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Abstract. It is pointed out that the disordered x-y model in two dimensions should undergo 
a phase transition of the same nature as the Kosterlitz-Thouless transition observed for a 
pure system in the limit of small disorder. Above a certain value of the disorder parameter 
x, mertices (which are bound pairs of merons) play the role attributed to vortices in the 
pure system. 

The disordered x-y model of a spin glass is described by the Hamiltonian 

2 = -4 J i j s i .  s , ~  I S i (  = 1 
i, i.1- 

where si is a planar (x-y) spin, L is the lattice (we confine ourselves to two dimensions in 
this work) and the J i j  are the (nearest-neighbour) quenched random exchange couplings 
with a probability distribution 

(2) 
It has recently been shown (Villain 1977, 1978) that this model is equivalent to a neutral, 
two-component Coulomb gas with integral and half-integral charges located on the 
dual lattice. In the limit of vanishing disorder (x  = 0), the Coulomb gas reduces to the 
model considered by Kosterlitz and Thouless (1973, referred to as KT) involving only 
integral charges (which are equivalent to vortices). Non-trivial disorder manifests itself 
in the form of half-integral charges (merons) located at the frustrated plaquettes (Toulouse 
1977). Vortices may be regarded as topological excitations of the medium and it is 
interesting that disorder forces distortions (merons) into the medium, which are closely 
related to vortices (Toulouse 1979). 

A phase transition in the ordered x-y model is understood in terms of the dissocia- 
tion of bound vortex-antivortex pairs (i.e. dipoles in the electrostatic analogy) as the 
temperature is increased and the ordered phase exhibits ‘topological ordering’ in place 
of the usual uniform magnetisation. This may be regarded as the transition of an electro- 
lyte from an insulating, low-temperature phase to a conducting high-temperature phase 
in the electrostatic analogy. For the disordered x-y model the picture is not so clear since 
the existence of merons in the ground state suggested that there should always be a 
conducting phase (Villain 1977, 1978). In this work, we study the nature of the phase 
transition in the disordered x-y model using the electrostatic analogy. Only weak 
disorder (i.e. x < 1) is considered and the lowest-order terms in x are retained consistently. 

The partition function of the disordered x-y model (divided by the non-singular 
spin-wave partition function) can be written in the electrostatic analogy as 

P(Ji i )  = X6(Jii + J )  + (1 - X)6(JiJ - J ) .  
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where 

pi = mi + vi/2 q2 = nJ p ,  = q 2 ( y  + t In 2) ( 5 )  
where a, is the lattice constant and y is Euler's constant. The integers v i  are obtained 
from the distribution of the exchange interactions J i j  as follows. For Jij > 0 (<O), we 
assign an integer n = 0 (= 1) and compute in a square surrounding the dual-lattice 
point vi = nEast + nSouth - nWest - nNorth. It is clear that a frustrated plaquette corres- 
ponds to odd integral values of vi and hence half-integral pi. It can also be seen that the 
net 'charge' Cvi = 0 by construction (every bond is to the east or south of the plaquette 
and to the west or north of the adjacent one). The electrical neutrality condition 
Emi = 0 is thus equivalent to& = 0. The chemical potential / io is the cost of creating 
a unit charge and may be thought of as one half of the energy of a pair of charged particles 
kept at the distance of minimum approach. Here a, plays the role of a hard-disc cut-off. 
The cut-off a, is an important parameter in the problem since it sets the scale for the 
Coulomb interaction in two dimensions. 

In order to produce a systematic expansion we arrange Z as an expansion in exp( - p o p )  
(analogous to the fugacity expansion of the grand canonical partition function). The 
expansion is facilitated by the observation that the composite nature of pi (as mi + vJ2)  
may be essentially neglected and we may sum over pi (subject to Cpi = 0). Clearly the 
pi  run over positive and negative integers for the unfrustrated (flat) plaquettes and over 
positive and negative half-odd integers over the frustrated (curved) plaquettes. We 
designate F as the set of frustrated lattice points and R as the remainder ( F  U R = L). 
Also, we restrict ourselves to unit or half-unit charges at any lattice point as discussed 
by KT. We may thus write 

z = exp( - PP,N,W,Z,  (6) 

(7) 

(8) 

where N ,  is the number of frustrated lattice points 

2, = 1 d o , z p i  exp (-M 1 /l,/l,jln(l Vi - r,j/iaol 
{Pi = f 1/21 i,.jeF 

Z, = 1 + exp( - / L , / ? ) Z ~  + exp( - 2y,/3)Z2 + . . . 

The averages in equations (8) and (9) are with respect to Z,. Z, is obtained by putting one 
vortex in R and compensating the charge by flipping one of the pi in F .  Z, is obtained by 
creating two vortices in R, etc. (The term Z, actually is irrelevant in the thermodynamic 
limit.) The physical significance of Z, is clear: we have two oppositely charged vortices 
interacting with each other in a 'polarisable medium' provided by the merons. Higher 
terms may be written down in a similar way. Z,, the meron partition function is essentially 
an Ising model with zero magnetisation and a logarithmic exchange (Villain 1977). 
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We now impose the condition that x is sufficiently small for the theory to be tractable. 
We have - 4xN frustrated lattice points (dropping higher-order terms in x) which occur 
in pairs (since reversing one Jij creates two frustrated cells). To lowest order in x, we then 
have 2xN pairs of F lattice points distributed at random which may be considered as 
located on a (random) lattice F’ (a lattice point of F’ is the mid-point of F lattice pair). 
The mean separation between two meron pairs is 

a, = a0/(2nx)”2. (1 1) 
At very low temperatures 2, may be omitted. We expect 2, to show dipolar be- 

haviour since charge fluctuations are minimised by populating the F lattice pairs with 
opposite charges which form dipoles. These dipoles may be considered as bound pairs 
of merons and antimerons. Each dipole can point in two directions, E-W or N-S and 
consistute two-level systems (Villain 1977). The dipole-dipole interaction in two dimen- 
sions is N l/r2 and hence scaling arguments can be used (similar to the RKKY model in 
three dimensions) to give a specific heat density independent of x and a characteristic 
temperature T, = xJ/k, .  

At higher temperatures there is the possibility of charge fluctuations occurring in 
the F‘ lattice. A ‘mertex’ may be created at a lattice point by populating the pair of lattice 
points with two like charges. A mertex corresponds to charge +1 (an antimertex to 
charge - 1) and can be viewed as a bound pair of two merons and is similar to a vortex. 
It is clear that mertices can only be created in pairs because of neutrality. The interaction 
between two mertices is again logarithmic (corrections from the internal structure of 
the mertex are negligible at large distances compared with the logarithmic part). Thus 
we are led back to just the KT problem on the F’ lattice. The fact that the F’ lattice 
points are randomly located should be irrelevant for any phase transition since the 
transition is dominated by the long-range part of the Coulomb interaction (in fact KT 
used a continuum approximation for the lattice for just this reason). 

In order to make the relationship precise, consider two oppositly charged mertices 
separated by the mean distance a,. The energy of the pair is 

E = 2q2 In la,/a, I = - q2 ln(2nx). (12) 

p, = -+q2 ln(2nx). (13) 

Hence the mertex system corresponds to a chemical potential 

(The same conclusion can be reached by rearranging the F‘ lattice as a regular array with 
lattice constant a, and considering the energy of a 2n mertex configuration.) It should 
be emphasised that the mertex chemical potential is a genuine excitation energy; it is 
the characteristic energy for creating a pair of mertices in the F‘ lattice. Using the fact 
that the F lattice has 2xN lattice points and taking into account the extensivness of the 
free energy, we can write 

( I / N ) ~ z ,  = - 2 x p f ( ~ q ~  1n[(2nx)-1’2]) (14) 
where f is the Kosterlitz-Thouless free energy per site. 

given by? 
As given by KT (1973) and Kosterlitz (1973) we note that the critical temperature is 

t It seems to us that equation (26) given by KT is missing a factor of J2. This factor of two has been lost 
between their equations 18 and 19. The coefficient in front of 7c should be 1.84 which we have replaced by 2 
for simplicity. 
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q2/2kBT, = 1 + 271 exp( -,8,po). 

kBT, = (71J/2)(1 - 471’~). 

(15) 

(16) 

From equation (14) we predict that 2, undergoes a phase transition at T, given by 

The nature of the transition is clearly completely analogous to the KT transition with 
the mertices playing the role of vortices. The prefactor in equation 14 implies that the 
amplitudes of the various derivatives of the free energy are proportional to x. 

The behaviour of 2 is more complicated. Rather than use the expressions (8) and (9), 
we adopt a physical point of view and argue that we have a vortex gas in a polarisable 
medium provided by the merons. Clearly the phase transition in Z ,  effects the be- 
haviour of the vortex. In particular, if the mertex system has a transition ‘sufficiently 
early’, as the temperature is increased, the vortices would be driven towards a phase 
transition (since the mertices would screen out long-range Coulomb interaction in their 
conducting phase). If the mertices remain bound, however, the usual KT transition of 
the vortices will occur. A rough criterion for ‘sufficiently early’ may be obtained as 
follows. We note from equation (15) that the critical temperature is determined by the 
chemical potential: the larger is the chemical potential, the lesser is the ease with which 
the charged pairs are created and hence the higher is T,. Thus a comparison of the chemi- 
cal potentials of the two species should suffice. In order for the mertices to have an early 
phase transition, we require that p,, the chemical potential for a mertex, should be smaller 
than po. This puts a restriction on x: 

x > xo xo = exp( - 2y)/16n = 0.0063. (17) 

For x < xo, the mertex chemical potential is larger than the vortex value and hence 
we expect the usual KT transition to occur first. The KT transition temperature should 
change with x in the range x < xo, We can estimate this effect through the dielectric 
constant of the polarisable meron system. The dielectric constant of the F lattice at low 
temperature (neglecting mertices) is E = 1 + n,8xq2 and replacing k,T, by kBT& in 
equation (1  5 )  we find 

In the range x < xo, it is not clear whether a second transition of the mertex system will 
occur. The region x N xo is also complicated since both mertices and vortices should be 
taken into account. We hope to return to these complex questions later. 

In conclusion, the physical picture of the phase transition in the disordered x-y 
model that emerges from our analysis is as follows: for x < xo, we have the usual 
Kosterlitz-Thouless transition (modified somewhat by disorder) and for 1 % x > xo 
we should again have a KT transition with mertices playing the role of vortices. Equation 
(14) is interesting in that the disordered x-y model is related to a pure x-y model with 
a disorder-determined chemical potential. We should mention that our results differ 
from those obtained by Jose (1978), who predicted an abrupt departure from the KT 
picture for arbitrarily small x. 

It is a pleasure to thank Drs P Chandra Sekhar and Subodh Shenoy for several interest- 
ing discussions. 
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