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Abstract

Type-I matrices were introduced recently as finite-dimensional prototypes

of quantum integrable systems. These matrices are linearly dependent on

an ‘interaction’ type parameter, and possess interesting properties such as

commuting partner matrices and generically violate the von Neumann Wigner

noncrossing rule. The important role of Plücker relations in this construction is

noted. Type-I matrices are given a transparent formulation in terms of Fermi or

Bose-type particle operators; they represent a quantum glass model with either

Fermi or Bose statistics, with several free parameters that may be chosen at

will.

PACS numbers: 03.65.Aa, 02.30.Ik

1. Introduction

In [1], the author initiated a study of quantum integrable systems in finite dimensions, within

the context of parameter-dependent commuting matrices. This in turn was motivated by

several examples of specific integrable models, such as the Hubbard model [2–4] and the

Heisenberg model [5]1. In these examples, one studies the realizations of the general model in

Fock space for particular sectors of quantum numbers, such as momentum, parity, total spin

and number. This leads one to real symmetric matrices in various dimensions N � 2. These

have the remarkable feature that the von Neumann–Wigner noncrossing rule [6] is violated.

One ends up with several level crossings that are conventionally termed ‘accidental’. This

terminology is rather avoidable, since there is also a belief that there is nothing accidental in

having such level crossings; the existence of several dynamical conservation laws (dependent

on coupling constants) are believed to be causally implicated. Further, the statistics of energy

levels of these integrable models are also known to be close to Poisson statistics, and hence

consistent with the absence of level repulsion that generic systems are known to possess

[7, 8].

1 The dynamical conservation laws of the Heisenberg model are discussed in this reference and several works

e.g., [8].
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While the current general programs for the study of quantum integrable systems focus on

properties such as factorizable S matrices, or the Yang–Baxter relation, the approach of [1]

gets to the core of the issue of the matrix realizations of these models. As such, it is ‘blind’

to the specific physical details of the models. The main result of [1] is the identification of a

class of matrices, termed Type-I matrices, discussed in detail below. Here the core property

of multiple parameter-dependent conservation laws is made explicit, and one has an algorithm

for generating such matrices as well as a count of the number of such matrices.

In an impressive work, [9] Owusu, Wagh and Yuzbashyan (OWY) have built on this initial

advance, and produced several further results. A fundamental advance is the introduction of

a basis of matrices, in terms of which the matrices of [1] can be expanded. OWY further

show a link with an integrable model due to Michel Gaudin [10], that is currently enjoying

popularity in the context of superconductivity of finite systems [10]. OWY also throw light on

the ‘mechanism’ of the the level crossing, and give explicit formulas for the number of level

crossings one finds in type-I matrices.

The objective of this paper is multifold. Firstly, a fundamental constraint equation in [1]

for constructing type-I matrices is shown to be related to the so-called Plücker relations of

Pfaffians. Since Pfaffians are basic to anticommuting objects such as Majorana fermions, one

sees that Fermi statistics enters this program of describing integrable systems in a fundamental

and unexpected fashion. From this analysis, the parameterization of the solutions of Type-I

matrices by OWY in [9], arises as an elegant consequence, and the entire construction becomes

more transparent.

Secondly, I show that the link with the Gaudin-type model [10] is made more naturally

with Fermi (or canonical Bose) statistics. The connection made by OWY with the Gaudin

model assumed hard core Bose statistics for the particles, and is confined to the sector of one

spin wave, i.e. is confined to a specific sub manifold. The basic quantum operator underlying

this class of problems is the permutation operator that has several possible realizations, leading

to distinct models. The permutation operator has a Fermi representation: this is shown to be

more natural than the (hard core) Bosonic one used in [9]. Once the commutation relations of

a set of matrices is established, we can elevate these to operator relations with either Fermi or

Bose statistics (see equation (19) below) and thus also have a Bosonic representation of these.

With either Fermi, or soft core (i.e. canonical) bosons, we construct a quantum glass

model below, i.e. a particular type of Anderson model for disordered carriers. This model is

akin to Gaudin’s model with hard core spins, and depends on several parameters that may be

chosen as one wishes, and has commuting partners in all particle sectors. These commuting

partners may be thought of as local charges that are broadened out in a specific way.

Interestingly the Plücker relations arise in other aspects of integrable systems aswell. these

are central objects in Sato’s work on classical solitonic theories (i.e. classically integrable

systems) [11, 12], where the so-called τ functions satisfy these relations. For quantum

integrable models, a connection has been shown to exist between the transfer matrices of and

the bilinear identities of the τ functions [13] satisfying Plücker relations.

A few remarks are useful to put the current work and the related [1, 9], within the context

of matrix theory as used in quantummechanics. In order to keep things simple, let us specialize

to finite dimensions2. Quantum observables lead to Hermitian, or real symmetric matrices,

and simultaneous measurability of observable pairs translates to the theorem that commuting

matrices of the above type are simultaneously diagonalizable. One simple result about two

such commuting matrices a and b, is that one of them is expressible as a power series in the

2 By sticking to lattice models in finite dimensions, we are following the Mark Kac dictum:

Be Wise,

Discretize.
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other3. The current series of works differ from these in that the focus is on matrices that

depend in a simple way (linearly, or possibly a polynomial of low degree) on a parameter,

and one insists upon the commutation property for all values of the parameter. This problem

is natural in the context of examples in quantum theory, such as the hydrogen atom, where

the Laplace–Runge–Lenz vector depends linearly on the squared electric charge. It is also

true in the structure of the higher conservation laws in models such as the Heisenberg [5] and

Hubbard models [3, 4]. The notable results in the works [1, 9] follow from the detailed study

of the simple parameter dependence of the commuting pair.

2. Summary of [1] and the introduction of a basis of commuting operators

In [1], we introduced a family of real symmetric matrices in N dimensions depending linearly

on a parameter x. These were introduced as purely algebraic prototypes of integrable systems

in finite dimensions and termed as type-I matrices. They are efficiently represented as

α = a + xA, with A = Ad + [a,S], (1)

with two generic diagonal matrices a and Ad having unequal entries, i.e. a =
DiagonalMatrix{u1, . . . , uN } with ui �= uj

4, Ad = DiagonalMatrix{A1, . . . , AN } with

Ai �= Aj , and a real antisymmetric matrix Si,j = −Sj,i . One may think of a and A as

the kinetic and potential energy matrices, and the parameter x as a perturbation parameter in

typical quantum systems. In this notation, the role of the antisymmetric matrix Sij is made

explicit. There is no loss of generality since if we are given the matrix α(x) in an arbitrary

basis as the sum of two noncommuting matrices, we can convert it to this form by performing

an orthogonal transformation that diagonalizes the matrix α(x = 0).

In this way, we model integrable systems, without reference to their explicit origin in the

physical world, as parameter-dependent matrices. This construction is inspired by the standard

examples of theHubbard andHeisenbergmodels. In thesemodels, finite-dimensional matrices

of the above type emerge on restricting the state space to various sectors of usual (parameter

independent) conservation laws such as particle number, parity, spin and total momentum.

Since integrable systems are known to possess several parameter-dependent (i.e.

dynamical) conservation laws, one wants to know if other matrices depending on x, possibly

linearly, can be found. It was indeed shown that under certain conditions on S, summarized

below, such commuting partners β(x) can be found, i.e. [α, β] = 0. The form of the dynamical

conservation laws β(x) was shown to be very similar to that of α(x):

β = b + xB, with B = Bd + [b,S], (2)

where b and Bd are the diagonal matrices.

In [1], it was shown that the number ofmatrices of type-I inN dimensions isVa = (3N−1),

and for a given matrix α(x) out of this set there are a further Vb = N + 1 matrices of the type

β(x).

The crucial condition on the antisymmetric matrix S was written in [1], in terms of its

inverse elements Ri,j ≡ 1
Sij
:

φ(i,j,k,l) ≡ Ri,jRk,l − Ri,kRj,l + Ri,lRj,k = 0. (3)

3 If one of them a has distinct eigenvalues, say aλ, then it is possible to express b =
�N
j=1 cj a

j with suitable

constants cj, and N is the dimension of the matrices. This expansion is most easily seen in the basis where both

matrices are diagonal. For the linear equations to be consistent, the Vandermonde determinant
�
λ<µ(aλ − aµ) �= 0

is required to be nonvanishing, leading to the requirement of nondegenerate eigenvalues. The case of degeneracy is

obtained by taking suitable limits within this framework.
4 We have changed the notation here from equation (1) and equation (2) with ar → ur and br → vr in order to avoid

a conflict with the notation of the Fermionic operators ar , a
†
r .
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These equations are extensively discussed in mathematics literature as the Plücker relations

[14], and their analysis is presented later. In our original work [1], we noted that these

are greatly overdetermined equations, since there are NC4 quartets of indices and equations,

but only NC2 matrix elements Ri,j to be determined. In [1] it was shown, by using a

consistency condition involving five indices (equation (I-15)), that this set has VR = 2N − 3

free parameters and hence independent solutions. For example one may choose at will the

parameters R1,j ; 2 � j � N and R2,k; 3 � k � N , and the remaining Rlm are determined in

terms of these with no conflicts.

In [9] OWY have shown that it is more efficient to introduce a basis of commuting

operators in terms of which both the matrices α equation (1) and β equation (2) can be

expanded linearly. Here a commuting basis guarantees the commutation of the matrices α and

β. The basis of commuting operators {Z(r)}, with 1 � r � N may be written in terms of the

Dirac projection operators |i��j |, as

Z(r) = |r��r| + x
�

s

[ρs(r)|s��s| + Sr,s(|r��s| + |s��r|)]. (4)

Here Sr,s will be seen below to be the same elements as in equation (1). The following

commutator vanishes:

[Z(r), Z(s)] = 0, (5)

provided the matrix elements ρi(j) satisfy the conditions

�

r

ρs(r) = 0, (6)

�

s

ρs(r) = 0, (7)

Si,lSl,j

Si,j
= �(i, j ; l) = ρi(l)− ρj (l). (8)

The constraint equation (7) guarantees that the trace of the operators vanishes, it is not

necessary for the commutation of the Z’s but is a convenient condition.

Now equation (8) can be rearranged in a way that eliminates the ρi(j) variables as a

four-index identity (where ‘l’ is a spectator index):

�(i, j ; l) +�(j, k; l) +�(k, i; l) = 0, (9)

in this form it is identical to equation (I-10), and by using the inversematrix elementsRi,j ≡ 1
Sij
,

it becomes precisely equation (3) above. The point of this construction is that we can now

take sums of the basis operators in equation (1):

α =
�
ujZ(j), β =

�
vjZ(j)

and in this way recover the matrices found in [1]. By allowing some of the aj to be pairwise

equal, OWY obtain a somewhat greater freedom than that in [1], where all the uj were chosen

to be distinct in order to obtain generic matrices.

The number of independent parameters in the S’s or equivalently in R’s is N(N − 1)/2,

and as mentioned above, we showed in [1] that the constraints in equation (3) are mutually

consistent, giving 2N − 3 free parameters in S. OWY parameterize the solutions of equation

(3) by a neat ansatz, namely

Ri,j =
(εi − εj )

(γiγj )
. (10)
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These are obtained in turn by performing a local gauge transformation equation (11), on a

particular solution Ri,j = (εi − εj ) noted in [1]. This transformation consists of multiplying

each matrix element by an arbitrary j -dependent factor:

Ri,j → 1/(γiγj )Ri,j , φijkl → φijkl /(γiγjγkγl), (11)

and is clearly a way of generating further solutions from a given one.

Indeed equation (10) has the correct number of parameters (2N − 3). To see this, we

start with the N ε’s, and the N γ ’s giving us 2N parameters. As discussed more fully below

in equation (17), we subtract three parameters from 2N , since we can shift all ε�s by a single

constant and further scale all the ε’s and all the γ ’s by two j -independent constants. Using

equation (8), we may then infer the ρj (i) from this parametrization of Rij = 1/Sij , and find

ρi(j) =
γ 2
j

εi − εj
, i �= j and

ρi(i) = γ 2
i

�

j �=i

1

εi − εj
.

(12)

We will use this convenient parameterization in the rest of this work. For completeness, we

note that the parameterization of equation (1) i.e. α =
�
ujZ(j) in (I) translates to the new

variables as follows:

Sij =
γiγj

εi − εj

Ai = const −
�

j �=i

γ 2
j

ui − uj

εi − εj

Yij =
γ 2
i

εi − εj
−

�

k �=i

γ 2
k

εi − εk
,

(13)

with Yij from equation (I-5), so that µ(i; jk) in equation (I-19) vanishes identically.

3. Plücker relations and the parametrization of the antisymmetric S matrix

Equation (3) was recognized belatedly by the author, as Plücker relations of the mathematical

literature. Since these are central to the construction of this class of matrices we take a

closer look at the 2N − 3 solutions that were found in [1]. We explore the structure of the

relations by using a more rigorous technique next, and see that the ansatz of OWY follows

from the analysis as the unique solution. We show that these relations involve the so-called

Plücker relations for Grassman variables, and hence presage the final form our presentation

that involves Fermions in a fundamental way.

We begin by noting that equation (3) involves φ(ijkl), which is a Pfaffian of a real 4×4 skew

symmetric matrix Ri,j . The vanishing of φ(ijkl) is a standard example of a Plücker relation

[14]. The totality of these equations is expressed elegantly using exterior forms. Let us define

an N-dimensional real vector space spanned by unit vectors ej and define an antisymmetric

wedge products ei ∧ ej . These provide a basis for the linear vector space W(2) [14]. In this

space, we define for a skew symmetric Ri,j a ‘two form’:

R =
�

i<j

Ri,j ei ∧ ej .

It is now easy to see that

R ∧R = 2
�

i<j<k<l

φi,j,k,l ei ∧ ej ∧ ek ∧ el,

5
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and hence we recognize that the totality of relations in equation (3) are precisely equivalent to

finding solutions of

R ∧R = 0. (14)

This condition defines [14] the ‘decomposability’ of the two-form R. This problem can be

resolved by noting that every skew symmetric matrix can be expressed in its real normal

form involving 2n orthonormal vectors aα and bα with 1 � α � n, satisfying the conditions�
j Ri,j a

α
j = λαbαi and

�
j Ri,j b

α
j = −λαaαi . We may term these as the pseudo eigenvectors

and pseudo eigenvalues, since the Hermitian matrix i R has real eigenvalues ±λα and real

eigenfunctions 1√
2
(aαj ± bαj ), and n � N/2 is the number of nonzero eigenvalues of i R. The

normal form is expressed as

Ri,j =
�

α=1,n

λαaαi b
α
j .

With this decomposition, and with vα =
√
λα

�
j a

α
j ej and wα =

√
λα

�
j b
α
j ej , we can

rewrite the relation

R =
1

2

�

α=1,n

vα ∧ wα.

We thus see that equation (14) is possible if and only if the number of vectors n = 1, i.e. there

is only one pseudo eigenvector of R. This is known as the condition of decomposability, and

provides us with a neat representation equation (15) with a single eigenvalue λ and a pair of

orthonormal vectors xj yj :

Ri,j = λ(xiyj − yixj ). (15)

Using the local gauge invariance in equation (11), we can drop the condition of orthonormality

of xj and yj in equation (15), as far as generating solutions to the original problem equation

(3) is concerned. We may also absorb the λα factor into the vectors, and it appears that we

have 2N -independent real parameters in the solution of equation (3). However, we observe

that there is a redundancy in this counting, the vectors xj and yj can be transformed without

changing Ri,j if use three linear transformations with arbitrary parameters p, q, r as

(xj , yj )→ (xj + p yj , yj )

(xj , yj )→ (xj , yj + q xj )

(xj , yj )→

�

r xj ,
1

r
yj

�

.

(16)

We thus see that the total number of real parameters available is exactly 2N − 3 as known

already from [1]. One convenient set of 2N − 3 variables was given as R1,j with 2 � j � N ,

and R2,j with 3 � j � N , in terms of the xj , yj we may e.g. set x1 = 1, y1 = 1, x2 = 1

and determine the remaining 2N − 3 variables from the Ri,j ’s. The parameterization equation

(10) of OWY can be obtained from equation (15) by setting εj =
xj
yj

and γj = 1
yj
, and the

symmetries of equation (16) are transformed into

(εj , γj )→ (εj + p, γj )

(εj , γj )→

�
εj

1 + qεj
,

γj

1 + qεj

�

(εj , γj )→ (r2εj , rγj ).

(17)

We may again reduce the apparent 2N parameters by (3) using these relations; it amounts to

choosing three parameters, say (ε1, γ1, γ2) arbitrarily as e.g. (1, 1, 1) and the rest are fixed

using the inverse of equation (10).

6
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4. Fermionic representation of commuting operators

We next show that the matrices Z(r) in equation (4) lead to a neat Fermionic representation,

which may be thought of as a model for a Fermi glass with localized states. Let us define

a Fermionic set of operators aj , a
†

j and nj = a
†

j aj , obeying the standard anticommutation

relations
�
ai, a

†

j

�
= δij , (18)

with 1 � i � N . It is elementary to see that two commuting matrices [P,Q] = 0 lead to a

commuting set of Fermionic operators (e.g. see [15]), i.e.



�

ij

Pij a
†

i aj ,
�

ij

Qija
†

i aj



 =
�

lm

[P,Q]lma
†

l am = 0, (19)

where [P,Q] is the matrix commutator of the two matrices Pij and Qij. Thus, we obtain a set

of N Fermionic operators:

Ẑ(r) = nr + x
�

s

�
ρs(r)ns + Sr,s

�
a†r as + a

†
s ar

��
. (20)

We see that these inherit the commutation property [Ẑ(r), Ẑ(s)] = 0 from equation (5). Using

the parametrization equation (10) and equation (12), we write the basis set of commuting

operators as

Ẑ(r) = nr + x

��

s

1

εr − εs

�
γrγs

�
a†r as + a

†
s ar

�
− γ 2

r ns − γ 2
s nr

�
, (21)

where the prime indicates s �= r .
Readers wishing to skip the earlier discussions, can directly verify that the commutator

[Ẑ(r), Ẑ(s)] vanishes, for arbitrary values of the given parameters by a straightforward

calculation.

We also remark that the choice of the statistics of the canonical operators aj is not the only

one possible. The entire argument of this section can be repeated if we use canonical Bosonic

operators instead, i.e. aj → bj where
�
bi, b

†

j

�
= δij . Thus, one can equally well consider a

Bosonic glass rather than a Fermi glass model here.

Finally we note that the single particle sectors of the Bosonic, Fermionic and hard core

Bosonic models are all identical and correspond to type-I matrices. For higher numbers of

particles, these correspond to other classes of matrices depend on the statistics chosen, e.g.

these are Kronecker products of type-I matrices in the case of canonical fermions and bosons.

4.1. Mapping to the Gaudin model

The mapping discussed by OWY views equation (4) as the SzTotal = N/2 − 1 subspace

representation of the Gaudin Hamiltonian [10, 16]:

ZGaudin
i = Szi + x

��

j

1

εi − εj
�Si · �Sj . (22)

This model was first written down by Gaudin [10]. Gaudin actually wrote it without the first

term Szi , this was supplied later by Sklyanin [16] from twisting the boundary conditions. To

be exact equation (4) has an extra factor of γiγj that OWY argue can be incorporated into the

equations, and also their magnetic field term B is ∝ 1/x. The Gaudin model is currently very

7
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popular for describing the dynamics of Cooper pairs within the BCS theory for finite systems

[17, 18]. Each spin flip represents a Cooper pair, from the Anderson mapping of the BCS

theory to spin waves. Thus, S−
i = cki↓c−ki↑ and the label i is actually a momentum space

label.

The point about the Fermionic representation equation (21) of equation (4) is that it

is true for all numbers of fermions, and not restricted to a single particle sector. In this

sense, the present Fermionic representation is much more powerful, and further the factors

γi do not need any special treatment, they are automatically treated in the commutation

relations. Thus, equation (4) are embedded without any further qualifications in the operator

equation (21). We see below that this representation enables us to find applications of this

model for fermions in a disordered potential, i.e. the Fermi glass problem. The same statement

is also true if we use canonical Bosonic operators instead of fermions, as mentioned above.

However, the Gaudin model is expressed in terms of hard core bosons, and the magnitude of

the spin is related to the γj making the scheme somewhat cumbersome5.

5. Diagonalizing the Fermi Hamiltonian and the density of states

We now turn to a study of equation (21) and a related Hamiltonian obtained by summing

HR =
�

r

εr Ẑ(r) =
�

r

nrεr + x
�

ij

γiγja
†

i aj − x N̂
�

j

γ 2
j , (23)

where N̂ =
�
r nr is the number operator. For fermions or canonical bosons, this Hamiltonian

is the analog of the so-called Richardson [19] Hamiltonian in the theory of nuclear matter

(the γ factors do not usually arise in the latter). The Richardson model and also the related

BCS [17] problem for finite systems [18], are expressed in terms of hard core bosons (i.e. spin

half objects) representing Cooper pairs S−
i = cki↓c−ki↑. These are in turn, obtained by taking

sums over the Gaudin ZGaudin
j operators of equation (22). The Hamiltonian equation (23)

is considerably simpler to solve for a general population of particles than the corresponding

problem for hard core bosons, and is akin to a free gas of particles in a suitable one-body

potential. Clearly our Hamiltonian equation (23) commutes with each of the Ẑ(r), and plays

a central role in the Fermi glass interpretation.

If we view the labels i, j as wave vector indices, then H describes a band model with an

arbitrary dispersion εi . It is subject to a potential that scatters from every wave vector to each

of the others, with a potential matrix element xγiγj . Since the γi are arbitrary, they may be

chosen at random. We thus realize a band model with a separable random scattering potential.

If on the other hand, we view i as site labels in a tight binding model, the energies εi may be

chosen at random, and the kinetic energy hops between every pair of sites- i.e. realizing an

infinite ranged random Fermionic Anderson model.

We now turn to the task of diagonalizing theHamiltonian and all the Ẑ(r) by an orthogonal

transformation. This transformation for the single particle sector is essentially identical to the

one in Richardson [19] , and many subsequent works, and hence we will be brief. Define a

new canonical Fermion set

d
†

i =
�

j

Qij a
†

j , with
�
di, d

†

j

�
= δij , (24)

5 It is possible to include the γi factors into an inhomogeneous 6-vertex model, provided we allow for horizontal

and vertical electric fields. The only value of anisotropy that readily supports the inclusion of these fields is the Free

Fermi point of the 6-vertex model, so that we end up with the Fermi representation reported here. It does not seem

useful to dwell on the detailed construction in view of the simplicity of the alternate argument in equation (19).

8
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through an orthogonal transformation generated by a real orthogonal matrix Q such that

QT ·Q = 1, and

Qij =
φi γj

ωi(x)− εj
, (25)

φ−2
i =

�

j

�
γj

ωi(x)− εj

�2

, (26)

1

x
=

�

j

γ 2
j

ωm(x)− εj
. (27)

Here ωm(x) in equation (27) are the N eigenvalues of the transformed Hamiltonian

equation (23), we write the argument (x) to emphasize that these depend parametrically

on x. A further short calculation gives

HR =
�

m

ωm(x) d
†
mdm − x N̂

�

j

γ 2
j , (28)

Ẑ(j) = x γ 2
j

�

m

1

ωm(x)− εj
d†mdm. (29)

As x → 0±, one sees that ωj → εj ± 0, i.e the ω’s are pinned to the ε’s. The eigenvalues

ωm(x) are in 1–1 correspondence and evolve out of the numbers εm smoothly as x increases

from zero. Thus, the eigenvalues ωj of the Richardson Hamiltonian equation (23) interlace the

numbers εj , with one extremal eigenvalue that grows linearly with x. For x � 0 (x � 0), the

extremal eigenvalue ωN � εN (ω1 � ε1). The density of states of ωj has a width that remains

fixed with x if we ignore the exceptional extremal case. It is easy to see that the ωm do not

cross each other as x varies, but they do satisfy the von Neumann–Wigner noncrossing rule.

The conserved quantities Ẑj may be visualized as evolving continuously from the occupation

numbers nj as x increases from zero.

We could more generally consider the two operators formed from the sums

α̂(x) =
�

r

ur Ẑ(r), and β̂(x) =
�

r

vr Ẑ(r), (30)

with arbitrary ur and vr , and see immediately that these are the Fermi space representations of

the operators introduced in equation (1) and equation (2):

α̂(x) =
�

r

ur nr +
x

2

��

r,s

ur − us

εr − εs

�
γrγs

�
a†r as + a

†
s ar

�
− γ 2

r ns − γ 2
s nr

�
,

β̂(x) =
�

r

vr nr +
x

2

��

r,s

vr − vs

εr − εs

�
γrγs

�
a†r as + a

†
s ar

�
− γ 2

r ns − γ 2
s nr

�
.

(31)

These commute mutually for any choice of the parameters, including x, and also with the

constants of motion Zj in equation (21), and on diagonalization become

α̂(x) =
�

m

αm(x) d
†
mdm,

αm(x) = x
�

j

γ 2
j uj

ωm(x)− εj
.

(32)
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??

ωm(x)
αm(x)

Figure 1. Left panel shows the eigenvalues ωm(x) from equation (27) for the case of N = 5,

where one observes narrowly avoided level crossings involving the top three levels. Right panel

shows the effect of mixing levels through equation (30) and (32) with uj − εj chosen randomly

with a small scale of variation. We see that the eigenvalues αm(x) obtained from equation (30) and

(32), cross each other profusely, thereby violating the Wigner von Neumann noncrossing rule.

A comment on the conservation laws equation (21) and their relationship with the

‘Hamiltonian’ equation (31) is useful here. At x = 0 the existence of N constants of motion

of the Hamiltonian is obvious since the Z�s are just the number operators of the fermions.

When we perturb the Hamiltonian from this ‘free case’ by adding any term proportional to

x, we can always fix the conservation law to be valid to O(x), but generally the terms do not

commute to O(x2). This is familiar in the theory of integrability violating perturbations to

integrable systems, as in the Kolmogorov–Arnold–Moser theory [20]6; the conservation laws

analogous to equation (21) can be rescued to linear order in the new perturbations, but not to

higher orders. The speciality of the specific perturbation in equation (31) is that there are no

corrections to O(x2) and the the conservation law equation (21) commute exactly.

The inevitability of level crossings for type-I matrices was noted empirically in [1], on

the basis of several examples that were studied. However the theoretical explanation awaited

the work of OWY, who showed that for a generic choice of ur, the eigenvalues of α̂(x), i.e.

αm(x) in equation (32), have at least one and at most N−1C2 level crossings as x varies over

its range. These eigenvalues thus defy the von Neumann–Wigner noncrossing rule, unlike

the eigenvalues of the Richardson Hamiltonian ωm(x), which do obey the rule. The one

exceptional case is uj = εj when the α(x) reduces to the Richardson Hamiltonian equation

(23)7. Onemay understand the violations of the noncrossing rule by thinking of the eigenvalues

of α̂(x) as smeared versions of ωm(x), and thereby less sharply governed by the rule. This is

illustrated in figure 1, where we plot the energy levels for N = 5, and show that while ωm(x)

of equation (27) avoids level crossings, the derived eigenvalues αm(x) from equation (30) and

(32) do display level crossings. In this sense, there is a hidden generic model HR satisfying

the noncrossing rule, behind the violations of the same in the constructed matrices α(x).

Finally, we note that the Hamiltonians equation (31) with Fermionic aj (Bosonic bj) can

be viewed as representing a class of localized states in the Fermi (Bose) glass problem of

disordered noninteracting quantum particles. At x = 0, the model consists of localized states

with energies ur, and clearly has N conservation laws Z(r) as in equation (21), corresponding

6 The Kolmogorov–Arnold–Moser theorem is discussed in this reference.
7 In OWY, the exception is accommodate with the help of a slightly different viewpoint. In their view equation (23)

does have the requisite number of level crossings, provided we include the limiting cases x → ±∞. The spectrum of

the large |x| limit of equation (23), namely
�
ij γiγj a

†
i aj − N̂

�
j γ

2
j , has a single isolated eigenvalue, and N − 1

degenerate (null) eigenvalues. The null eigenvalues can be viewed as consisting of N−1C2 pairwise crossings. As |x|
reduces from ∞, some of the level crossings move towards smaller |x|, whereby all choices of uj fall into a common

description. Our view is a slightly different; at a qualitative level it seems useful to think of the level crossing as

arising from a smearing of the avoided crossing.
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to the occupation numbers of the different sites. As x varies from zero, the particles hop

around as dictated by the Hamiltonian, but with generalized conserved occupancies at all sites

given by equation (21). These are therefore localized to all orders in the perturbation x, despite

hoppings that carry them far away. We can easily see that the energy level statistics of these

systems follow the Poisson distribution for small separations, due to the level crossings that

occur in these Hamiltonians. The absence of level repulsion what one expects from localized

states in the Anderson model on general grounds.
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