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Abstract. R D Lowde and C G Windsor have pointed out that good agreement between 
neutron scattering experiments on Ni and theory is possible if the effective Coulomb 
interaction is a mildly decreasing function of the momentum. We present a variational 
calculation of the wave vector-dependent susceptibility in the t matrix scheme for the 
short-ranged one-band model. The scheme satisfies the Ward-Takahashi identities for 
self-energy and the vertex part. Numerical results are presented assuming an idealised 
bandstructure for Ni. Our computation yields results of the type suggested by experiment. 
We point out the reason why other theories give results which contradict experiment, 

1. Introduction 

There has been considerable interest recently in the wave vector-dependence of the 
magnetic susceptibility of the short-ranged one-band model (the Gutzwiller-Hubbard- 
Kanamori model). Lowde and Windsor (1970) analysed neutron scattering data 
from metallic Ni in terms of a mean field-like expression for x of this model: 

where x o  is the noninteracting value, Na the number of atoms and Ue, , (4)  a 
phenomenological effective Coulomb interaction. They found very good agreement 
between theory and experiment in the paramagnetic phase ( T >  TJ, provided Ue, , (4)  
was a slowly decreasing function of q. Osborne (1970) attempted to explain this 
behaviour by generalising Kanamori’s t matrix theory (1963) to finite wave vectors. 
Subsequently, inconsistencies in Osborne’s treatment were pointed out (Shastry 1976). 
It was shown that the t matrix theory equations are amenable to a variational 
solution and indeed yield results which are in qualitative agreement with experiment. 
Very recently Haga et al (1978) have again noticed the inconsistencies of Osborne’s 
treatment but conclude that the corrected results are in disagreement with experiment: 
they find that U,,,(q) increases with 4 .  

In this paper we present the details of our variational calculation and compare 
the results with those of the other authors. In 92 we outline the formalism of the 
t matrix theory and set up a basic set of equations for the vertex and self-energy 
which are guaranteed to satisfy Ward-Takahashi identities (Hertz and Edwards 1972). 
In $3 we outline the variational method used to solve these equations. In $4 we 
present the results of our numerical computation for the Stoner factor as well as 
the wave vector dependence of Uef f .  In 55 we compare our results with those of other 
authors and critically examine the approximations made. 

0305-4608/79/071367 + 10 $01.00 @ 1979 The Institute of Physics 1367 



1368 B Sriram Shastry 

2. The t matrix theory for the susceptibility 

where 

R is the crystal volume, p 

G$j;7a(ki. kz  ; 4)  = JJJ (oi ~la,,,(tl)a,g(rz)a~~-~~(t4)ak:+~,.(t3))10) 

(Po, p ) ,  q = (U, q) and 

x exp i[ky(t, - t 4 )  + kp(r ,  - t 3 )  - u(t3 - t4)] 

x d(t ,  - t4)d(t2 - r3)d(t3 - t4) (4) 

(our notation closely follows that of Abrikosov et a1 1963). We have omitted a factor 
of 2& from the definition of x for convenience. We define a vertex part A, E (Ao, Ai) 
through the relation 

G,(k + 4 /2 )A , ( k ,  q)G,(k - 4/21 = - i  TrpG'/T;l,(k + 4/2, p - 41.2; q)j.,b) ( 5 )  

E.&) = 1. q p )  = pi," ( 6 )  

where 2 p ( p )  (io. ij) 

and GT(G ,) is the usual spin-up (down) single-particle propagator. 
The susceptibility is given in terms of the vertex part as (see figure l(a)). 

~ ( 4 )  = TrkG;(k + q / 2 ) A o ( k ,  q)G,(k - 4/21. (7) 

We may set up a Bethe-Salpeter equation for the vertex part by following 
standard methods (e.g. see Nozieres 1964). In the t matrix theory the irreducible 
interaction is chosen as the particle-particle ladder (see figure l(b)). The t matrix in 
the case of the short-ranged one-band model is (a geometric series in this case) 

I ( p )  = (c',lv,);[ 1 - TrkG(k)G(p - k ) ] .  (8) 

Here c' is the bare Coulomb coupling constant (e.g. see Herring 1966). These 
diagrams dominate perturbation theory in the low-density limit, as is well known 
from the theory of nuclear matter. For metals such as Ni with few fermions per band 
(0.2 holes per d band) the importance of this approach was recognised by 
Kanamori (1963). The Dyson equation for self-energy in the t matrix theory is 
(Galitskii 1958) 

(9) 

where Go is the usual noninteracting Green's function ( k ,  - Ek + id)- '  (see figure l(c)). 
The Bethe-Salpeter equation for Aw can be written down by inspection as (figure l(d)) 

G - ' ( k )  = G , ' ( k )  + Tr,G(p)l(k + p )  

A,(k, 4 )  = j L p ( k )  + Tr,l(k + p)Gb + q/2)A,(p, q)G(p - q/2) .  (10) 

(we omit the spin label on the G since we will work in the paramagnetic phase). 
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Figure 1. Feynman diagrams corresponding to the various equations necessary to calculate 
the susceptibility: (a), the defining equation for 1 (equation (7)): (b). integral equation for 
the t matrix (equation (8)); (c), Dyson's equation in the t matrix approximation 
(equation (9)); (d), Bethe-Salpeter equation for the vertex part in the r matrix theory 
(equation (10)). 

We must check the consistency of equations (9) and ( IO)  in order to satisfy 
spin conservation laws (Hertz and Edwards 1972). The Ward-Takahashi identity 
which must be fulfilled reads 

We multiply equation (IO) by q p  and combine with equation (1 I). This yields 

qiAp = @ip(k) + Tr,l(k + p)[G(p  - y/2) - G(p + q/2)]  

Using equation (9) we see that the RHS of equation (12) is indeed 

G - ' ( k  + 4 / 2 )  - G-'(k - q/2). 

Hence we have explicitly verified the compatibility of the self-energy and the vertex 
part. It should be noted that if one tries to use Go in place of G in equations (10) 
and (7), the Ward-Takahashi identity is violated. 
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3. The variational principle 

The mathematical problems consists of the evaluation of x(q)  from equation (7), 
where the functions G and A are given as solutions of equations (9) and (10). 
A direct analytical solution seems impossible and we resort to a variational attack. 
Such methods were introduced by Rau and Rajagopal (1975) in another context. 
We set up a Lagrangian with the equations to be solved as constraints. Thus 
we write 

= Tr G,A,G, + Tr L l ( A l  - 1 - Tr IG,A,G,) + Tr L,(G,(G;’ + Tr IC, )  - 1). (13) 
We have suppressed the momentum arguments to save writing. The subscripts t and v 
stand for trial and variational respectively. The Lagrange ‘multipliers’ L1 and L2 are 
each functions of two moments (like A) and are determined by requiring independence 
of ;cy with respect to variations of A and G respectively. Thus we write 
G , ( k )  = G(k) + 6G(k) and A, (k )  = A(k) + SA(k) and equate the coefficients of 6G and 
6A to zero. This leads to equations 

L , ( k ,  q )  = - G ( k  + q/2)G(k - q/2)  + Tr,.I(k + k’)L,(k’ ,  q)  (14) 
and 
LAk, Y) = - G ( k ) [ G ( k  + q)A2(k  + 4 / 2 , 4 )  + G ( k  - q)A2(k - 4/2 ,4)  

- G ( k )  Trk,I(k + k’)G(k’)L,(k’, 4). 

Li(k. 4 )  = - G ( k  + q /2 )Nk ,  q)G(k - 4/21. 

(15) 

(16) 
Equation (15) must be solved in order to get the Lagrange function L 2 .  We note 
however that the inhomogeneous term is independent of I and gives the leading 
contribution to x,. The second term leads to terms of higher order in I .  This 
term is assumed to be small in the t matrix theory and hence is neglected. 

We further choose G, to be G o ,  the noninteracting Green’s function, for simplicity. 
The advantage of working with a variational principle now manifests itself; one may 
confidently make approximations such as the above, since the variational principle 
provides suitable counter terms that minimise the error. 

We still have the freedom of choosing A,(k, 4) .  In this we are guided by the integral 
equation for Ao(k, q )  (equation (10)). Since the inhomogeneous term is independent of 
the first momentum, we choose A,(k ,q)  = j&), i.e. a function of 4 only, the best 
value being determined by minimising 1, with respect to  p. This gives a solution of 
the form of equation (l) ,  with 

Comparing equations (14) and (lo), we see that 

and 
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The terms .Il and J 2  arise from the vertex and self-energy respectively. It is clear that 
the self-energy constraint gives a term of the same order as the vertex part and 
hence cannot be ignored. We remark that equation (18) is essentially exact for 
4-0, w-0, o / q - O  since in this limit the integral equation (equation (10)) for the 
vertex part becomes algebraic and can be trivially solved (for a spherical Fermi 
surface). 

4. Results 

4.1. The  t matrix for a model bandstructure 

The t matrix (equation (8)) may be written in the form 

I (P)  = (u/Na)(l + Un(EF)Fb))-' 
where is the density of states per atom and 

where f k  is the usual Fermi function (=e(+ - E k ) )  and E k  is the (bare) kinetic energy. 
The frequency p may be set at 2 E F  since one needs the average of I with both 
particles near the Fermi surface (the G in equations (19) and (20) are peaked at the 
Fermi surface). 

We now introduce a somewhat crude representation for the bandstructure of Ni. 
We assume parabolic bands with E k  = h2k2/2m* and replace the Brillouin zone by a 
sphere of radius k, chosen such that the volumes coincide (i.e. a Wigner-Seitz 
construction). In terms of U,,, the number of d band holes per band per atom, we have 

k, ='(2/n,)' 3 k F ,  II(EF) = 3fl,/4EF. kF = (l2iT2Hh)' 3c2;1 (23) 

where aL is the lattice constant of the FCC Ni lattice and kF is the Fermi wave vector. 
With this bandstructure we can calculate the function F analytically. We find for p < 2 

and 

where q = (1 - ~~/4)''~, and F1 and F2 are the particle-particle ( p p )  and hole-hole 
(h-h) terms respectively and correspond to the terms ( 1  - f k ) ( l  - f p - , )  and f k f p -  in 
equation (22). For p > 2 the function I may be approximated by its asymptotic 
form c /p2 ,  the constant c being chosen to obtain continuity with the value for p < 2. 
This gives for p > 2 

F,(P) = 4 ( k m  - ~ I / P ~ -  F2(P) = 0. (27 )  
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Using the above bandstructure, we can write Ueff (equation (18)) as 

where 

1 - .x2 
W ( x )  = + + ~ 

4x In( fi) 
and 

4.2.  The uniform susceptibility and the Stoner factor 

The uniform susceptibility is of considerable interest since its divergence signals the 
onset of ferromagnetism. In the present scheme, the Stoner factor (defined as the 
dimensionless ratio ;c]xo) can be expressed as 

SO = [ I  - n(EF)N,(I(k f p ) ( l  - q.VkEk/q.VpEp})]-'. (31) 
The angular bracket represents an average over the Fermi surface 

The second term in the braces in equation (31) arises from the self-energy correction 
and was neglected by Kanamori (1963) in his pioneering work. It is therefore interesting 
to estimate the error made by its neglect albeit in a simplified model. Hence we also 
compute the function 

Kanamori made yet another technical assumption (termed as dangerously crude by 
Herring 1966). This assumption amounts to setting k and p equal to zero and simply 
omitting the averaging in equation (32) (this approximation is very convenient if one 
is interested in a crude estimate of the effect of the density of states function on the 
occurrence of ferromagnetism, which was Kanamori's main objective). This leads to 
the function 

Note also that a naive mean field calculation gives 

S M F  = (1 - Un(EF))-'. (34) 
The functions So and S1 can be easily computed (being reducible to single-variable 

integrations) for various values of Un(EF) and n h .  In figure 2 we compare the inverses 
of various Stoner factors for n h  = 0.2 as a function of U ~ ( E , ) .  Thus every improvement 
in the approximation leads to a smaller Stoner factor and hence a lesser tendency 
towards ferromagnetism. If we increase n h ,  we find that ferromagnetism sets in 
(at L' = x) for the following values of n h :  S 2 ,  SI and So diverge for n h  = 0.25, 0.35 
and 0.42 respectively. This result must be treated with some caution since the 
low-density assumption underlying the t matrix approach is no longer valid for 
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L 
Figure 2. The inverse Stoner enhance- 

- - - - - ~  ment factor in various approximations: 

C. mean field approximation. 
1 2 3 4 5 6 cD A. present work: B, Kanamori (1963); 
L. 0 

U n l c F l  

large values of n h .  We may however infer that the Kanamori criterion could well 
overestimate the tendency towards ferromagnetism systematically. 

4.3 .  The wave vector dependence of Ueff(q) 

In order to perform the six-fold integrals in equation (28) we use the following useful 
algorithm valid for arbitrary functions (4 6 2): 

Here we have introduced spherical polar coordinates for k(k, c0s-l ,U, 4). chosen 
the z axis along q and introduced .Y through the relation 

k ( X , P )  = !i4XlPl + [1 + (42/4)(P2 - 1)l’ 2 .  (36) 

Using this algorithm for both momenta, we find 
1 

The integrals were computed by using the Gauss-Legendre and Gauss-Chebyshev 
quadratures (e.g. see Abramowitz and Stegun 1965). (The apparent divergences in 
the integral from pl and p 2 + 0  are handled automatically in this method since the 
abscissae are symmetrical about zero.) Convergent results were obtained by using 
six-point quadratures for each variable. 

In figure 3 we display the computed Uelf(q)n(eF) as a function of q/2kF for various 
values of Un(c,). The number of holes/band;’atom (nh)  is set at 0.2, and only 
particle-particle (p-p) scattering considered (i.e. F2 is neglected in equation (24)). 
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Figure 3. The effective Coulomb interaction 
function for various values of Un(cF). Only 
p- p terms are retained and i ih  set at 0.2. A. 
C:fT(<,) 15: B. C P ~ ( E , )  = 4: C. L'II (EF)  = 2. 

Figure 4. The effective Coulomb interac- 
tion function for different values of n h .  
In all curves LJn(c,) = 4. Curves A and B 
have only p-p terms; curves C and D 
have both p-p and h-h terms. A, n,=0.21; 
B, nh = 0.2: C. nh = 0.2; D, n h  = 0,1866. 
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The momentum dependence is seen to be very mild, becoming more pronounced for 
large Un(E,). 

In order to investigate the role of hole-hole (h-h) scattering and of the sensitivity 
to n h ,  in figure 4 we plot U,,,(q) as a function of q/2kF for various values of the 
parameters (Un(E,) is fixed at 4). Curves marked A and B correspond to p-p 
scattering and differ only in n h .  It is seen that the effect of increasing n h  is to shift 
Ueff upwards. Curves C and D correspond to p-p and h-h terms. The inclusion of 
h-h terms thus reduces the magnitude of Ueff and also accentuates the q dependence. 

5. Conclusions 

Lowde and Windsor (1970) point out that a calculation due to Osborne (1970) gives 
too large a q dependence to Ueff(q). Osborne’s new calculation is ostensibly a 
generalisation of Kanamori’s calculation to finite wave vectors. It must be pointed out, 
however, that the generalisation is incorrect and based upon the following misunder- 
standing. Osborne starts with essentially equation (32) which gives U,,,(q = 0). As 
mentioned earlier, Kanamori made an assumption of convenience, replacing k and p 
by zero. Osborne has taken q to stand for k - p and Taylor expands equation (32) 
about zero to obtain a ‘q dependence’. It should be clear, however. that this procedure 
is incorrect. Equation (32) only gives the uniform susceptibility and does not have 
enough information to yield Ueff(q). One must necessarily solve equations for the 
vertex part for finite wave vectors to achieve the desideratum. 

As mentioned in the Introduction, Haga et al (1978) have recently re-examined 
the t matrix approach and have solved the integral equations by numerical methods. 
Their conclusion. however, is the opposite of ours: they find that Uef,(q) increases 
with q and hence state that there is a contradiction between theory and experiment. 
The resolution of this contradiction lies in the observation (T Kat0 1978, private 
communication) that they have neglected the self-energy corrections. This amounts 
to dropping the Dyson equation constraint in our variational approach (and hence 
the neglect of the J 2  term in equation (18)). This procedure is clearly unjustified 
since spin conservation laws or the Ward-Takahashi identities (Hertz and Edwards 
1972) are violated. (This is clear from $2 . )  Also. our solution explicitly shows that 
the contributions from the self-energy corrections are of the same (numerical) order 
of magnitude as the vertex corrections, therefore giving rise to the possibility of 
cancellations. 

We therefore conclude that the t matrix equations for the self-energy and vertex 
part obeying the spin current conservation laws (or the Ward-Takahashi identities) 
yield a U,,,(q) which decreases mildly with q in accordance with experiments 
analysed by Lowde and Windsor (1970). 

Acknowledgments 

I thank Professors A K Rajagopal and C K Majumdar for their interest in this work. 
I thank Professor Kat0 for informing me of his work prior to publication. 

References 
Abramowitz A and Stegun I 1965 Hundhook ofMathematica1 Functions (New York: Dover) 
Abrikosov A A, Gorkov L P and Dzyaloshinskii I E 1963 Methods of Quantum Field Theory in Statistical 

Phys. (Englewood Cliffs. NJ :  Prentice Hall) 

M P I F I  9i7-K 



1376 B Sriram Shastry 

Galitskii V M 1958 Soc. Phys.-JETP 34 151 
Haga I. Kato T and Aisaka T 1978 Prog. Theor. Phps. in press 
Herring C 1966 Magnetism ed G T Rad0 and H Suhl (New York: Academic Press) vol 4 p 209 
Hertz J A and Edwards D M 1972 Phps. Rev. Lert. 28 1334 
Kanamori J 1963 Prog. Theor.  Phys. 30 275 
Lowde R D and Windsor C G 1970 Adc. Phps. 19 813 
Nozieres P 1964 Theory of Interacting Fermi Systems (New York: Benjamin) 
Osborne C 1970 Phps. Lett .  29A 628 
Rau A R P and Rajagopal A K 1975 Phps. Rec. B l l  3604 
Shastry B S 1976 PhD Thesis Tata Institute of Fundamental Research. Bombay 


