direction to the
theoretical endeavours. High Tc superconductors are a large
class of materials that are within the domain of correlated
electron systems, but are not the only ones. The study of rare
earth compounds provides another important class of systems,
as do the newly discovered cobalt oxide materials.

Correlated electron systems are characterized by a
common feature, namely a narrow bandwidth of electrons,
which interact strongly on a scale of the order of electron
volts at short distances. The dimensionless coupling constant,
namely the ratio of the interaction energy U (∼a few
electronvolts) to the band width W (∼0.1 or 1 eV), becomes
large. This large parameter makes the validity of a perturbation
theory in U/W unclear. In weakly interacting systems, such
as good metals, the analogous ratio is small and leads to the
Fermi liquid picture of weakly interacting quasiparticles, as
formulated by Landau and others. In the case of correlated
matter, as in many other settings, the behaviour of perturbation
theory has a strong dependence on spatial dimensionality. In
one dimension, the standard Fermi liquid theory breaks down
due to a proliferation of low energy excitations, i.e. an infrared
breakdown. The most interesting case of two dimensions, i.e.
electrons moving in a plane, is the hardest problem yet, since

special techniques that work in 1D are not applicable here,
and yet the low dimensionality suggests enhanced quantum
fluctuations. This case is of experimental consequence, since
many correlated materials are also layered, displaying a large
asymmetry between their transport properties along planes and
across these planes.

The basic models that have been used to describe
correlated electrons are the Hubbard and t–J models described
below and the periodic Anderson and Kondo lattice models.
More complex models with multiple bands have been
considered, but in this paper we shall restrict our attention to the
first two models, which describe a very large class of systems
where d-type electrons are involved. In physical terms the
Hubbard model H = H0+H1 contains the hopping of electrons
between sites denoted as H0 = − ∑

�η,�x t (�η)c
†
�x+�η,σ

c�xσ , where

t (�η) is the hopping matrix element for a range vector �η,1 and
on-site Coulomb repulsion terms H1 = U

∑
nj↑nj↓. This

model neglects all other (smaller) terms in the full lattice
Coulomb problem. It is thus the simplest correlated electron
model, characterized by the dimensionless coupling U/|t | and
the filling of electrons in the band denoted by n = N/Ns

(where N and Ns are the total number of electrons and the
number of lattice sites), so that from the Pauli principle we
are restricted to the range 0 � n � 2. The so-called ‘Mott–
Hubbard gap’ arises in this model at half filling n = 1 as
follows. At this filling, there is a single electron per site on
average, and so it is impossible to avoid paying an energy
penalty of O(U ) on adding a particle, but it is quite cheap
(independent of U ) to remove a particle. Thus the cost of
adding a particle is quite different from removing a particle.
This fundamental asymmetry characterizes an insulating state
in the most general possible terms. It does not invoke any kind
of broken symmetry whatsoever. Such an insulator is called the
Mott–Hubbard insulator. The standard example of this kind of
insulator is the 1D Hubbard model at half filling.

Another important description of correlated electron
systems is through the t–J model. This model represents a
much stronger version of correlations, with the prohibition of
double occupancy, i.e. states with nj↑nj↓ = 1. This constraint
is enforced by the Gutzwiller projection operator

PG =
∏
j

(1 − nj↑nj↓), (1)

so that Ht−J = PGT PG + exchange. This situation
corresponds to taking U → ∞ in the Hubbard model. The
added exchange term is written as J

∑
〈i,j〉 �Si · �Sj and represents

the tendency, arising from eliminating high energy states
with double occupancy, of neighbouring spins to point in
antiparallel directions2.

Given these simple looking models, the task is to compute
physically measurable variables, such as the thermodynamic
response functions as well as the dynamical response functions.

1 The band width on simple lattices is related to the hopping through
W ∼ 2ν|t | where ν is the coordination number of the lattice. The vector
�η is usually, but not always, specialized to be the set of nearest neighbour
vectors on the lattice.
2 By performing degenerate perturbation theory at large U one can obtain the
t–J model and another small three body term that is neglected here [8].
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One wants to understand the nature of the order in the ground
states that arise and the dependence of these on various
parameters of the models. Various calculations suggest highly
non-trivial magnetic and superconducting states to emerge
from these simple models. Among the dynamical aspects
of the problems, transport variables such as resistivity form
the bulk of measurements carried out in laboratories; these
are the table top experiments of condensed matter physics.
Here one applies an electrical and a thermal gradient along
the sample (say along the x axis) and in some instances a
uniform magnetic field transverse to the electric field (along
the z axis). The measured objects are the electrical and thermal
currents that are induced, and by taking the ratio of currents to
fields, one deduces the various conductivities σα,β = ∂Jα/∂Eβ

and from these the resistivities (see equations (3), (13) and
(14) below). They are relatively easy to measure, and reveal
the characteristics of a given material to a very large extent,
e.g. whether it is a metal or an insulator, the carrier charge
and density, etc. Next to resistivity, one of the most widely
used measurements is that of the Hall constant RH (defined
below in equation (3)), followed by the thermoelectric response
functions such as the thermal conductivity κ (defined below
in equation (17)) , the Seebeck coefficient S and the Lorentz
number L (defined below in equation (68)). The materials
community has also great interest in seeking the conditions for
an enhanced Seebeck coefficient and the figure of merit ZT

equation (68), since the overall efficiency of a device turns out
to depend upon this dimensionless number.

Unfortunately it is not a simple matter to compute these
response functions. In particular, these are much harder
than equal time correlations. One needs to know more
than the ground state in order to determine these, a handle
on the excitations is also required. Thus the question of
transport in correlated matter is one of the hardest problems
in condensed matter physics. The traditional methods and
models of transport such as Drude–Sommerfeld [9, 10] and
Bloch–Boltzmann [11, 12] theories have been used extensively
to estimate answers, even when the validity of the methods is
rather ambiguous in these systems. The simplest of these is
the Drude–Sommerfeld model [9], using a free electron gas
within a Boltzmann equation approach, and thereby builds
in the Fermi statistics into the classical Drude theory. The
Bloch–Boltzmann [11–13] theory improves on this by focusing
on carriers in the Bloch bands, and thus the carriers are
characterized by a band index as well as a wave-vector index
and relies principally on the concept of metals and insulators
as defined by band filling. This band filling concept is often
denoted as the Bloch–Wilson [12, 13] classification of metals
and insulators. Landau theory of Fermi liquids [14] further
refines the theory and incorporates the effect of Coulomb
interactions via renormalized quasiparticles. Thus the physical
picture behind the current understanding of transport is one of
almost free quasiparticles that diffuse through matter, suffering
multiple collisions either mutually or with the lattice and other
excitations.

The above picture is not robust against strong correlations.
Mott–Hubbard interactions change the nature of the carriers
radically near half filling, i.e. a single electron per atom. The

Mott insulating state [15] arises as an exception to the Bloch–
Wilson [12, 13] classification of metals and insulators. At
half filling a Mott–Hubbard system is an insulator due to
correlations and would have been a metal without interactions.
The strongly correlated systems addressed in this paper may
be described as doped Mott insulators [6], i.e. states obtained
by adding or removing electrons from a Mott insulator.
Here the definition of a quasiparticle has been argued to
be ambiguous [6, 16], thus making the standard approach
questionable. The applicability of the Fermi liquid concept
has been questioned in strongly correlated matter, on the basis
of several experimentally anomalous results for resistivity and
photoemission [7, 17].

In this review, we address this question from a fresh
point of view, starting from the exact but usually intractable
linear response formulae, generally known as Kubo formulae,
and finding easier but non-trivial versions of these. These
new formulae approximate certain aspects of the problem
that are possibly less controversial, but treat the effects of
correlations carefully. Our results may be classified as being
complementary to the usual Bloch–Boltzmann theory, and we
present the formalism as well as its applications in the context
of the thermoelectric response functions. In short, our method
enables us to compute a well-defined subset of the transport
response functions, such as the Seebeck coefficient, the Hall
constant and the Lorentz number as well as the thermoelectric
figure of merit. This subset, described in greater detail below,
is characterized by the fact that they are independent of the
relaxation times, within the simplest Bloch–Boltzmann theory.

1.2. Transport in correlated electron systems

As explained above, a major problem is to understand transport
phenomena in correlated matter. Traditional approaches such
as the Boltzmann equation have served long and distinguished
tenures to explain transport coefficients in terms of a few
measurable objects (relaxation times, effective masses, etc).
However, these methods run into severe problems in the
most interesting and important problem of metals, with strong
Mott–Hubbard correlations. These correlations give a Mott
insulating state at commensurate (half) filling, with localized
spins interacting with each other, and away from half filling,
one has metallic states that carry the distinguishing marks and
signatures of the parent Mott insulator.

The high Tc systems provide one outstanding set of
materials that have dominated the community for the last 20
years. These are widely believed to be strongly correlated,
following Anderson’s original and early identification of these
as doped Mott insulators [16]. Another important material,
sodium cobaltate NaxCoO2, has recently been popular in
studies of thermoelectricity [18, 19]; this is strongly correlated
too, but the underlying lattice is triangular rather than square.
These two systems have in common the presence of spin half
entities, and have both been modelled in the (rather extensive)
literature by some variants of the t–J model.

The qualitative reason for the difficulties of the Bloch–
Boltzmann equation approach in these correlated models can
be understood in several ways. One is to recognize from a
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variety of experiments in these systems that the wave function
renormalization or quasiparticle residue zk (defined as the
jump in the ground state occupation number at the Fermi
surface in momentum space) is either zero or if non-zero,
it is certainly very small. Another simple and yet powerful
point of view is to ask: what is the charge carrier in a Mott–
Hubbard system near half filling? From the real space point
of view, in order that a correlated electron can hop to a
nearby position, it must make sure that there is no particle
of either spin at that site. This is unlike the situation for
an uncorrelated electron, which can always hop, regardless
of the opposite spin occupancy of the target site. Hence the
motion of a correlated electron of either spin is accompanied
by the ‘backflow’ of a vacancy. It is therefore clear that the
carriers are best viewed as holes measured from half filling.
Thus at a filling of electrons n ≡ N/Ns (where N and Ns

are the total number of electrons and the number of lattice
sites), the carriers are in fact δ = |1 − n|, so that near half
filling δ → 0, and one sees that the carriers are frozen out.
Thus the overall scale of several transport coefficients can be
found almost by inspection; for example, the Hall number
must vanish as we approach half filling, as must the inverse
thermopower, defined below in equation (15). However, it
is already clear that the Bloch–Boltzmann approach cannot
easily capture these ‘obvious results’. The latter starts with
the band structure derived quasiparticles, and as n → 1 has
no knowledge of the impending disaster, also known as the
Mott insulating state! One can also view this issue from the
point of view of real space versus momentum space definition
of holes: the correlated matter clearly requires a real space
picture to make physical sense (as opposed to computational
ease), whereas the Bloch–Boltzmann approach takes a purely
momentum space approach to particle and holes. In fact,
the ‘Bloch–Boltzmann holes’ are vacancies in momentum
space measured from a completely filled band and have no
resemblance to the Mott–Hubbard holes. Of course, the above
diatribe obscures a crucial point; the Mott–Hubbard real space
holes viewpoint is almost impossible to compute with, at least
using techniques that exist so far. On the other hand, the
momentum space view is seductive because of the ease of
computations exploiting a well-oiled machine, namely, the
perturbative many body framework. Hence it seems profitable
to explore methods and techniques that implement the Mott–
Hubbard correlations at the outset and give qualitatively correct
answers. Our formalism, described below, was motivated by
these considerations.

In this review, there will be little effort at an exhaustive
literature survey. However, it is appropriate to mention
that the problems discussed here have been addressed by
several authors recently. Mahan’s papers [20] address issues
in low carrier density thermoelectric materials, including
superlattices. Dynamical mean field theory, reviewed in [21],
has been applied to the problem of thermoelectricity in [22].
A considerable body of theoretical and experimental work on
heavy Fermi systems and relevant models can be found in
the work [23]. In particular, the review paper [24] summarizes
the work on the Falicov–Kimball model as an application of
the dynamical mean field theory.

Our published papers contain more references to other
approaches taken in the literature. I would, however, like to
mention that at a ‘mean field theory’ level, the Mott–Hubbard
correlations can be built in, by various slave Boson or slave
Fermion approaches, with some success [6]. In essence, strong
correlations force us to deal with the Gutzwiller projection in
equation (1) of the Fermi operators

ĉjσ = PGcjσPG, (2)

and a similar expression for the creation operators. The
sandwich of the operators by PG makes sure that the states
considered have no double occupancy; PG annihilates those
states. However, the operators ĉjσ are no longer canonical
Fermions, i.e. do not satisfy the usual anticommutation
relations. One finds that {ĉjσ , ĉ

†
lσ } �= δj,l , but rather a non-

trivial term appears on the right-hand side. One way to avoid
dealing with the ĉjσ operators is to represent the effects of the
Gutzwiller projection, using auxiliary (‘slave’) Fermi or Bose
operators to force the constraint of no double occupancy [6].
These slave fields consist of canonical Fermions or Bosons, but
with an added constraint at each site and in order to deal with
that constraint end up making Hartree type factorization of
resulting expressions. The errors made by these factorizations
are hard to quantify, but do give some qualitative understanding
of transport in many cases.

Since well-controlled calculations are difficult to perform
for the experimentally relevant case of two dimensions with
electrons having spin 1

2 , we are most often forced into
numerical computations. The formalism developed here
provides some guidance towards effective computations. We
expect that our formalism is to be supplemented by a heavy
dose of numerics, either exact diagonalization or some other
means.

1.3. Plan of the article

In section 2, we motivate the high frequency approach through
the example of the Hall constant. For the triangular lattice
sodium cobaltate, this leads to the interesting prediction of a T

linear Hall constant, which has been verified experimentally.
In section 3 we obtain the finite frequency thermoelectric
response functions, by using a dynamical version of Luttinger’s
gravitational field as a proxy for the thermal gradients.
From this formalism, novel sum rules for the thermal
conductivity and new thermal and thermoelectric operators
emerge. We obtain useful formulae for the variables of
common interest such as the Seebeck coefficient and the figure
of merit. In section 4 we present the result of applying these
formulae numerically to sodium cobaltate and benchmark the
high frequency approximation by comparing with the exact
evaluation of Kubo’s formulae. We show how our formalism
gives a quantitatively accurate result for existing materials. It
further leads to interesting and possibly important predictions
for the Seebeck coefficient of as yet undiscovered materials.
In section 5 we present a simple diffusion relaxation model for
coupled charge and heat currents in metals, where the new
operators play an explicit role, and their meaning is made
physically clear. The model and some novel response functions
relating to an applied ac power source are likely to be of interest
in the context of pulsed laser heating in materials.
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2. Hall constant

The basic idea of this approach is well illustrated by the
example of the Hall constant for correlated matter RH defined
in equation (3). Here the initial paper of Shastry, Shraiman
and Singh [25] pointed out that the dynamical Hall constant is
better suited for computation in correlated systems. Consider
the simplest framework, the Drude theory of electrons [9, 26],
where we know that

σxx(ω) = σxx(0)

(1 + iωτ)
,

σxy(ω) = σxy(0)

(1 + iωτ)2
,

B RH ≡ ρxy(ω) = σxy(ω)

σxx(ω)σyy(ω)
= B

nqec
,

(3)

where qe = −|e| is the electron charge, n the density of
electrons, τ the relaxation time and B the uniform magnetic
field along the z axis. The relaxation time cancels out in
computing the Hall resistivity at arbitrary frequencies, and
this cancellation gives us a clue. We might as well compute
the two conductivities σαβ(ω) at high frequencies, since here
the notorious difficulties inherent in computing the dc values
of these objects vanish. The Drude theory therefore gives
us an important insight, namely, that the Hall resisitivity is
less ω dependent than the Hall conductivity. We explore and
build on this central idea further in this paper, using exact
diagonalization, dispersion relations and sum rules.

In order to perform the above suggested calculation, we
need to take the Kubo formulae for the conductivities3 and
take the appropriate ratios to get the dynamical resistivity.
Let us consider the electrical conductivity σαβ(ω) of a general
Fermionic system defined on a lattice. Let us define an energy
dispersion εk obtained by Fourier transforming the hopping
matrix element t (�η) as εk = − ∑

�η exp −i�k · �ηt (�η). The
electrical current operator is obtained using the continuity
equation as

�̂
J = i qe

∑
�x,�η

t (�η)�ηc
†
�x+�η,σ

c�x,σ . (4)

The current operator Ĵα is dressed by a suitable Peierls [28]
phase factor in the presence of the uniform magnetic field B

along the z axis. In the t–J model, the current is sandwiched by
the Gutzwiller projector in equation (1) as Ĵ → PGĴ PG, and
thereby allows transport only between singly occupied sites.
We can use perturbation theory to linear order in the external
electric field to find a general expression for the dynamical
conductivity [10, 25]:

σαβ(ωc) = i

h̄Nsvωc

[
〈ταβ〉 + h̄

∑
n,m

pn − pm

εn − εm + h̄ωc

×〈n|Ĵα|m〉〈m|Ĵβ |n〉
]
, (5)

3 It is frustrating that despite several ambitious claims in the literature,
especially from the Mori formulation experts, there is no practical and direct
way of computing the dynamical resistivity that bypasses the intermediate
stage of computing the dynamical conductivities [27].

where pn ∝ e−βεn is the probability of the state n, and the
‘stress tensor’ (sometimes called the ‘effective mass tensor’)
is defined by

ταβ = q2
e

∑
k,σ

d2ε(k)

dkαdkβ

c†
σ (k)cσ (k), (6)

where v is the atomic volume and ωc = ω + i0+. The Hall
conductivity, in fact, involves the antisymmetric part of this
tensor [25]. In the case of a t–J model the τ operators are
also sandwiched by Gutzwiller projection in equation (1). In
order to compute say the transport conductivity 
e σxx(ω)

in the limit ω → 0, we need to sum over terms such as∑
n,m pn δ(εn − εm)〈n|Ĵα|m〉〈m|Ĵβ |n〉. Such a computation is

made very difficult by the presence of the Dirac delta functions.
These energy conserving delta functions lead to a finite limit
for σxx(0) in say a disordered metal. The limit is reached only
in the thermodynamic limit by a subtle limiting process and
corresponds to a dissipative resistivity. These delta functions
are very hard to deal with, if we are given a set of energy
levels for a finite system. It is then necessary to broaden the
delta functions to a suitable function, say a Lorentzian with
an appropriate width determined by the system size and other
parameters. In practice, this task is quite formidable and only
rarely has it been undertaken, thereby motivating the search
for alternative routes.

Following the hint contained in the Drude formulae, we
can take the high frequency limits for the conductivity and
thereby obtain the Hall resistivity at high frequencies

R∗
H ≡ lim

ω→∞ RH(ω) = −iNsv

Bh̄

〈[Ĵx, Ĵy]〉
〈τ xx〉2

. (7)

In deriving this formula, one is working in the non-dissipative
(reactive) regime. That is because the Kubo formulae in
equation (5) are evaluated away from the ω → 0 limit, where
the Dirac delta functions come into play.

The main article of faith is the claim that ρxy(ω) at large
frequencies is related in a simple way to the transport variable
ρxy(0). Is this rationalizable? Further, what is the meaning of
high frequency or how ‘high’ is ‘high enough’?

With regard to the magnitude of the frequency, the key
point is to work with a projected Fermi system rather than
a bare one. For example, in the case of the Hubbard model
versus the t–J model, one sees that the energy scale inequality
requirement is

h̄ω � {|t |, U}max, (8)

h̄ω � {|t |, J }max. (9)

Thus in the case of the t–J model, one can be in the high
frequency limit, and yet have a modest value of ω, in contrast
to the Hubbard model since usually U is large, O(ev′s). In
the case of the cobaltates, the energy scale that determines the
high frequency limit is presumably the Hunds rule or crystal
field energy and hence much lower. Thus the ‘high frequency
limit’ is expected to be close to the transport values, for models
where the high energy scale is projected out to give an effective
low energy Hamiltonian with suitably projected operators.

Subsequent studies show that this simple formula
(equation (7)) is a particularly useful one; we list some of
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its merits:

1. It is exact in the limit of simple dynamics, as in the Bloch–
Boltzmann equation approach.

2. It can be computed in various ways, e.g. using exact
diagonalization [29] and high T expansions [25, 30].

3. We have successfully removed the dissipational aspect of
the Hall constant here and retained the (lower Hubbard
sub-band physics) correlations aspect. This is done
by going to high frequencies and using the Gutzwiller
projected Fermi operators in defining the currents.

4. It is valid for the entire range of hopping processes, from
hopping type incoherent transport at high T to coherent
Fermi liquid type transport at low T in a band system.

We emphasize that this provides a very good description of
the t–J model, where this asymptotic formula requires ω to
be larger than J , but should not be expected to be particularly
useful for the Hubbard model. In the Hubbard model [31], the
transport limit and the high frequency limit are on opposite
sides of a crucial energy scale U . More explicitly, a large
ω � U is implicit in this limit and therefore deals with weakly
renormalized particles. We expect it to differ from the transport
limit ω → 0 significantly in qualitative terms, such as the signs
of carriers and the Hall number.

It is worthwhile recording a dispersion relation for the Hall
constant at this point. Since RH(ω) is analytic in the upper half
of the complex ω plane, and has a finite limit at infinite ω, we
may write

RH(ω) = R∗
H −

∫ ∞

−∞

dν

π

�mRH(ν)

ω − ν + i0+
, (10)

therefore in the dc limit we get


eRH(0) = R∗
H +

2

π

∫ ∞

0

�mRH(ν)

ν
dν. (11)

This equation quantifies the difference between the experi-
mentally measured dc-Hall coefficient and the theoretically
more accessible infinite frequency limit. The second term is an
independently measurable object, and initial measurements of
this are now available in [32]. It would be very useful to make
a systematic study of this promising dispersion relation, both
theoretically and experimentally. For the case of the square
lattice systems, the theoretical estimates of the difference are
indicated in figure 1 for a couple of densities. We plan to return
to this rich topic in future studies.

As an illustration of the above formalism, we note that a
recent work on the triangular lattice system NaxCoO2 provides
a good example. Theoretically, the ‘exotic’ prediction, namely,
that the Hall constant grows linearly with temperature T on
a triangular lattice, was first recognized in 1993 [25]. This
behaviour arises for T � TFermi. On the other hand, for
low temperatures, it is expected to be less sensitive to T ,
as in a Fermi liquid. This prediction arises in a simple
way from equation (7) treated within the high temperature
expansion [25, 30]. The numerator is dominated by the shortest
closed loops of electron hopping that encircle a flux, and these
are, of course, triangles for the triangular lattice. This leads at
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Figure 1. Frequency dependence of the Hall coefficient on the
triangular lattice from computation on small clusters of the t–J
model [29, 35] for electron doping x. The values of doping x are
indicated in the figures. In the upper figure, the linear T dependence
is striking in all cases. The bottom figure displays the frequency
dependence for various values of x and T . It is seen from these
curves that frequency dependence is modest except for the case of
very low doping. Reprinted with permission from [35]b. Copyright
2006 by the American Physical Society.

high T (or small inverse temperature β) to the numerator ∝β

whereas the denominator is always ∝ β2 and hence a T linear
Hall constant with a well-defined coefficient

R∗
H = − v

4|qe|
kBT

t

1 + δ

δ(1 − δ)
+ c1 +

c2

T
+ · · · . (12)

This result (with suitable constants c1, c2) [30] is for the
experimentally relevant case of electron filling so that δ =
(N/Ns) − 1 and has a suitable counterpart for the case of hole
filling. It is remarkable in two distinct ways. Firstly, it shows
that the sign of the Hall constant is not universal, as one might
naively expect from the Sommerfeld Drude theory formula
RH = 1/nqec. Rather it depends upon the sign of the hopping
as well. This aspect was recognized in the important work
of Holstein [33], within the context of hopping conduction in
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Figure 2. Experimental temperature dependence [34] of the Hall
coefficient of sodium cobaltate Na0.68CoO2 over a broad range of
temperatures. The sample is in the so-called Curie–Weiss metallic
phase. The inset stresses the crucial role of the triangular closed
loops in giving rise to the surprising behaviour.

doped semiconductors. The other remarkable feature is that
the Hall resistivity increases linearly with T , a result first found
in [25, 30]4 . The final answer is therefore highly non-universal
and depends upon material parameters such as the magnitude
and sign of the hopping and also the nature of the doping (holes
versus electron). We reiterate that this asymptotic behaviour
is obtained provided kBT � |t | and as such is experimentally
observable only for narrow band systems. In general, from
equation (7) one expects a T independent Hall constant for
T sufficiently below a (usually large) characteristic Fermi
temperature, as in most metallic systems.

Interestingly enough, the case of NaxCoO2 with x ∼ 0.68,
i.e. the so-called Curie–Weiss metallic phase, seems to fulfill
these conditions of narrow bandwidth. As figure 2 shows,
the experiments show a large and clear-cut region of linear T

dependence [34], thereby fulfilling the basic theoretical
prediction of equation (12). Recent work [35] attempts to
reconcile many experimental results in this phase, including the
Hall constant coefficient of T , with the theoretical predictions.
Many experiments such as the photoemission quasiparticle
velocities, the magnetic susceptibility and specific heat are
understandable with |t |/kB ∼ 100 K (i.e. a bare band width
9|t | ∼ 10−2 eV ). At x = 0.68, the Hall slope requires a
smaller value |t |/kB ∼ 25 K, but nearby compositions seem
to have a smaller slope translating to a larger value of |t |/kB

that is more in line with the other data. All these numbers are,
in turn, much smaller than LDA estimates of the bandwidth of
0.2 eV [36] by an order of magnitude and pose an interesting

4 Using a semiclassical theory of transport, Holstein estimated the Hall
conductivity and Hall angle σxy/σxx , rather than the Hall resistivity as
in equation (12). The neat prediction [25, 30] of a T linear behaviour
(equation (12)) emerges only for the Hall resistivity, where many factors
cancel out.

problem to the community. In this review, our interest in the
Hall constant of the cobaltates is mostly motivational and hence
tangential; we will leave this topic for further work. In the case
of the cuprates, the work in [25, 29] shows that R∗

H provides a
useful first principles estimate for the physical (dc) transport
Hall constant RH(0) for correlated systems. Our task in these
notes is to carry this message to the computation of the thermal
response functions, and so we terminate our discussion of the
interesting problem of the Hall constant.

3. Thermoelectric response

We next address the main topic of this paper, namely, the
thermal response functions. In light of the previous discussion
of the Hall constant, we searched for the analogue of R∗

H.
Therefore, we needed the finite (high) frequency limits of
thermal response functions. To the author’s surprise, these
limiting functions were unavailable in the literature, therefore
leading to the basic calculation in [37]. We begin with a
quick review of the standard transport theory given in many
texts [9, 10, 26, 38, 39]. We write down the set of linear
response equations following Onsager [38]:

1

�
〈Ĵx〉 = L11Ex + L12(−∇xT /T ), (13)

1

�
〈Ĵ Q

x 〉 = L21Ex + L22(−∇xT /T ), (14)

where (−∇xT /T ) is regarded as the external driving
thermal force [9, 38, 40]. The operator Ĵx is the total
charge current operator and has been defined earlier in
equation (4). Further Ĵ Q

x is the heat current operator defined
as Ĵ Q

x = limqx→0(1/qx)[K, K(qx)], where K(qx) is the
Fourier component of the grand canonical Hamiltonian density
(equation (18)) and limqx→0 K(qx) = K . These variables are
elaborated upon below in equations (34) and (35) and � = vNs

is the total volume of the system. The parameter L11 is related
to the dc conductivity σ(0) = L11

5, the parameter L12 is
related6 to the Seebeck coefficient

S = L12

T L11
, (15)

also L21 is related to the Peltier coefficient

� = L21/L11 = T S, (16)

the final equality in equation (16) relating the Peltier and
Thomson effects is the celebrated reciprocity due to Thomson
(Kelvin) [40] and Onsager [38]. It is most compactly
written as L12 = L21. The Onsager constant L22 is related
to the (nominal) thermal conductivity κ = (1/T )L22 for
problems with immobile degrees of freedom (spins, ions,
etc). For metallic systems, however, the observed thermal
conductivity κzc requires a small correction (see equation (17)).
The usually observed thermal conductivity [10, 26, 28] uses

5 Our definition includes the volume factor and this makes L11 identical to
the (intensive) conductivity.
6 Sometimes in the literature [9, 10, 26], S is denoted by Q.
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the zero electrical current condition 〈Ĵx〉 = 0, thereby
inducing an electric field. The generated electric field is
related by equation (13) to the applied thermal force, and
using it in equation (14) we find the zero current thermal
conductivity [10, 26]

κzc = 1

T L11
(L22L11 − L12L21). (17)

These are equations in the static limit and correspond to the
most simple non-equilibrium states with a steady current flow.

3.1. Luttinger’s gravitational field analogy

In order to generalize the above transport theory to finite
frequencies, we need to borrow a beautiful idea from Luttinger
[39]. In order to derive the Kubo formulae [41], he introduces
the mechanical equivalent of the thermal gradient, and we shall
use it extensively. The fictitious mechanical field ψ(�x, t) is
similar to a gravitational field, coupling to the effective ‘mass
density’ meff(�x) = (1/c2)K(�x) via

Ktot = K +
∑

x

K(�x)ψ(�x, t). (18)

Here K = ∑
x K(�x) and K(�x) = H(�x) − µn(�x) is

the Grand canonical Hamiltonian7, H(�x), n(�x), µ are the
local canonical ensemble Hamiltonian, number density and
chemical potential. Below, we will expand K(�x) =
1
�

∑
exp −i�q · �x K(�q), with a similar expansion for the charge

and other densities and currents. We can compute the standard
linear response to a space–time dependent ψ(�x, t), and with the
help of the ideas initiated by Luttinger deduce the dynamical
thermal response functions required in equation (37).

Firstly, let us note that the local temperature δT (�x, t)

can be defined in the long wavelength almost static limit
through small departures from equilibrium. The local
energy fluctuation can be written as 〈K(�x, t)〉 = 〈K〉0 +
C(T ) δT (�x, t), with C(T ) as the specific heat at the
equilibrium temperature T (at constant volume and µ),
provided δT ( �X, t) � T . Hence we can invert to define the
local temperature through

δT (�x, t) = δ〈K(�x, t)〉
C(T )

. (19)

The connection of ψ(�x, t) with local temperature δT (�x, t)

emerges from a study of the generalized phenomenological
equations proposed by Luttinger [39]. He focuses on long
wavelength �q → 0 and static ω → 0 limits where
equilibrium is rigorously definable; we will extend this notion
to arbitrary variations. The phenomenological relations
are generalizations of the Onsager formulation [38] as in
equations (13) and (14) and correspond to adding terms

7 The need for introducing the Grand canonical Hamiltonian K lies in the
construction of the heat current operator Ĵ

Q
x , where the particle current must

be subtracted from the energy current (equation (34)).

proportional to the gradient of the mechanical term ∝ψ in
equation (18). Luttinger writes

1

�
〈Ĵx〉 = L11Ex + L12(−∇xT /T ) + L̂12(−∇xψ(�x, t)),

(20)

1

�
〈Ĵ Q

x 〉 = L21Ex + L22(−∇xT /T ) + L̂22(−∇xψ(�x, t)),

(21)

where the two new response functions L̂12, L̂22 are functions
of space and time which can be readily computed from a linear
response theory treatment of the mechanical perturbation in
equation (18). We will treat ψ as a small perturbation and work
to linear order here. Addition of the ψ term in these equations
allows us to take a different perspective8. In equations (20) and
(21) we can view the driving term as ψ , with the temperature
fluctuation arising as a consequence of this driving, at least for
long wavelengths and slow variations9.

In these equations (20) and (21), the idea is to determine
the difficult unknowns L12, L22 in terms of the easier objects
L̂12, L̂22. Let us consider one particular example for simplicity,
the others follow similarly. Since the theory is linear in
the external perturbation, it suffices to consider a single
frequency and wave vector mode. Therefore, let us focus
on equation (20), and introduce a single Fourier component
ψ(�x, t) = ψq exp{−i(qxx + ωt + i0+t)}, (adiabatic switching
implied) and the electric potential φ(�x, t) = φq exp{−i(qxx +
ωt + i0+t)}. We thus write

1

�
δĴx = L11(qx, ω)(iqx)φq

+ (iqx)

[
L12(qx, ω)

δTq

T
+ L̂12(qx, ω)ψq

]
, (22)

where 〈Ĵx(�x)〉 = (1/�)δJx exp −i(qxx + ωt), so that δJx

is the amplitude of the response, and we have written
the arguments of the Onsager–Luttinger functions Lij , L̂ij

explicitly.
To be explicit, we define two extreme limits of �q and ω

that arise here [39], one is the so-called rapid or transport limit,

8 Note that experiments usually employ open boundary conditions, and the
temperature gradient is externally applied. The usual argument made is that the
periodic boundary case and the open boundary case are equivalent, provided
we take the wave vector �q → 0 or the thermodynamic volume � → ∞
limits, respectively, while keeping the frequency ω finite and small. This
gives a prescription for the dc limit in both cases, namely, to take the dc limit
at the end of the volume (or wave vector) limits (equations (13) and (14)).
9 This is where Luttinger uses the tactical analogy with the Einstein
relation for the relationship between self-diffusion and conductivity. In the
phenomenological equation 〈Ĵx〉 = σEx + D(−∇x)〈ρ〉, the driving term is
Ex . In equation (20) (neglecting the L11 term for a moment), the ψ term is
analogous to the Ex in the diffusion problem, and the induced temperature
variation is similar to the induced charge fluctuation. For completeness, we
summarize Luttinger’s argument for this case. For small wave vectors and
slow variation of the electric field Ex = −∇φ(x) = E0 exp −i(qxx + ωt).
Upon using the continuity equation 〈ρq 〉 = −(qx/ω)〈Ĵx〉 we see that
〈Ĵx〉 = σE0(ω/(ω + iDq2

x )). Similarly the charge fluctuation 〈ρq 〉 =
σφq(−iq2

x /(ω + iDq2
x )), where φq = −iE0/qx . Luttinger’s argument is that

in the fast or transport limit ω → 0, qx → 0 so that the diffusion term can
be dropped. However, in the slow limit, the relations derived above show
that (σ/D) = −〈ρq 〉/〈φq 〉. The right-hand side of this is easily computed
from thermodynamics, whereby the Einstein relation σ/D = e2/(∂µ/∂n)T
follows.

8
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and the other is the slow or the thermodynamic limit. In the
rapid or transport limit, we first let qx → 0 and then let ω

vanish. In the slow limit, we set ω → 0 first and then take the
limit qx → 0.

In the transport limit, we have a spatially uniform field,
and hence we can show that δTq → 0. This is most easily
seen by inspecting the continuity equation for heat density
and current in the absence of an external heating source:
ω〈Kq〉 + qx〈Ĵ Q

x 〉 = 0. This can be written using equation (19)
as δTq = (−qx/C(T ) ω)〈Ĵ Q

x 〉. Thus dropping the δTq term,
we find
1

�
δĴx = L11(0, ω) lim

qx→0
(iqx)φq + L̂12(0, ω) lim

qx→0
(iqx)ψq.

(23)

The object limqx→0(iqx)φq → Ex and likewise for the
gravitational term, and hence this equation is essentially the
same as equation (20).

On the other hand, in taking the slow limit, with ω → 0,
the system is subject to a time independent but a spatially
varying gravitational potential as well as a temperature
gradient; this is now an equilibrium problem without a net
current. Thus 〈Ĵx(qx)〉 = 0, leading to

0 = L12(q, 0)
δTq

T
+ L̂12(q, 0)ψq. (24)

In this equilibrium situation, we can compute the connection
between δTq/T and ψq readily. Using lowest order
thermodynamic perturbation theory [10, 42] we compute the
change in energy induced by a small perturbation ψq

δ〈K(�q)〉
ψq

= −
∑ pn − pm

εm − εn

|〈n|K(�q)|m〉|2 + O(ψ), (25)

with pn = (1/Z) exp(−βεn) the probability of the state n.
In the limit �q → 0, K(�q) tends to the Hamiltonian, and
hence cannot mix states of different energy; hence we write
limεm→εn

(pn − pm)/(εm − εn) → βpn, whereby

lim
�q→0

δ〈K(�q)〉
ψq

→ −β
[〈K2〉 − 〈K〉2

]
(26)

= −T C(T ). (27)

This calculation is parallel to that in the literature [43] for
the electron liquid, where the dielectric function is related to the
compressibility in the limit of �q → 0ω → 0. Comparing the
final equation (27) with the standard thermodynamic definition
of C(T ), we see that

lim
q→0

δ〈K(�q)〉
ψq

= −T
d

dT
〈K〉, (28)

whereby

lim
�q→0

ψq = − lim
�q→0

δTq

T
. (29)

Comparing equations (29) and (24), we see that

lim
q→0

[L12(q, 0) − L̂12(q, 0)] = 0. (30)

From this relation, Luttinger concludes that L12 in the dc limit
can be computed from L̂12. Thus the problem of computing

thermal response is reduced to computing the mechanical
response to the field ψ(�x, t) and essentially treating10 the
lim�q→0 ψq = lim�q→0(δTq/T ).

This is undoubtedly huge progress. However, as far as
I can make out, this fine proof of Luttinger makes another
implicit assumption, namely, that

lim
ω→0

[L12(0, ω) − L̂12(0, ω)] = 0 (31)

somehow follows from equation (30). This is assumed so
despite the fundamental difference in the two limits, namely,
the slow (thermodynamic) and fast (transport) limits. The
belief thus seems to be that the two functions Lij and L̂ij must
be identical in the fast limit, if they are so in the slow limit.

In this work we need to define finite q, ω thermal response
functions. Towards this end, we will in fact extend the above
to all q, ω, and simply assume that

Lij (q, ω) = L̂ij (q, ω). (32)

The RHS is computable within perturbation theory, and the
LHS, although defined rigorously only in the regime of small
q, ω by hydrodynamic type reasoning, is extended to all
q, ω by this relation. This idea of extending the thermal
functions seems reasonable, since the resulting functions agree
with hydro-thermodynamics for small q, ω and are guaranteed
to satisfy general properties such as causality and Onsager
reciprocity. With this, we can define all thermal response
functions at all q, ω, and in the following we will work within
this generalized Luttinger viewpoint.

3.2. Finite ω thermal response functions

With this preparation, we return to exploring the thermal
response (equation (37)) at finite frequencies. The timing
of our quest seems fortuitous, since there is growing
experimental interest in the transport of energy and heat pulses,
requiring knowledge of these variables and of the approach to
equilibrium.

We first need to define the heat current Ĵ Q
x . Towards

this end, we take the time derivative of the first law of
thermodynamics for fixed volume T (dQ/dt) = (dE/dt) −
µ(dn/dt). Imagining a small volume with the flow of energy
and heat as well as density, and applying this law locally, it
is reasonable to identify the heat current as the energy current
minus the particle current (times µ). Thus the heat current can
be decomposed as the difference in two terms:

Ĵ Q
x = Ĵ E

x − µ

qe
Ĵx, (33)

where Ĵ E
x is the energy current and Ĵx the charge current. In a

quantum mechanical system, the heat current operator is most

10 The alert reader would have noted that this assignment has an opposite
sign to equation (29). The explanation for this slight ‘booby trap’ is
that in equation (29), the gravitational field and the thermal gradient are
simultaneously present in order to cancel the current. Their relative sign
is therefore negative. In making the suggested replacement, the gravitational
field is used as a proxy for the temperature gradient, and hence the relative
sign is reversed from the earlier context.

9
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easily computed from the commutator of the energy density
operator with total energy as follows (setting h̄ = 1):

Ĵ Q
x = lim

qx→0

1

qx

[K, K(qx)]. (34)

This construction is similar to the more familiar one for
the charge current Ĵx = limqx→0(1/qx)[K, ρ(qx)]. By
inspection, a local heat current operator can also be written
down provided the interactions are local, so that we can take
Fourier components in a periodic box11 and write

Ĵ Q
x (�q) = v

∑
x

Ĵ Q
x (�x) exp(i�q · �x) and

Ĵx(�q) = v
∑

x

Ĵx(�x) exp(i�q · �x). (35)

Therefore, Ĵ Q
x = Ĵ Q

x (�0) and Ĵx = Ĵx(�0). For different models,
the heat current is easy to compute using the above prescription,
and many standard models are treated in [37].

Let us impose fields that vary as ψ(�x, t) =
ψq exp{−i(qxx +ωt +i0+t)}, and similarly for the electric field
with the electric potential φ(�x, t) = φq exp{−i(qxx + ωt +
i0+t)}. Using the notation 〈Ĵx(qx)〉 = δJx and 〈Ĵ Q

x (qx)〉 =
δJQ

x , we find from equations (20), (21) that

1

�
δJx = L11(qx, ω)(iqxφq) + L12(qx, ω)(iqxψq), (36)

1

�
δJQ

x = L21(qx, ω)(iqxφq) + L22(qx, ω)(iqxψq). (37)

These responses are to be computed for a Hamiltonian
perturbed by a single Fourier component as

Ktot = K + [ρ(−qx)φq + K(−qx)ψq] exp (−iωt + 0+t),

(38)

where ρ(�q) is the charge density fluctuation operator at wave
vector �q.

We can reduce the calculations of all Lij to essentially
a single one, with the help of some notation. Keeping qx

small but non-zero, we define currents, densities and forces
in a matrix notation as follows:

i = 1 i = 2

Charge Energy

Ii Ĵx(qx) Ĵ Q
x (qx)

Ui ρ(−qx) K(−qx)

Yi Ex
q = iqxφq iqxψq.

(39)

The perturbed Hamiltonian equation (38) can then be written as

Ktot = K +
∑

j

Qj e−iωct , where Qj = 1

iqx

UjYj .

(40)

11 We imagine doing this calculation on a lattice; therefore the Fourier
transforms are written as sums over sites, with a factor of the atomic volume v

inserted for keeping track of dimensions.

We denote ωc = ω + i0+ above and elsewhere. From standard
linear response theory [39] applied to equation (40), we readily
extract the induced current response

〈Ii〉 = −
∑

j

χIi ,Qj
(ωc), (41)

where the susceptibility for any two operators χA,B(ωc) can be
expressed as (with Anm ≡ 〈n|A|m〉)

χA,B(ωc) = i
∫ ∞

0
dteiωt−0+t 〈[A(t), B(0)]〉

=
∑
n,m

pm − pn

εn − εm + ωc
AnmBmn

= − 1

ωc

[
〈[A, B]〉 +

∑
n,m

pm − pn

εn − εm + ωc

× Anm([B, K])mn

]
. (42)

The last line of equation (42) follows from integration by parts
of the first line, and the average 〈 〉 is carried out over the
ensemble where the external fields are dropped.

From equation (41), using the notation in equations (39)
and (42), the generalized Onsager coefficients

Lij (qx, ω) = 1

�
lim

Yj →0
〈Ii〉/Yj . (43)

are written down immediately:

Lij (qx, ω) = 1

i�ωc

[
〈[Ii , Uj ]〉 1

qx

+
1

qx

∑
n,m

pm − pn

εn − εm + ωc
(Ii )nm([Uj , K])mn

]
. (44)

We now record the continuity equation for energy and charge.
These can be compactly written in Fourier space, for small
q and in the absence of external energy sources. Using
the definitions in equation (39), we find [Uj , K] = qxI†

j .
Therefore

Lij (qx, ω) = i

�ωc

[
− 〈[Ii , Uj ]〉 1

qx

−
∑
n,m

pm − pn

εn − εm + ωc
(Ii )nm(I†

j )mn

]
. (45)

We next proceed to take the limit of small qx . Here the
inconvenient-looking first term in equation (45) tends to a finite
limit in all cases, owing to a simple but important point. We
first note that for a large system, K(−qx) tends continuously
to the Hamiltonian K in the limit qx → 0. We further note
that for a generic operator P , the cyclicity of trace yields

〈[P, K]〉 = 1

Z
Trace[e−βK(PK − KP)] ≡ 0. (46)

This relation is noted as Identity-I in [37]. It follows that
〈[P, K(−qx)]〉 ∝ qx with a well-defined coefficient [37].
Consulting the list of variables in equation (39), we conclude
that limqx→0〈[Ii , Uj ]〉 = 0 in all cases of interest. Observe that

10
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this result does not require the vanishing of the commutator
[P, K]. In the case of thermal transport L22, this point is
important since the heat current does not commute with the
Hamiltonian. In contrast, for L11, i.e. electrical transport, the
charge current commutes with the total number operator and
hence the limit of the ratio is well defined more trivially, leading
to the familiar f-sum rule as shown below.

In the uniform limit qx → 0, and hence from equation (39)
we can set I†

j = Ij . Therefore for arbitrary frequencies, the
Onsager functions read as

Lij (ω) = i

�ωc

[
〈Tij 〉 −

∑
n,m

pm − pn

εn − εm + ωc
(Ii )nm(Ij )mn

]
,

(47)

〈Tij 〉 = − lim
qx→0

〈[Ii , Uj ]〉 1

qx

= − lim
qx→0

d

dqx

〈[Ii , Uj ]〉. (48)

The operators Tij are not unique, since one can add to
them a ‘gauge operator’ T gauge

ij = [P, K] with arbitrary
P , without affecting the thermal average, due to Identity-I
(equation (46)) discussed above. These fundamental
operators play a crucial role in the subsequent analysis,
since they determine the high frequency behaviour of
the response functions. These important operators are
written in a more familiar representation [37] as follows.

Stress Thermal Thermoelectric

tensor operator operator

T11 T22 T12 = T21

τxx �xx 
xx

− d

dqx

[Ĵx (qx), − d

dqx

[Ĵ Q
x (qx), − d

dqx

[Ĵx (qx),

ρ(−qx)]qx→0 K(−qx)]qx→0 K(−qx)]qx→0

(49)

The thermoelectric operator can also be written as


xx = T21 = − d

dqx

[Ĵ Q
x (qx), ρ(−qx)]qx→0, (50)

and its equivalence to the form given in equation (49) amounts
to showing T12 = T21, modulo the addition of a ‘gauge
operator’ discussed above. This task is more non-trivial than
one might naively anticipate and requires the use of Jacobi’s
identity as discussed later.

Several aspects of equations (47) and (49) are worth
mentioning at this point.

3.3. Onsager reciprocity at finite frequencies

We first note that the celebrated reciprocity relations of
Onsager are extended to finite ω here. These require in the
present case (with no magnetic fields)

Lij (ω) = Lji(ω). (51)

One part of the above dealing with the second term of
equation (47) goes back to Onsager’s famous argument: in
the absence of a magnetic field we can choose a real phase

convention for the quantum wave functions such that the
product (Ii )nm(Ij )mn is real. Invariance under complex
conjugation then implies invariance under the exchange i ↔ j .

The full (frequency dependent) function shows reciprocity
only if we can show that Tij = Tji , since this is the first part
of equation (47). This identity requires the use of the Jacobi
identity 0 = [[a, b], c] + [[c, a], b] + [[b, c], a] for any three
operators a, b, c and can be proved as follows. Consider T12

which requires the first order term in q of the expectation of
[Ĵx(q), K(−q)]. Now we use Ĵx(q) = 1/q[K, ρ(q)] to lowest
order in q, so that

〈T12〉 = −
(

d

dq

1

q
[〈[K, ρ(q)], K(−q)]〉]

)
q→0

(52)

=
(

d

dq

1

q
〈[[ρ(q), K(−q)], K]

+ [K(−q), K], ρ(q)]]〉
)

q→0

(53)

=
(

d

dq
〈[[Ĵ Q

x (−q), ρ(q)]]〉
)

q→0

(54)

= 〈T21〉. (55)

We used Jacobi’s identity to go to equation (53) from
equation (52) and dropped the first term in equation (53) using
Identity-I 46. Equation (54) follows on using the definition
of the heat current (equation (34)). Thus we have reciprocity
for all ω. A generalization to include magnetic fields can be
readily made, but we skip it here.

3.4. General formulae for Lij (ω)

We start with equation (47). By using a simple algebraic
identity with partial fractions for arbitrary � [37], we write

1

h̄ωc(h̄ωc + �)
= 1

�

(
1

h̄ωc
− 1

h̄ωc + �

)
;

we obtain

Lij (ωc) = i

ωc
Dij +

i

�

∑
n,m

pn − pm

εm − εn

(Ii )nm(Ij )mn

εn − εm + h̄ωc
. (56)

where

Dij = 1

�

[
〈Tij 〉 −

∑
nm

pn − pm

εm − εn

(Ii )nm(Ij )mn

]
. (57)

At this point it is useful to follow Kubo [41] and
introduce imaginary time operators Q(τ) ≡ eτKQe−τK ,
where 0 � τ � β. A simple exercise in inverse Lehmann
representation12 of the above equations (56) and (57) gives
us the following compact Kubo type expressions [37, 41] for
the generalized conductivities:

Lij (ω) = i

ωc

Dij +
1

�

∫ ∞

0
dteiωct

∫ β

0
dτ 〈Ii (t − iτ)Ij (0)〉,

(58)

Dij = 1

�

[
〈Tij 〉 −

∫ β

0
dτ 〈Ii (−iτ)Ij (0)〉

]
. (59)

12 Pedagogically it might be easier to go in the opposite direction and to insert
a complete set of eigenfunctions of K in equations (58) and (59), followed by
a simple integration over the imaginary time.
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The stiffnesses Dij are discussed in detail in [37] and are
in general non-zero for all non-dissipative systems such as
superfluids and superconductors. For a superconductor D11

is the Meissner stiffness, so that the superfluid density can
be defined in terms of it [37]. In a superfluid or a highly
pure crystal supporting second sound, the stiffness D22 is
non-zero and related to the second sound phenomenon. For
dissipative systems, these stiffnesses vanish, and on dropping
them from equation (58) we get back the familiar Kubo type
formulae [39, 41].

3.5. High frequency behaviour

The high frequency behaviour of these functions is easily found
from equation (47) as

lim
ω�0

Lij (ω) = i

ω�
〈Tij 〉 + O(1/ω2). (60)

Thus these fundamental operators determine the high
frequency response, and we will pursue the consequences later.

3.6. Sum rules for electrical and thermal conductivity

It is worth noting that these relations imply sum rules as well,
for the thermal response functions. To see this, note that the
causal nature of the Onsager coefficients and an asymptotic
fall-off as inverse frequency provides a dispersion relation, i.e.
a Kramers–Kronig relation, where P represents the principal
value of the integral,


eLij (ω) = 1

π
P

∫ ∞

−∞

dν

ν − ω
�mLij (ν), (61)

�mLij (ω) = 1

π
P

∫ ∞

−∞

dν

ω − ν

eLij (ν). (62)

We see at high frequencies from equations (60) and (62) and
assuming the reality of the averages 〈Tij 〉:

lim
ω�0

ω�mLij (ω) = 〈Tij 〉
�

=
∫ ∞

−∞

dν

π

eLij (ν). (63)

This relation gives all the interesting sum rules in this problem.
More explicitly we find

∫ ∞

−∞

dν

2

eσ (ν) = π〈τ xx〉

2�
, (64)

∫ ∞

−∞

dν

2

eκ(ν) = π〈�xx〉

2T �
. (65)

These are known as follows. (a) Equation (64) is the
well-known lattice plasma or f-sum rule [44] with the
RHS equalling ω2

p/8 with ωp as the effective plasma
frequency. (b) Equation (65) is the thermal sumrule [37]
found recently. From our earlier discussion, we see that
the thermal conductivity has a correction for mobile carriers

(equation (17)), so that we can define a finite frequency object

κzc(ω) = 1

T

[
L22(ω) − L12(ω)2

L11(ω)

]
, (66)

which also satisfies causality and falls off at high frequencies
as inverse ω, and therefore satisfies dispersion relations of the
type equation (62). Thus by the same argument, and using the
high frequency limits of all the coefficients (equation (60)), we
infer a sum rule for this case as∫ ∞

−∞

dν

π

eκzc(ν) = 1

T �

[
〈�xx〉 − 〈
xx〉2

〈τ xx〉
]

. (67)

The second term in equation (67) is usually small for Fermi
systems at low temperatures and usually can be neglected. We
may write the RHS as πCN(T )v2

eff/(2d�), in terms of the more
conventional specific heat for a fixed number of particles and
veff which is defined by this expression. It is interesting to
note13 that the explicit dependence on the chemical potential
in the RHS of equation (65) arising from the definition of Ĵ Q

x in
equation (34), is exactly cancelled in the RHS of equation (67).
Thus the zero current sum rule can be computed without
knowing the chemical potential exactly. For immobile carriers
this problem is irrelevant; equation (65) can be used without
worrying about the distinction between the heat current and
energy current.

We should mention that the f-sumrule (equation (64))
and the thermal sum rule (equations (65) and (67)) are both
non-universal in a general system and depend upon various
material parameters and the temperature. The f-sumrule
equals ω2

p/8 for quadratic bands εk = h̄2k2/(2m), but
in a tight binding model is related to the kinetic energy
expectation. The thermal sumrule is manifestly non-universal
since the operators �xx explicitly depend on the details of the
Hamiltonian [37].

3.7. Dispersion relations for thermopower, Lorentz number
and figure of merit

Let us now turn to the main objects of study here, namely,

thermopower S(ω) = L12(ω)

T L11(ω)
,

Lorentz number L(ω) = κzc(ω)

T σ(ω)
,

figure of merit Z(ω)T = S2(ω)

L(ω)
. (68)

The first two objects are very well known in transport theories
[9, 10, 26], while the figure of merit ZT is a dimensionless
measure of the efficacy of a thermoelectric device, with large
values ZT ∼ 1 at low T being regarded as highly desirable
in many applications. Let us analyse these definitions and
extract their dispersion relations. It is readily seen that these
variables differ qualitatively from the conductivity or the
thermal conductivity in their high frequency behaviour. Each

13 I thank Dr S Mukerjee and Dr M Peterson for interesting discussions on this
point.
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Figure 3. In a Mott–Hubbard system both the Hall constant and the Seebeck coefficient have three zero crossings as the band is populated
from 0 � n � 2. The divergence at half filling is weaker in the Seebeck coefficient than in the Hall constant, as shown in this example from
the t–J model on the triangular lattice [29, 35]. The three zero crossings are in contrast to a single zero crossing of an uncorrelated band.
The distinction is understood as a consequence of the Mott insulating state at half filling [25, 37]. This insulating state determines the
physics of the carriers in its proximity, and these are argued here to be far from the Bloch–Boltzmann holes of standard transport theory. The
location of the zero crossings is determined by details such as the lattice structure. Reprinted with permission from [35]a. Copyright 2006
by the American Physical Society.

of these approaches a constant asymptotically, which can be
written down by inspection.

High freq thermopower S∗ = 〈
xx〉
T 〈τ xx〉 .

High freq Lorentz number L∗ = 〈�xx〉
T 2〈τ xx〉 − (S∗)2.

High freq figure of merit Z∗T = 〈
xx〉2

〈�xx〉〈τ xx〉 − 〈
xx〉2
.

(69)

As a result, we can write their dispersion relations readily;
they are


eS(ω) = S∗ +
P
π

∫ ∞

−∞

dν

ν − ω
�mS(ν), (70)


eL(ω) = L∗ +
P
π

∫ ∞

−∞

dν

ν − ω
�mL(ν), (71)


eZ(ω) = Z∗ +
P
π

∫ ∞

−∞

dν

ν − ω
�mZ(ν). (72)

These transport quantities are generally real at only two values
of frequency, namely zero or infinity, and are very similar
in mathematical structure to the Hall resistivity discussed
in equation (11). The imaginary part is expected to go
linearly at small ω, falling off over some finite interval in ω

corresponding to the energy range of the contributing physical
processes. Thus the difference between the dc transport and
high frequency values can be expressed in all these cases as an

integral over the imaginary part of these three variables divided
by the frequency and may be amenable to direct measurements,
as in the case of the Hall effect.

4. Thermoelectric phenomena in correlated matter

4.1. Limiting case of free electrons, S∗ the Heikes–Mott and
Mott results

We propose the use of the high frequency variables
(equation (69)) in correlated matter, for reasons that are
essentially the same as those for proposing the high frequency
Hall constant, explained earlier. These variables are singled
out by the fact that they have a finite limit at high ω, as
compared with say κ(ω) or L12(ω), which vanish in that limit.
In particular, we expect that these high frequency limits of the
three variables listed in equation (69) are good indicators of
the dc transport measurements in correlated matter, where we
can use the projected t–J model, whereas for the Hubbard
model, these should be good only for intermediate to weak
coupling. The origin of this expectation is not repeated here
since it is identical to the argument given for the Hall constant
after equation (9) and the later paragraphs. In the following,
we will see the consequences of this proposal and estimate
its accuracy in some well-controlled examples. By way of
motivating this calculation, we show in figure 3 the computed
Hall and Seebeck coefficients for the triangular lattice, where
these objects have similar behaviour to a function of electron
filling in a Mott–Hubbard system.

13
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Let us begin by listing the three basic operators for the
simplest Drude–Sommerfeld type model of a free electron
gas, with particle scattering off some impurities or phonons
characterized by a relaxation time τ . Let the particle
energy dispersion be denoted by εk and their group velocity
vx

p = ∂εk/∂kx . A small calculation of equation (49) shows

τ xx = q2
e

∑
p,σ

∂

∂px

{vx
p}c†

p,σ cp,σ ,

�xx =
∑
p,σ

∂

∂px

{vx
p(εp − µ)2}c†

p,σ cp,σ ,


xx = qe

∑
p,σ

∂

∂px

{vx
p(εp − µ)}c†

p,σ cp,σ . (73)

We next form the thermal averages,

〈τ xx〉 = 2q2
e

∑
p

np

d

dpx

[vx
p],

〈�xx〉 = 2
∑

p

np

d

dpx

[vx
p(εp − µ)2],

〈
xx〉 = 2qe

∑
p

np

d

dpx

[vx
p(εp − µ)]. (74)

Here np is the Fermi function. We now focus on the low T

behaviour of these formulae. At low temperatures T , we use
the Sommerfeld expansion [9] after integrating by parts and
obtain the leading behaviour:

〈τ xx〉 = �2 q2
e ρ0(µ)〈(vx

p)2〉µ,

〈�xx〉 = �T 2 2π2k2
B

3
ρ0(µ)〈(vx

p)2〉µ,

〈
xx〉 = �T 2 2qeπ
2k2

B

3

×
[
ρ ′

0(µ)〈(vx
p)2〉µ + ρ0(µ)

d

dµ
〈(vx

p)2〉µ
]

, (75)

where ρ0(µ) is the density of states per spin per site at the Fermi
level µ and the primes denote derivatives w.r.t. µ, the average is
over the Fermi surface as usual. We may form high frequency
ratios as in equation (69) and get the leading formulae14

S∗ = T
π2k2

B

3qe

d

dµ
ln[ρ0(µ)〈(vx

p)2〉µ], (76)

L∗ = π2k2
B

3q2
e

. (77)

These formulae are indeed very close to what we expect from
the Bloch–Boltzmann theory. The high frequency result gives
the same Lorentz number as we get from the Bloch–Boltzmann
theory. In the Bloch–Boltzmann theory, the thermopower
can be calculated assuming an energy momentum dependent
relaxation time τ(p, ω), as

SMott = T
π2k2

B

3qe

d

dµ
ln[ρ0(µ)〈(vx

p)2τ(p, µ)〉µ], (78)

14 The reader is requested to ignore the irksome issue of the dimensionality
of the argument of the logarithm. The logarithm is just a notational device to
collect the coefficients in this formula and in equations (78) and (88).

and is referred to as the Mott formula [9, 26]. A comparison
between the two formulae (equations (76) and (78)) for the
thermopower reveals the nature of the high frequency limit: it
ignores the energy dependence of the relaxation time, but
captures the density of states. Thus this formalism is expected
to be accurate whenever the scattering is less important than
say the density of states and correlations.

If the free electron gas in the above discussion is replaced
by electrons that interact with each other, in addition to
scattering off impurities or phonons or amongst themselves, the
details of the interactions become crucial in writing down the
operators analogous to equation (73). The thermal operators
�xx can be computed for any given model by a prescription
set out in [37], and detailed expressions are available there
for many standard electronic models: the Hubbard model,
the t–J model and the Anderson model. Also corresponding
expressions are available for heat conduction in insulators
such as the Heisenberg antiferromagnet and for non-linear
lattice models such as the Fermi–Pasta–Ulam chain [45].
The thermoelectric operators 
xx are also given explicitly for
the conducting models for the same set of models in the same
reference. Given their length it seems hardly worthwhile to
reproduce them here. We merely mention that the operators
involve the interaction parameters, just as the energy currents
do, and have to be worked out for each model individually.
The one exception is the τ xx operator, which usually has the
same form as in equation (73), due to the fact that interactions
are velocity independent. We will see the explicit form of the

xx operator for the U = ∞ Hubbard model in equation (92).

Let us also note the general formula for the thermopower
from equations (68) and (58). On dropping the second term
in equation (59), we get the standard formulae appropriate
for dissipative systems, where we can write the ‘exact’ Kubo
formula [41]:

SKubo =
[∫ ∞

0 dt
∫ β

0 dτ 〈Ĵ E
x (t − iτ)Ĵx(0)〉∫ ∞

0 dt
∫ β

0 dτ 〈Ĵx(t − iτ)Ĵx(0)〉
− µ(0)

qe

]

+
µ(0) − µ(T )

qe
. (79)

We have used equation (33) and further added and subtracted
the (µ(0)/qe) term for convenience to arrive at equation (79).
The Mott result (equation (78)) follows from this general
formula in the limit of weak scattering, as textbooks
indicate [10]. For narrow band systems, Heikes introduced
another approximation popularized by Mott [46, 47], namely,
the Heikes–Mott formula

SHM = µ(0) − µ(T )

qe
. (80)

This formula emphasizes the thermodynamic interpretation of
the thermopower; this term can be loosely regarded as the
entropy per particle15. This motivates us [37] to decompose
the thermopower as

SKubo = STr + SHM, (81)

15 Strictly speaking µ is a derivative of the entropy w.r.t. the number of
particles, i.e. µ(T ) = −T (∂S(N, T )/∂N)E,T .
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thereby defining the ‘transport part’ of thermopower as the
first part of equation (79) evaluated with µ(0), as opposed
to the thermodynamic part SHM. Using the high frequency
approximation (equation (69)), we approximate (only) the
transport part in equation (81) and write

S∗ = S∗
Tr + SHM,

S∗
Tr = 〈
′xx〉

T 〈τ xx〉 , (82)

with the 
′xx differing from the variable 
xx in that the
chemical potential µ is replaced by the T = 0 value µ(0).
The low T limit for the free particle case of this relation is
given in equation (76). For a correlated many body system, it
is much easier to work with this variable. The computational
advantage in equation (82) over equation (79) is that the
transport part is approximated by an equal time correlator as
opposed to a dynamical correlator. This allows us to apply one
of several possible techniques to the problem, such as exact
diagonalization and also high T expansions.

4.2. Kelvin’s thermodynamical formula for thermopower

It is interesting to discuss Kelvin’s thermodynamic derivation
of the thermopower [40]. In his seminal work, Onsager [38]
discussed Kelvin’s derivation of reciprocity given several
decades earlier. He argued that the phenomenon of transport,
including reciprocity, cannot be understood within equilibrium
thermodynamics or statistical mechanics. Interestingly as late
as 1966, Wannier wrote in his textbook [48]: ‘Opinions are
divided as to whether Kelvin’s derivation is fundamentally
flawed or not’. A detailed account of this debate and its
resolution seem to be missing in the literature.

Our discussion on the thermopower takes us to the brink
of this old debate, and so we make a small excursion to
obtain a thermodynamic approximation of the correct answer.
This derivation captures the spirit of the Kelvin argument
and provides an approximate expression for the thermopower
S. For deriving this, let us rewind to equation (43) of the
finite q, ω dependent Onsager coefficients Lij (q, ω). Using
equations (39), (41) and (42) we see that

L11(q, ω) = i

�qx

χĴx(qx),ρ(−qx)
(ω),

L12(q, ω) = i

�qx

χĴx(qx),K(−qx)
(ω),

hence

S(qx, ω) = χĴx(qx),K(−qx)
(ω)

T χĴx(qx),ρ(−qx)
(ω)

. (83)

Onsager’s prescription at this point is to take the transport limit,
i.e. first let qx → 0 followed by the static limit, to get the exact
formula [39, 41]. We saw in the previous section that this ratio
has another finite and interesting limit, leading to S∗, when we
let qx → 0 followed by ω � 0. It is interesting and amusing
that in the opposite slow limit, i.e. ω → 0 followed by qx → 0,
once again S(qx, ω) has a finite and well-defined result. This
limit is what we identify with the Kelvin calculation and his

formula, since the objects that arise are purely equilibrium
quantities. Thus

SKelvin = lim
qx→0,ω→0

S(qx, ω),

S(qx, ω) = χ[K,ρ(qx)],K(−qx)(ω)

T χ[K,ρ(qx)],ρ(−qx)(ω)
(84)

= χρ(qx),K(−qx)(ω)

T χρ(qx),ρ(−qx)(ω)
. (85)

We have used the continuity relation Ĵx(qx) = (1/qx)[K, ρ(qx)]
to go from equation (83) to equation (84). The next stage
involves writing a Ward type identity,

χ[K,ρ(qx)],K(−qx)(ω) = −ωχρ(qx),K(−qx)(ω)

+ 〈[K(−qx), ρ(qx)]〉, (86)

and a similar one for the denominator, followed by realizing
that the second term of the r.h.s. of equation (86) vanishes
on using parity for any finite q in a system with inversion
symmetry16. We can now take the static limit and get the
equilibrium Kelvin result

SKelvin = lim
qx→0

χρ(qx),K(−qx)(0)

T χρ(qx),ρ(−qx)(0)
, (87)

where in the limit, the denominator is related to the
thermodynamic compressibility, and the numerator is an
equilibrium cross correlation function between energy and
charge density. It is straightforward to see that reciprocity
holds in this sequence of limits as well.

In the case of free particles, it is easy to evaluate
equation (87) at low T and we find

SKelvin = T
π2k2

B

3qe

d

dµ
ln[ρ0(µ)]. (88)

It is amusing to compare equations (76) and (78) and
equation (88). Compared with the ‘exact’ Mott formula that
follows from the Onsager limiting procedure, S∗ captures
the answer except for the energy dependent relaxation rate.
The Kelvin formula further approximates S∗ by neglecting the
energy dependence of the velocity average. Thus we conclude
that the Kelvin approximation is inferior to the high frequency
approximation, but does capture the density of states effects.

The above rather formal manipulation with the limits can
be nicely visualized by working instead with open boundary
conditions. Let us imagine a ‘gedanken experiment’, where
a long isolated cylinder of the material of interest, with
length L, is subjected to a time varying temperature gradient.
Since this experiment is exempt from practical issues, we
further imagine a Luttinger version of this, where a pair of
tiny blackholes17 are brought to the two ends of the sample

16 The argument is trivial for the denominator since density fluctuations
commute at different wave vectors. In the numerator, consider the
real expectation γ (qx) = 〈[K(−qx), ρ(qx)]〉. Clearly γ ∗(qx) =
〈[ρ(−qx), K(qx)]〉 = −γ (−qx). But from parity γ (−qx) = γ (qx) and
hence the result γ (qx) = 0.
17 If the earth became a black hole it would have a
diameter of about 0.017 m, about the size of a marble.
http://www.windows.ucar.edu/tour/link=/kids space/black.html&edu=elem.
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(somehow!!) and oscillated in space and time. Thus we
apply a space–time varying gravitational field ψ(�x, t) =
δψ0 (x/L) exp{−iωt} together with a similar electrostatic
potential φ(�x, t) and compute the induced oscillating dipole
moment P = ∑

x xρ(�x) using perturbation theory. The
gravitational field is again a proxy for temperature variation.
By forming the ratio of the gravitational field amplitude
δψ0 to the electrostatic amplitude δφ0 needed to produce a
given dipole moment, we can extract the thermopower. The
rigorously correct transport limit, as applied to this situation,
requires the thermodynamic limit to be taken before ω → 0.
If we compute the opposite limit instead, i.e. a finite system
and a dc field, then the result maps to equation (87). Such a
limiting process is tempting from the physical picture of the
so-called ‘absolute thermopower’. In this case, one studies a
single system with applied thermal gradients, which develops a
voltage across its ends. This type of a picture was presumably
behind the Kelvin derivation.

4.3. Applications to sodium cobaltates in the Curie–Weiss
metallic phase

At this point it is worthwhile to compare the results of
various approximations in the important and current problem
of sodium cobaltates NaxCoO2, with x ∼ 0.68. Recent
interest in this system started with the observation of high
thermopower (S ∼ 80 µV K−1) at room temperatures in this
system by Terasaki [18]. Wang, Rogado, Cava and Ong, in
another important paper [19], found that this thermopower
is strongly magnetic field dependent. They further found
that the metallic conduction is coexistent with a Curie–Weiss
susceptibility characteristic of insulators. This has given rise
to the nomenclature of a Curie–Weiss metallic phase. The
basic modelling of this system, as suggested by Wang et al is
in terms of a strongly correlated Fermi system, with no double
occupancy of holes. The holes move on a triangular lattice
provided by the Co atoms, and the system may be regarded, to
a first approximation, as a bunch of uncoupled 2D triangular
lattice planes with a t–J model description of correlated holes.
After performing a particle hole transformation we can write
the basic Hamiltonian as

H = −
∑
�x,�η

t (�η)c̃
†
�x+�η,σ

c̃�x,σ + J
∑
<ij>

�Si · �Sj . (89)

Here �η is the nearest neighbor vector on the triangular lattice.
This model corresponds to the limit of U → ∞. In this

limit the Fermionic commutation relations need to be modified
into the Gutzwiller–Hubbard projected operator [49] relations
(with σ̄ = −σ ):

c̃�x,σ = PGc�x,σPG,

{c̃�x,σ , c̃
†
�x ′,σ ′ } = δ�x, �x ′ {δσ,σ ′(1 − n�x,σ̄ ) + (1 − δσ̄ ,σ ′)c̃

†
�x,σ

c̃�x,σ̄ }
≡ Yσ,σ ′δ�x, �x ′ . (90)

The presence of the Y factor is due to strong correlations and
makes the computation non-trivial. The number operator n�x,σ

is unaffected by the projection. Let us consider the kinetic
energy only, i.e. the t part, since this is expected to dominate

in transport properties, at least far enough from half filling and
for t � J . The addition of the J part can be done without too
much difficulty; in fact, the numerics discussed below include
the full Hamiltonian.

Let us note down the expressions for the charge current and
the energy current at finite wave vectors by direct computation:

K̂(k) = −
∑
�x,�η,σ

(t (�η) + µδ�η,0)e
i�k·(�x+ 1

2 �η)c̃
†
�x+�η,σ

c̃�x,σ , (91)

Ĵx(k) = iqe

∑
�x,�η,σ

ηxt (�η)ei�k·(�x+ 1
2 �η)c̃

†
�x+�η,σ

c̃�x,σ ,

Ĵ Q
x (k) = − i

2

∑
�x,�η,�η′,σ

(ηx + η′
x)t (�η)t (�η′)

×ei�k·(�x+ 1
2 (�η+�η′))Yσ ′,σ (�x + �η′)c̃†

�x+�η+ �η′,σ ′ c̃�x,σ − µ

qe
Ĵx(k).

We evaluate the thermoelectric operator as


xx = −qe

2

∑
�η, �η′,σ,σ ′,�x

(ηx + η′
x)

2t (�η)t ( �η′)Yσ ′,σ

×(�x + �η)c̃
†
�x+�η+ �η′,σ ′ c̃�x,σ − qeµ

∑
�η,σ,�x

η2
xt (�η)c̃

†
�x+�η,σ

c̃�x,σ .

(92)

This expression gives an idea of the complexity of the
operators that arise in the theory. Let us first present some
numerical results obtained by exact diagonalization [50, 51]
of small clusters of the triangular lattice. We can compute all
eigenstates and matrix elements for up to 14 or 15 site clusters
of the triangular lattice. We can therefore assemble the full
dynamical conductivities from equation (68). The involved
calculations are fully described in the papers [50, 51], and
we will content ourselves with displaying the main results.
Firstly, consider the absolute scale of the thermopower S∗ as a
function of temperature, shown in figure 4. The upper panel in
figure 4 shows that this comparison with experiment is quite
successful on a quantitative scale. One can next ask; how good
is the approximation of infinite frequency, purely in theoretical
terms. To answer this we compute the frequency dependence
of S(ω), as shown in figure 5. It is clear from this figure that
the approximation of high frequency is excellent, the maximum
error being less than 3%. Thus we are computing essentially
the dc transport object, at least for clusters of these sizes. This
benchmarking gives us confidence in the results of the high
frequency formulae for thermopower.

4.4. High temperature expansion for thermopower

We next show that rather simple considerations of our formulae
lead to an important prediction for enhancing the thermopower
for a triangular lattice system with a suitable choice of the
hopping parameter. We find a remarkable effect of the sign
of hopping on the transport part of the thermopower. This
is well illustrated in the lower panel of figure 4. This shows
the enhancement of the computed thermopower at low and
intermediate T s, achieved by flipping the sign of hopping from
the upper panel. We perform a simple computation at high
T that throws light on this phenomenon. We focus on the
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Figure 4. Upper panel: thermopower computed for the triangular
lattice t–J model in [35], compared with the experimental data
of [18] (stars) and [19] (diamonds). The absolute scale is set by a
single parameter t = −100 K. The different curves correspond to
various values of doping x and J/|t |. Lower panel: this shows the
effect of reversing the sign of hopping in this system. This is a
prediction of this theory for a fiduciary hole doped sodium cobaltate
type system. The peak value of 250 µV K−1 can be further
manipulated upwards by changing material parameters J, x.
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Figure 5. The frequency dependence of the thermopower computed
for the triangular lattice t–J model from [51]. The sign of hopping
is flipped relative to that in figure (4) in this and all other figures by
using a p–h mapping. Recalling that the scale of S ∼ 100 µV K−1,
we conclude that the frequency dependence is indeed very small
(∼3% at most). Reprinted with permission from [51]. Copyright
2007 by the American Physical Society.

kinetic energy which is expected to dominate the transport
contributions. Let us compute the thermopower S∗ from
equations (69) and (92)

S∗ = − µ

qeT
+

qe�

T 〈τ xx〉 , (93)

where

� = −1

2

∑
�η, �η′,�x

(ηx + η′
x)

2t (�η)t ( �η′)〈Yσ ′,σ (�x + �η)c̃
†
�x+�η+ �η′,σ ′ c̃�x,σ 〉.

(94)

The computation of the different parts proceeds as follows: we
show readily that (for the hole doped case) using translation
invariance and with n as the number of particles per site at
high T ,

〈τ xx〉 = 6�q2
e t〈c̃†

1 c̃0〉 ∼ 3�q2
e βt2n(1 − n). (95)

The structure of the term equation (94) is most instructive.
At high temperatures, for a square lattice we need to go to
second order in βt to get a contribution with ηx +η′

x �= 0 to the
expectation of the hopping 〈c̃†

�x+�η+ �η′,σ ′ c̃�x,σ 〉. For the triangular
lattice, on the other hand, we already have a contribution at
first order. For the triangular lattice, corresponding to each
nearest neighbor, there are precisely two neighbors where the
third hop is a nearest neighbor hop. A short calculation gives

� ∼ −3�t2
∑
σ,σ ′

〈Yσ ′,σ (�η)c̃
†
�η+ �η′,σ ′ c̃�0,σ 〉. (96)

The spins must be the same to the leading order in βt where
we generate a hopping term c̃

†
�0,σ

c̃�η+ �η′,σ from an expansion of
exp(−βK), and hence a simple estimation yields

� = − 3
2�t3βn(1 − n)(2 − n) + O(β3). (97)

This together with µ/kBT = log(n/2(1−n))+O(β2t2) gives
us the result for 0 � n � 1

S∗ = kB

qe

{
log[2(1 − n)/n] − βt

2 − n

2
+ O(β2t2)

}
, (98)

and

S∗ = −kB

qe

{
log[2(n − 1)/(2 − n)] + βt

n

2
+ O(β2t2)

}
(99)

for 1 � n � 2 using particle hole symmetry [37].
We observe that the first term in equation (93) from

µ(T ) arising from thermodynamics, termed the Heikes–Mott
contribution, dominates at very high T . The approach to
this value is governed by the second term of equation (93),
called the transport term. This transport term is O(βt)

for the triangular lattice, whereas it is only O(βt)2 for the
square lattice due to the existence of closed loops of length
three in the former. The high T expansion clearly identifies
the role of the lattice topology here. The other important
consequence is the dependence upon the sign of the hopping
in the transport term. To be specific, for electron doping the
thermopower in equation (99) shows that S approaches its high
T limit from below as long as t < 0, as we find for sodium
cobaltates [18, 19]. On the other hand, if we could flip the
sign of the hopping, as in a fiduciary hole doped cobalt oxide
layer, the high T value would be reached from above. Since
the S must vanish at low T , this observation implies that we
must find a maximum in S(T ) at some intermediate T . This
then motivates the calculation for a fiduciary system with the
flipped sign of hopping. As seen in figures 4, and 6, numerical
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Figure 6. The thermopower versus filling x = 1 − n and
temperature T in the t–J model from numerical studies [50, 51] on
clusters of the triangular lattice. In both cases the lower curves
correspond to the Heikes–Mott formula (equation (80)) and the
upper to the high frequency result of equation (69). Left: the case of
the sodium cobaltates, i.e. electron doping, where the two estimates
are very close. Right: the fiduciary hole doped cobaltate. The two
curves in the high T limit correspond to the first term in
equation (98) and from the uncorrelated chemical potential. For the
case on right, the Heikes–Mott formula misses the enhancement that
the high frequency formula predicts. Such enhanced values of the
thermopower are very exciting in the current quest for better
materials. Reprinted with permission from [51]. Copyright 2007 by
the American Physical Society.

results are very encouraging, leading to a thermopower that is
∼250 µV K−1 and should act as an incentive to the materials
community who could seek this type of doping. Crystal
structures containing triangular loops are clearly favourable,
and this includes several 3D structures as well, such as the
FCC and HCP lattices.

4.5. Lorentz number and figure of merit for the triangular
lattice t–J model

We briefly indicate the dependence of the Lorentz number L∗

and the figure of merit Z∗T as computed by us in the case
of the triangular lattice [50, 51], with parameters appropriate
for sodium cobaltates at x ∼ 0.68. Figure 7 indicates the
dependence of these important parameters on x, T for the t–J

model clusters of size up to 14. The frequency dependence
was estimated to be small and of the same scale as that of
S(ω), and therefore the results are good indicators of the dc
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Figure 7. Left: the dimensionless figure of merit Z∗T versus x, T
for the same system from [51]. This is purely an electronic value of
the power factor, the phonon contribution to κ is expected to be
significant and would clearly make the situation less ‘ideal’, thereby
we expect the true Z∗T to be considerably decreased. However, this
figure gives an overview of the purely electronic contribution to the
figure of merit for parameters roughly comparable to those in
Na0.7CoO2. The conclusion in this case is that proximity to half
filling is not particularly useful. A similar plot for the fiduciary case
of the flipped sign of hopping gives a considerably larger value of
the figure of merit. Reprinted with permission from [51]. Copyright
2007 by the American Physical Society.

values. We must keep in mind that the finite size effects are
substantial for these small clusters, and hence the behaviour
at low T is particularly subject to corrections. Also we stress
that our calculation pertains to the electronic part of the thermal
conduction and neglects the often substantial lattice part. Our
figure of merit is therefore likely to be a rather optimistic
upper bound to the physical values. Correcting for the lattice
part using measured thermal conductivity is straightforward in
specific cases. More non-trivially, an elaborate topic treated
in a recent work deals with manipulating the lattice part
to maximize the figure of merit by suitably chosen lattice
structures and impurities [52]. However, it is clear that several
interesting trends emerge from this purely electronic study.
A striking trend is that the proximity of the Mott–Hubbard
insulating state x ∼ 0 is not necessarily favourable for good
thermoelectric behaviour with a large Z∗T . This is despite the
enhancement of S itself. The enhancement arises due to Mott–
Hubbard correlations that lead to a logarithmic divergence of S

near half filling [35], but is offset by the unfavourable Lorentz
ratio. On the other hand, the proximity of almost filled bands or
almost empty bands seems to be more favourable, and indeed
the experience with doping in NaxCoO2 seems to bear out this
finding rather well.

5. Phenomenological equations for coupled charge
and energy transport

In this section, we present a simple framework for the
problem of coupled transport of charge and energy (or heat)
in a charged system, such as a semiconductor or a poor
metal. It is perturbed by an external temperature gradient
and electric fields. We add a source that dumps energy into
the system, such as a pump laser, motivated by several recent
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experiments [53–58]. In these experiments, a cylindrical rod
of a semiconductor (or metal) is subjected to pulsed laser
heating at one end18. The resulting change in the reflectivity
of a second probe laser conveniently provides a readout of
the local ‘dynamical temperature’ [53–55]. This enables
the reconstruction of several physically interesting variables,
such as the electron phonon coupling [56], the thermal
conductivity [57] and the thermoelectric coefficient [58].
Given the time dependence of the probes, we clearly need
ac response functions of the type discussed above. The laser
modulation time constants currently are in the femtosecond
range (10−15 s), and hence are already able to probe
energy relaxation times in semiconductors [57]. Such non-
trivial observations motivate modelling of the type described
below.

Our framework is a simple model of charge and heat
diffusion (e.g. [59, 60]) together with the exact coefficients
relating the rate of change in currents to the driving forces.
The dynamical formalism set out in earlier sections is provided
a simple context here and sheds light on the meaning of new
operators τ xx, �xx, 
xx constructed above in equation (49).
These play a fundamental role here, thereby providing a
strong pedagogical motivation for this section, in addition
to the above-mentioned practical one. In our simple model,
we find it advantageous to define new response functions
measuring the change in energy, charge density and the currents
arising from the input power (the coefficients M1, M2, N1, N2

below in equation (108)). These are related to the �q, ω

dependent Onsager coefficients Lij via the various continuity
equations and Einstein type relations, but clearly and neatly
isolate the ‘force-response’ aspect of the external power
probe and as such give a direct method of interpreting
experiments.

In essence, we approach this problem through a
‘mechanical perturbation’ point of view rather than a
thermodynamic one. Our strategy is to stick to the most broadly
definable variables, such as the energy density and currents,
and to avoid, or at least postpone until the very end, the mention
of variables such as �q, ω dependent temperature fluctuations.
The latter are only sensible in the domain of long wavelength
and low frequency variations, unlike the former which are
always definable. The results for temperature fluctuations
emerge usefully from our formulae in the limiting sense at
the end of the calculation.

Let us imagine the system in the form of a cylinder of
cross section A and length L along the x axis (� = LA),
with the surface layer at x = 0. We subject the system to
an external Luttinger field ψ(�x, t) = ψq exp −i(ωt + qxx),
an electrostatic potential φ(�x, t) = φq exp −i(ωt + qxx).
We introduce the pump laser term below via the continuity
equation below. Since we will discuss a charged system, it
must be stressed that the electric potential satisfies the Poisson
equation with the induced charge density included, so that
�E = −∇φ is the total local electric field. The system is
then described by the Hamiltonian equation (38) We will

18 This end is usually covered by a surface cap of a good metal, where the
absorption of the laser power occurs and is transmitted to the system via a
contact layer.

denote the (grand canonical) Hamiltonian in the absence of
the perturbing fields as K0 and the perturbation as K1. As
usual the quantum average of an observable is given by
〈Q〉 = T r(Qρ̂(t)), where the density matrix ρ̂ satisfies
the von Neumann equation i(∂/∂t)ρ̂(t) = [Ktot(t), ρ̂(t)],
and hence any observable expectation satisfies the equation
i(∂/∂t)〈Q(t)〉 = 〈[Q, K1]〉0 + 〈[Q, K0]〉. The first term
has been linearized and hence evaluated in the unperturbed
ensemble with K = K0, and the second term can be evaluated
within perturbation theory as usual, and we find the exact
linearized equation of motion:

i
∂

∂t
〈Q(t)〉 = 〈[Q, K1]〉0

+ (−i)
∫ ∞

0
dt ′eiωt ′−0+t ′ 〈[[Q(t), K0], K1(−t ′)]〉0. (100)

Interestingly enough, the first term in equation (100) is
expressible exactly in terms of the three operators in
equation (68), while the second term is approximated by a
relaxational plus diffusive term. We choose the variables Q

as the heat (Ĵ Q
x ) and charge (Ĵx) currents and the densities

of heat K and charge ρ as before. Exploiting the linearity
of the theory, it suffices to consider a single frequency and
wave vector at the input, and hence we introduce a notation for
the induced variables depending on the single wave vector qx

through

〈Ĵ Q
x (�x, t)〉 = 1

�
e−iωt−iqxxδJQ

x ,

〈Ĵx(�x, t)〉 = 1

�
e−iωt−iqxxδJx,

〈K(�x, t)〉 = 1

�
e−iωt−iqxxδKq +

1

�
〈K〉0,

〈ρ(�x, t)〉 = 1

�
e−iωt−iqxxδρq + qen. (101)

Thus the variables 〈Ĵ Q
x (�x, t)〉, etc are intensive whereas δJQ

x ,
etc are extensive. Next, the pump laser coupling to the system
is introduced via the continuity equation for energy. We write
the energy continuity equation (ignoring the variations along
the transverse directions and focusing on thex axis variation) as

∂

∂t
〈K(�x, t)〉 +

∂

∂x
〈Ĵ Q

x (�x, t)〉 = P0δ(x). (102)

We introduced the input power P0 per unit area at the surface
layer x = 019. The power P0 is further modulated in time, so
that we decompose it as P0 exp −i(ωt). We finally note the
conservation laws for charge and energy densities in terms of

19 If we introduce the coupling of the laser field �E0 to the matter in Ktot , it
leads to an operator equation of continuity for energy which contains �J · �E0 at
the surface. Our treatment roughly corresponds to writing �J = σsur �E0, where
σsur is the conductivity at the surface, and averaging this Joule heating over
the time period of the laser 2π/ω0. Assume a skin depth l so that the power
absorbed per unit area P0 = 1

2 lσsur | �E0|2. Depending on the set-up, this might
need to be further corrected for a contact (Kaptiza) resistance between the cap
and the sample.
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the response amplitudes:

qxδJ
Q
x + ωδKq = iA P0,

qxδJx + ω δρq = 0. (103)

We next note that the first term in the dynamical equation (100)
for both the currents is exactly expressible in terms of the
operators defined in equation (49). For example, consider
the heat current equation where the term in question reads
〈[Ĵ Q

x (q), K(−q)]〉0ψq + 〈[Ĵ Q
x (q), ρ(−q)]〉0φq . For small

q, upon using equation (49) it becomes −〈�xx〉0 q ψq −
〈
xx〉0 q φq . Similar expressions hold for the charge current.
In the absence of the second term in equation (100), the
equations are ballistic, and hence the sum rules discussed
earlier are closely related to the behaviour of the response
functions in this regime. This little calculation gives
us the physical meaning of these operators �xx, 
xx ;
their expectation value determines the magnitude of the
ballistic force exerted by the fields. The second term
is, of course, crucial, and we need to estimate it using
some general principles. We write the phenomenological
equations:[

1

τ
+

d

dt

]
〈Ĵ Q

x (�x, t)〉 = −DQ

τ
∇〈K(�xt)〉 − c1

τ
∇〈ρ(�xt)〉

−
{ 〈�xx〉0

�
∇ψ(�xt) +

〈
xx〉0

�
∇φ(�xt)

}
(104)

and[
1

τ
+

d

dt

]
〈Ĵx(�x, t)〉 = −c2

τ
∇〈K(�xt)〉 − Dc

τ
∇〈ρ(�xt)〉

−
{ 〈τ xx〉0

�
∇φ(�xt) +

〈
xx〉0

�
∇ψ(�xt)

}
. (105)

These equations represent the effect of the second term in
equation (100) by terms proportional to the gradients of the
heat and charge densities and are relaxational and diffusive in
nature. DQ, Dc are the heat and charge diffusion constants,
and the cross diffusion terms c1, c2 are determined below.
The basic physics contained in the diffusion terms is that in
steady state (where the time derivatives of the currents are
zero), and in the absence of external mechanical fields, one
can yet have charge and heat currents driven by gradients
of the charge and heat densities. The relaxation time τ ≡
τ(�q, ω), in general, depends upon �q, ω and gives the rate at
which the currents relax to zero. Within this model τ must
necessarily be the same for both charge and energy currents,
otherwise the generalized Onsager reciprocity at finite
frequencies L12(ω) = L21(ω) is violated. Let us also note
equation (105) in terms of the induced amplitudes in the Fourier
representation:

(1 − iωτ)δJQ
x = iτ {〈�xx〉0qψq + 〈
xx〉0qφq}

+ iDQqδKq + ic1qδρq,

(1 − iωτ)δJx = iτ {〈
xx〉0qψq + 〈τ xx〉0qφq}
+ ic2qδKq + iDcqδρq. (106)

The constants DQ, Dc, c1, c2 can be fixed by considering
the static limit at finite q where the currents and their time
derivatives are zero. equation uating the various coefficients
on the right to zero and taking the long wavelength limit, we
determine these as follows:

DQ = −τ 〈�xx〉0
ψq

δKq

= τ
〈�xx〉0

C(T )T
,

Dc = −τ 〈τ xx〉0
φq

δρq

= τ
〈τ xx〉0

�

1

q2
e

dµ

dn
,

c1 = Dc

〈
xx〉0

〈τ xx〉0
, c2 = DQ

〈
xx〉0

〈�xx〉0
.

(107)

Here C(T ) is the (extensive) specific heat, and dn
dµ

is the
compressibility per unit volume. We have made use of
the standard thermodynamic definitions of these response
functions to arrive at these relations. Thus all parameters
are fixed in terms of the averages of the three operators
in equation (49), a single relaxation time and the two
thermodynamic response functions. For a single frequency
mode, these coupled equations together with the conservation
laws (equation (103)) can be solved easily and the results
expressed as

1

�
δJQ

x = L22(iqψq) + L21(iqφq) + M2
P0

L
,

1

�
δJx = L12(iqψq) + L11(iqφq) + M1

P0

L
.

(108)

In addition to the standard Onsager coefficients Lij , we have
defined the power response functions Mj as above, giving the
response of the currents to P0. It is also interesting to define
the response of the charge and energy density to the applied
power P0 via

N1 = 1

A

∂δρq

∂P0
, N2 = 1

A

∂δKq

∂P0
. (109)

The novel function N2, for example, gives us a measure of the
change in energy, and hence temperature, at various points in
the system in response to the applied laser heating. We discuss
this connection later.

All of these can be expressed in terms of a convenient
energy denominator:

� =
(

1 − iωτ + i
DQq2

ω

)(
1 − iωτ + i

Dcq
2

ω

)

+ ξDcDQ

q4

ω2
, (110)

where the dimensionless coupling constant between the charge
and heat modes is expressible through the high frequency figure
of merit equation (69) as

ξ = 〈
xx〉2
0

〈�xx〉0〈τ xx〉0
= Z∗T

Z∗T + 1
. (111)
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We list the finite �q, ω Onsager coefficients:

L11 = 1

�

τ 〈τ xx〉0

�

[
1 − iωτ + i(1 − ξ)DQ

q2

ω

]
,

L12 = 1

�

τ 〈
xx〉0

�
[1 − iωτ ],

L22 = 1

�

τ 〈�xx〉0

�

[
1 − iωτ + i(1 − ξ)Dc

q2

ω

]
,

M1 = − 1

�
DQ

q

ω
[1 − iωτ ]

〈
xx〉0

〈�xx〉0
,

M2 = − 1

�
DQ

q

ω

[
1 − iωτ + i(1 − ξ)Dc

q2

ω

]
,

N1 = − q

ω
M1,

N2 = i

ω
− q

ω
M2. (112)

The coefficient Lij has the standard meanings that we have
commented upon earlier. The coefficients M1, M2, N2, etc are
the response coefficients to the applied power source. It is
easy to see that these dynamical results satisfy the sum rules
in equations (64)–(67).

We note several points about this exercise next.

1. The above expressions are written in terms of energy
variables. It is more rigorous as well as profitable to view
the transport processes as primarily those of charge and
energy, rather than temperature. While we can always
define an energy fluctuation, it translates to a temperature
pulse only under conditions of local equilibrium, which
might not always be attainable.

2. These coupled equations have a similarity to those in
the description of the two coupled fluids in 4He [61].
For insulators, the coupling between the lattice energy
modes and lattice displacement modes [60, 62] also has
a formally similar structure. In these cases, the role of
our coupling parameter ξ is played by the dimensionless
constant Cp/Cv − 1.

3. The new response functions Mj, Nj shed some light on
pulse probe type experiments. The coefficient N2 in
equation (109) is of particular interest. In an experiment
with pulsed laser heating, one would use the coefficient
N2 to compute the induced energy change δKq . This
fluctuation is interpretable as a temperature variation
only if the frequency is low enough to achieve local
equilibrium, but is always definable as a mechanical
response function. With the help of a model of the above
type, it can be used to extract the diffusion constant and
hence the thermal conductivity.

4. For illustration of the above comment, if we turn off the
coupling between the charge and energy modes (set ξ = 0)
then N2 → i(1 − iωτ)/(ω − iω2τ + iDQq2). By cross
multiplying we can rewrite this in the suggestive form
[ω+i(DQq2/(1 − iωτ))]δKq = iP0A. If we take the limit
of a slow response then we may express the fluctuation in
terms of the temperature fluctuation δKq = C(T )δTq .

This can seen to be of the form proposed by Cattaneo [63]
as an improvement of Fourier’s law20.

5. In the decoupled limit ξ = 0, we find L22 =
τ 〈�xx〉0/�(1 − iωτ + iDQq2ω). The form of L22

displays the possibility of a propagating mode for ωτ � 1,
with a dispersion ω ∼ |q|√DQ/τ , corresponding to a
second sound. The velocity of the second sound in this
simplified model is also expressible in terms of the average
of the �xx operator from equation (107).

6. We see from this framework that one may devise
experiments to isolate and measure different terms in the
response functions. In particular, the thermal sum rule
in equation (65) is given in terms of the expectation of
〈�xx〉, and one might ask how this can be measured. In
response to a δ(t) pulse of temperature, the induced heat
current pulse in the time domain jumps at t = 0 and the
magnitude of the jump is free from τ and a function of
〈�xx〉 only. Similarly the energy density (hence the local
reflectivity) contains an initial tθ(t) linear rise21.

7. In the decoupled limit, the electrical conductivity
σxx(ω) = σ0

1−iωτ+iDcq2/ω
, with σ0 = τ 〈τ xx〉0/�. Hence

the dielectric function ε(q, ω) = 1 + 4π i
ω

σ has the correct
limiting forms for a metal in both static and plasmon
limits. In the static limit we find the screening behaviour

ε = 1 + 4πq2
e

q2
dn
dµ

. For large frequencies ωτ � 1 we get the

plasmon behaviour ε = 1 − ω2
p

ω2 with ω2
p = 4π

�
〈τ xx〉0.

8. For a dense metallic system we are usually in the limit
where the energy scales are such that qvF � ω, so that it
is a good approximation to regard the charge redistribution
as almost instantaneous compared with the heat diffusion.
More formally in the decoupled limit we can see that the
current response can be written in suggestive alternate
forms

δJq = τ 〈τ xx〉0

1 − iωτ + i
Dcq

2

ω

iq[φq]

= τ 〈τ xx〉0

1 − iωτ
iq

[
φq +

1

q2
e �

dµ

dn
δρq

]
. (113)

We have used the conservation law to go from the first
form to the second. If we assume very fast relaxation
of the charges, then the term in square brackets can
be rewritten approximating the δρq term by its static
counterpart, resulting in the familiar electrochemical
potential −∇(φ + 1

qe
µ[n(r)]). However, for poorly

screened low density electron systems and for narrow band
systems, it is better to avoid this approximation.

20 The standard argument for the Cattaneo equation is that Fourier’s law is
replaced by (1 + τ(∂/∂t))J

Q
x = �κ(0)(−∇T ), where κ(0) is the dc thermal

conductivity. Combining with the energy conservation law (equation (103))
and further writing all variations in terms of those of the temperature δTq as

δKq = C(T )δTq , we find C(T )
[
ω + iκ(0)�q2

C(T )(1−iωτ)

]
= iAP0, which is the same

as the previous result on using the relation κ(0) = DQC(T )/�.
21 In the decoupled limit, the energy density satisfies an equation (in space–

time variables) ∂2

∂t2 K(�x, t) = D
τ

∂2

∂x2 K(�x, t) − 1
τ

∂
∂t

K(r, t) + 〈�xx 〉
�

(−∇2ψ).
From this we see that a δ(t) pulse in a spatially varying ψ would give an
initial linear rise in the energy ∼ tθ(t), with a slope that is inertial, i.e.
independent of τ .

21
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9. These dynamical expressions have the property that the
Seebeck coefficient and the Lorentz number are frequency
independent, and hence the high frequency approximation
(equation (69)) is exact here.

Thus we see that these simple equations illustrate the
meaning and possible applications of energy transport in novel
situations. We can make contact with standard transport theory
in the limit of slow long wavelength variations, where we have
argued that the Luttinger field is equivalent to a temperature
field through ∇ψ(r) = ∇T (r)/T .

6. Conclusions

In this paper we have presented the basic ideas of a
novel approach to computing certain interesting transport
coefficients for correlated systems. These include the
important Seebeck coefficient and the figure of merit. Our
basic formalism extends the idea first used by Luttinger,
namely, that a gravitational field can be used as a mechanical
proxy for temperature gradients. We take this viewpoint
further to include arbitrary time variations, thereby enabling
an exploration of the regions of frequency that are normally
precluded in dealing with temperature variations. This leads
to the recognition of a new sum rule for thermal conductivity, as
well as the application of high frequency ideas to compute the
response functions mentioned above. We describe quantitative
applications of these ideas in the context of the properties of
the recently found sodium cobaltate materials.

A well-defined program to correct the high frequency
results for the effects of finite frequency and hence to
approach the transport limit is formulated and illustrated. A
simple phenomenological framework with the novel response
functions Mj, Nj is described, where the role of the newly
defined operators becomes clear. This framework, and its
many possible extensions to include other densities, should
be useful in formulating the new class of experiments made
possible by pulsed laser heating.
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