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Abstract
Low energy properties of themetallic state of the two-dimensional t-Jmodel are presented for second
neighbor hoppingwith hole-doping ( -¢t 0) and electron-doping ( ¢ >t 0), with various super-
exchange energy J.We use a closed set of equations for theGreens functions obtained from the
extremely correlated Fermi liquid theory. These equations reproduce the known low energies features of
the largeUHubbardmodel in infinite dimensions. The density and temperature dependent
quasiparticle weight, decay rate and the peak spectral heights over the Brillouin zone are calculated.
We also calculate the resistivity, Hall conductivity, Hall number and cotangentHall angle. The spectral
features display high thermal sensitivity atmodestT for density 2n 0.8, implying a suppression of the
effective Fermi-liquid temperature by two orders ofmagnitude relative to the bare bandwidth. The
cotangentHall angle exhibits aT 2 behavior at lowT, followed by an interesting kink at higherT. The
Hall number exhibits strong renormalization due to correlations. Flipping the sign of ¢t changes the
curvature of the resistivity versusT curves between convex and concave. Our results provide a natural
route for understanding the observed difference in the temperature dependent resistivity of strongly
correlated electron-doped and hole-dopedmatter.

1. Introduction

The t-Jmodel in 2-dimensions (2d) has been argued to be of fundamental importance for understanding
strongly correlatedmatter, including the highTc superconductors [1, 2]. Due to the difficulties inherent in the
strong coupling problem, very few techniques are available for extracting its low temperature physics. Towards
this endwe have recently developed the extremely correlated Fermi liquid (ECFL) theory [3, 4]. It is an analytical
method for treating very strong correlations of lattice Fermions, employing Schwinger’s technique of functional
differential equations togatherwith several important added ingredients.While further details can be found in
[3, 4], a brief summary of themain idea behind the ECFL theory seems appropriate.We consider theHubbard
model with a large interaction l ¥U , and hence the name of the theory. Awell known expansion in the
inverse powers ofU leads to the t-Jmodel (defined below [2]). Taking the infiniteU limit forces one to abandon
the conventional Feynmandiagrambased perturbation theory inU, and tomake a fresh start. The ECFL theory
starts with the graded Lie-algebra of theGutzwiller projected, i.e. infinite-U limit Fermi operators equations (2),
(3). This leads to an exact functional differential equation for theGreens functions, known as the Schwinger
equation ofmotion equation (18) or (22). In this equation, a parameterλ is introduced;λ is bounded in the
rangeÎ [ ]0, 1 and represents the evolution from the free Fermi limit.We then use a systematic expansion in the
parameterλ, for solving the Schwinger equations perturbatively inλ. In this schemewe start with the
uncorrelated Fermi gas at l = 0 and end up at the fully correlated projected Fermion problem at l = 1. The
scheme thus represents a generalization of the usual perturbation theory for canonical Fermionicmodels, in
order to handle a non-canonical Fermionic problem such as the t-Jmodel. The context of interacting Bosons
provides a useful parallel. In thewell knownproblemof representing spin S variables in terms of canonical
Bosons, one uses the expansion parameter

S

1

2
with a similar range Î [ ]0, 1

S

1

2
.Wemay think ofλ as being
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analogous to the parameter
S

1

2
as shown in [4]. The introduction of the parameterλ and theλ-expansion scheme

thus enabled are among themain technical advances introduced in the ECFL theory.
This approach has been recently benchmarked [5–7] against the numerically exact results from the single

impurity Andersonmodel, and the = ¥d Hubbardmodel fromdynamicalmeanfield theory (DMFT) [8, 9].
These tests provide quantitative support to our general scheme described below, especially for low energy
response. Our scheme has no specific limitation to = ¥d , and is expected to be reasonably accurate in any
dimension >d 1, including 2 dimensions, a case of great experimental importance due to theHighTc cuprate
materials. It is applied here to probe themetallic state of the t-Jmodel in 2d.We present results for the electron
self energy, the spectral functions, the resistivity theHall constant and theHall angle at various temperatures and
electron density =n N Ns (number of electrons per site).We also frequently use the notation of hole density
d = -( )n1 (in addition to n), following the convention used in several experimental studies of dopedMott
systems.

We explore various values of the parameters of the t-Jmodel, including the second neighbor hopping, which
turns out to play a very important role in determining the effective Fermi liquid (FL) temperature scale.We
investigate the resistivity due tomutual collisions of electrons at low temperatures, and its dependence on the
parameters of themodel.We pay special attention to the resistivity since this easilymeasured—but notoriously
hard to calculate object, reveals the lowest energy scale physics of charge excitations inmetallic systems, and
therefore is of central importance.

2.Methods

In this sectionwe summarize the equations used in the present calculation, together with the arguments leading
to them- further detailsmay be found in earlier papers on this theory [3, 5–7]. In section 2.1 themodel is defined
and the exact Schwinger–Dyson equations ofmotion (EOM) are written out. In section 2.2 theλ parameter is
introduced and the exact factorization of theGreens function into an auxiliary Greens function and a caparison
function are noted. In section 2.3we summarize the shift identities of the t-Jmodel. The shift transformation is a
simple and yet important invariance of the t-Jmodel leading to important constraints on possible
approximations.Within theλ expansion, this invariance obligates the introduction of a second chemical
potential u0, which is then treated as a Lagrangemultiplier to befixed through sum-rules. In section 2.4we
collect the equations of the second order theory. In section 2.5we summarize the rationale for a high energy
cutoff of the equations given in section 2.4.

2.1. The t-Jmodel preliminaries
The t-Jmodel is a two component Fermi systemon a lattice, defined on the restricted subspace of three local
states, obtained by excluding all doubly occupied configurations. The allowed states at a single site are ñ∣a with
= ³ ma 0, , , and the double occupancy state ³mñ∣ is removed by the (Gutzwiller) projection operator
= P - ³ m( )P n n1i i iG .We use theHubbard operators = ñá∣ ∣X a bi

a b, , which are expressible in terms of the usual
Fermions s s

†C C,i i and theGutzwiller projector PG as:

= = =s
s

s
s

ss
s s

¢
¢ ( )† †X P C P X P C P X P C C P; ; . 1i i i i i i i

0
G G

0
G G G G

These obey the anti-commutation relations

d d s s= -s s
s s

s s{ } ( ) ( )¯ ¯X X X, 2i j i j i j i
0 ,0

, ,
,i j

i j
i j

and the commutators

d d d d= = -s s s
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s s s s
s s
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i j
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TheHamiltonian of the general t-JmodelHtJ is

å å åm

= +
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wherewe sumover repeated spin indices. Herem is the chemical potential and the spin is given in terms of the
Fermions and the Paulimatrices tG as usual t= s

ss
s

¢
¢G G

S X Xi i
1

2
0 0 .Wewill restrict in the following to nearest

neighbor exchange J, andfirst (t) and second neighbor ( ¢t ) hopping on a square lattice.
For the purpose of computing theGreen’s functionswe add Schwinger sources to theHamiltonian; the

commuting (Bosonic) potential . couples to the charge as well as spin density. These sources serve to generate
compact Schwinger EOM, and are set to zero at the end. The zero source equations are usually termed as the
Schwinger–Dyson equations. In that limit we recover spatial and temporal translation invariance of theGreens

2
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function. Explicitly wewrite

� � � .òå t t t t t= =
b

s s s s¢ ¢ˆ ˆ ( ) ˆ ( ) ( ) ( ) ( )i i X, d ; , 5S
i

S S i i
0

and all time dependences are as in t = t t-( )Q Qe eH HtJ tJ . The generating functional of Green’s functions of the t-J
model is

. �º b
t

- -[ ] ( ) ( )ˆ
Z TTr e e . 6tJ

HtJ S

It reduces to the standard partition function on turning off the indicated source terms theGreen’s functions for
positive times - -t b0 j , are defined as usual:

� �t t t t= -á ñss t
s s

¢
- ¢( ) ( ( ) ( )) ( )ˆ

i f T X X, e , 7i f i i f f
0 0S

where for an arbitrary) we define

) )�á ñ º b
t

- -( ) ( )ˆ
Z

T
1

Tr e e . 8tJ
HtJ S

Wenote that sn , the number of particles per site, is determined from the number sum rule:

� t t=s ss
-( ) ( )n i i, 9

andm the chemical potential isfixed by this constraint. By taking the time derivative of equation (7)we see that
theGreen’s function satisfies the EOM

� ��d t t d g t t t t¶ = - - - - á + ñt s s s s t
s s-( ) ( ) ( ( )) ( [ ˆ ( ) ( )] ( )) ( )ˆ

i f i T H i X X, 1 e , , , 10i f if i tJ S i i i f f
0 0

i i f i f
S i f

where the local Green’s function is defined as

�g t s s t t=s s s s
-( ) ( ) ( )¯ ¯i i i, , 11i a b i ia b b a

with the notation

s s= -¯ ( ). 12i i

Using theHamiltonian equation (4) and canonical relations equations (2), (3)we find

å å åm s s s s= + - +s s s

s

s s s s s s
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� .t = -s s s s[ ˆ ( ) ] ( )i X X, . 14S i i i i
0 0i i j j

Substituting into equation (10) and using the free Fermi gasGreen’s function:

.mt t d d d t d t t= - ¶ + - -s s s s t
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Wenext ‘reduce’ the higher orderGreen’s function to a lower one using the identity (valid for any operator)):
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and rearranging termswe obtain the fundamental Schwinger EOM:
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wherewe defined the functional derivative operator at site i and time ti

.
t s s
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the composite derivative operator
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and correspondingY1 as

åt t d t t g t d g t= - - ´ - +s s s s s s

⎛
⎝⎜
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⎠⎟( ) ( ) ( ) ( ) ( )Y i j t i J k,
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By considering the spin, space and time variables as generalizedmatrix indices, we can symbolically write
equation (18) as

�� d g- - = --( ˆ ) ( ) ( )X Yg . . 220
1

1

2.2. Theλ expansion and the auxiliaryGreens function
Themain task is to compute solutions of the Schwinger–Dyson equation, i.e. the functional differential
equation (18) or (22). If symmetry-breaking, such asmagnetism or superconductivity is ignored, then a liquid
state ensues, wherewewould like the solution to connect continuously with the Fermi gas. For this purpose we
seek guidance from standard Feynman–Dyson perturbation theory for canonicalmodels. The repulsive
Hubbardmodel is an ideal example, where the corresponding Schwinger–Dyson equation can be schematically
written as:

�.d d d- - =-( ) ( )U UG Gg . . 230
1

Comparingwith equation (22), we see that the left-hand sides are of the same form, but the right-hand sides
differ, in equation (22) the local Greens function γmultiplies the delta function. In turn this extra termoriginates
from the second (non canonical) term in the anti-commutator in equation (2), and is therefore the signature
termof extremely strong correlations.

Within the Schwinger viewpoint of equation (23), we can view the skeleton graph perturbation theory
(Feynman–Dyson) as an iterative scheme inU, i.e. using the nth order results to generate the +( )n 1 th order
terms by functional differentiation. In the ECFL theory the iterative scheme used is defined by generalizing
equation (22) to

��l l d lg- - = --( ˆ ) ( ) ( )X Yg . . 240
1

1

The explicit solutions in the ECFL theory start from this basic equation.More explicitly, in equation (24) the
exact equation (18) is generalized to include theλ parameter1 by scaling

g l l lgls s s s s s s s s s s s
ˆ ˆX Y X Y, , , ,i ii j i j i j i j i j i j

. The starting point for the iteration is l = 0, corresponding to the
Fermi gas. Aswe iterate towards l = 1, equation (24) reduces to the exact equation equation (22). The
Gutzwiller projection is fully effective only at the end point of the iterative scheme l = 1, while for intermediate
values ofλ, we have only a partial reduction of the number of doubly occupied sites. The role ofU in
equation (23) is roughly similar, atU=0we have the Fermi gas, which evolves into an interacting theory with
increasingU, giving us the Feynman–Dyson perturbation theory. The range ofλ (Î[ ]0, 1 ) in equation (24) is
bounded above, as opposed to that of Î ¥[ ]U 0, in equation (23). Therefore the ECFL theory avoids dealing
with amajor headache of the canonical theorywhenever a coupling constant becomes large. Recall that realistic
interactions in correlatedmatter usually involve a large coupling parameterU. For this purpose one is forced to
make hard-to-control approximations, such as summing specific classes of diagrams in different parameter
ranges. The introduction ofλ into the ECFL equations opens the possibility that a low order calculationmight
suffice to give accurate results at low excitation energies. This possibility is in-fact realized for important strong
coupling problems as shown earlier [5].

We found in [3] that an efficientmethod for proceeding with the iterative scheme is tofirst perform a
factorization of theGreens function into two parts. Thefirst is an auxiliary Greens function g satisfying a
canonical equation, thus admitting aDysonian expansionwith its attendant advantage of summing a geometric
series with every added termof the denominator. There remain some terms that cannot be pushed into the
denominator, these are collected together as the caparison function mi. In thematrix notation used abovewefirst
decompose theGreens function as:

� m= i ( )g . , 25

this implies a product in the w
G
k , domain as written below in equation (32). The differential operatorX in

equation equation (24) is distributed over the two factors of equation (25) using the Leibniz product rule, as

ð26Þ

1
In [4]wehave noted an important generalization of these commutators to include a continuous parameter l Î [ ]0, 1 , thus defining the so

calledλ fermions. Using themone can systematically obtain theλ expansion encountered below from these relations directly. Herewe stick
to a simpler descriptionwithλ introduced by hand, in the EOMbelow.

4
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where the contraction symbol indicates the termbeing differentiated by the functional derivative terms inX,
while thematrix indices follow the dots. Using �=-g g.1 equation (24) is nowwritten as

ð27Þ

This equation factors exactly into two equations upon insisting that g has a canonical structure:

ð28Þ

and

ð29Þ

Wecan then use �=-g g. 1 to simplify the term giving rise to aDyson self-energy expressed
in terms of aDyson vertex function. The idea then is to iterate the pair of equations (28), (29) jointly inλ. Details
of the skeleton expansion nature can be found in [3, 5, 6]. Themain point to note is that while m- ig ,1 in
equations (28) and (29) are expanded in powers ofλ, the function g is kept unexpanded as a basis term (or
‘atom’) of the skeleton expansion, temporarily ignoring its relationship as the inverse of -g 1. The equal time
value of the variable γ in equation (11) is taken from the exact sum-rule for � in equation (9). The initial values
at l = 0 are =g g0 and �m =i , andwemust remember to use the product form equation (25) to determine the
local Greens function γ in equation (11).We should note that when the source is turned off . l 0we recover
space and time translation invariance so that equation (25) is simply � w w m w=

G G G
i( ) ( ) ( )k i k i k ig, , . ,j j j , with the

Matsubara frequency w p= +( )j k T2 1j B . At lowT, the leading singularities of � are co-locatedwith those of g ,
provided the caparison function mi is sufficiently smooth- this situation is realized in all studies done so far.

2.3. The shift identities and second chemical potential u0
Before proceedingwith the iterative scheme, it is important to discuss a simple but crucial symmetry of the t-J
model—the shift invariance,first noted in [10]. In an exact treatment shifting dl +t t cij ij t ij with ct arbitrary, is

easily seen to be innocuous, itmerely adds to equation (4) a term- ås sˆc Nt whereby the center of gravity of the
band is displaced. (Here sN̂ is the number operator for electronswith spin s.)However in situations such as the
λ expansion, theGutzwiller constraint is released at intermediate values, here it has the effect of adding terms
derivable from a local (i.e. Hubbard type) interaction term.2 To see this consider the fundamental commutator
term s[ ]H X,tJ i

0 i in equation (13), here under the shift dl +t t cij ij t ij, the third term gives rise to an extra term
s s s¯ ¯c X Xt i i

0i i i. This term vanishes only in aGutzwiller projected state, the EOMby themselves do not eliminate it.
Its appearance is tantamount to adding aHubbard like term å ss ss¯ ¯X Xc

i i i2
t to theHamiltonianHtJ. As argued in

[10]wewould like the EOM for theGreens functions to be explicitly invariant under the above shift of tij to each
order inλ. Enforcing this shift invariance to each order in theλ expansion plays an important ‘watchdog’ role on
theλ expansion.

An efficientmethod to do so is to explicitly introduce an extra Lagrangemultiplier u0 through a term
l å ³ mu N Ni i i0 to theHamiltonian equation (4). This amounts to replacing dl +t tij ij ij

u

2
0 in all terms other

than in the bare propagator g0. The u0 termmakes no difference whenλ is set at unity in the exact series, since
double occupancy is excluded. In practice, we set l = 1 in equations that are truncated at various orders ofλ,
and themagnitude of u0 isfixed through a second constraint.We thus have two variables tofix, namely u0 andm.
We also have two constraints, the number sum-rules t t=s ss

-( )n i ig , , and � t t=s ss
-( )n i i, (equation (9)).

In the absence of amagnetic field the number densities nσ reduce as lsn n

2
, where n is the number of particles

per site.
After turning off the sources, in themomentum–frequency spacewe can further introducing two self

energies wY( )k i, j , and wF( )k i, j with

m w l l w= - + Y
G G

i ( ) ( ) ( )k i
n

k i, 1
2

, , 30j j

w w l e l w= + + - F- -
G G G

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )( )k i k i

n n
J k ig g, ,

2 4
, . 31j j k j

1
0

1
0

Here ek and Jk are the Fourier transforms of-tij and Jij. In the right hand side of equation (31), the second and
third terms arise respectively from the equal-time limit of lY1 and in equation (28) respectively. The two
self energies F Y, are explicitlyλ dependent, they vanish at infinite frequency for anyλ. Thuswewrite

2
Similarly we note that shifting dl +J J cij ij J ij with arbitrary cJ also adds a similar unphysical local interaction term, as discussed in greater

detail in [10].
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� w w m w= ´ i( ) ( ) ( ) ( )k i k i k ig, , , . 32j j j

The auxiliaryGreens function satisfies a second sum-rule that is identical to equation (9), bothmaywritten in
the Fourier domain:

�å w = =w
ss s

+( ) ( ) ( )k T G k i n G ge , ; for both and . 33B
k j

i
j

,

0j

Equation (25) can nowbewritten explicitly in the non-Dysonian formproposed in [3]

� w
l l w

w l e l l w
=

- + Y

+ + - F-

G
G

G G( )
( )

( ) ( )
( )( )k i

k i

k i J k ig
,

1 ,

, ,
. 34j

n
j

j
n

k
n

j

2

0
1

2 4 0

Weobserve that simple FL-type self energiesΨ andΦ can, in the combination above, lead to highly asymmetric
(in frequency)Dyson self energy wS( )k, obtainable from theGreens function throughS = -- -G G0

1 1

[3, 5, 6, 10]. Finally we note that our calculations are performed in terms of spectral function obtainable from
analytic continuation of theMatsubara frequencies into the upper complex half plane of frequencies:

�

�

�

�ò

r w
p

w w

w
r w

w w

=- l +

=
-

+
G G

G
G

( ) ( )

( ) ( ) ( )

Ik m k i i

k i
k

i

,
1

, 0 ,

,
,

35

j

j
j

and similarly defined spectral functions for variables F Yg, , etc. Note that the physical spectral function

�r w
G

( )k , is identical to w
G

( )A k , , a notation used inmuch of experimental literature.

2.4. Summary of equations to second order inλ
In the following, we use theminimal second order equations [5–7] obtained by expanding equations (28) and
(29) to second order inλ. The calculation is straightforward and a systematic derivation is detailed in [6], which
is followed here.We use the abbreviation3 wº

G
( )k k i, n , and also redefine c eF = + Y( ) ( ) ( )k k kk , keeping in

mind that one set of terms inΦ have an external common factor of ek multiplied by all terms inΨ.We next
collect the answers below in terms of the two self energies c Y,

mw e l e l l lc= + - + - - + Y --
N ⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( )k i nJ

n
kg

1

4 2
, 36n k k

1
0

the tag below the band energy eNk can be ignored after the next paragraph.Wenow expandΨ andχ from

equations (28) and (29) in powers ofλ. To the lowest two orders wefind l lY = Y + ( )[ ] O1
2 and

c c lc l= + + ( )[ ] [ ] O0 1
2 , where c e= -å + -( )[ ] Jgp p p k p0

1

2
.

The next step is to introduce u0 explicitly: wewrite e e el ¢ = -k k k
u

2
0 in every occurrence of ek, except in

the bare band energy term eNk in equation (36).

mw l m e lc l c= + + - - ¢ - -- i( ) ( ) ( ) ( ) ( )[ ] [ ]k i nJ u k k kg
1

4

1

2
. 37n k

1
0 0 0

2
1

Note that the shift with u0 also applies to the term c[ ]0 , it now reads c e= -å ¢ + -( )[ ] Jgp p p k p0
1

2
.We note the

expressions for c Y[ ] [ ],1 1 from [6] equations (65)–(67):

åc e e e= - ¢ + ¢ + + ´ ¢ + + -- - + - -⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] k J J J p q p q kg g g

1

2
, 38

pq
p q k p k q p q k q k1

å e eY = - ¢ + ¢ + + --( ) ( ) ( ) ( ) ( ) ( )[ ] k J p q p q kg g g . 39
pq

p q k p1

Wenow set l = 1and record thefinal equations:

å åmw e m e c= + + - - + + - ¢ -- i
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( ) ( ) ( )[ ]k i n J u u

J
p k kg g g

1

4

1

2 2
cos , 40n

p
p p

k

p
p x k

1
0 0 0 1

m = - + Yi ( ) ( ) ( )[ ]k
n

k1
2

, 411

wherewe used a nearest neighbor Jij and cubic symmetry in the simplifications.We can verify that the above
expressions obey the shift invariance: if we shift e el + ck k 0, the arbitrary constant c0 can be absorbed by
shiftingm ml + c0 and l +u u c20 0 0, and is thus immaterial. The band energy is given explicitly as

3
Wedenote wº

G
( )k k i, n , w p= +( )n k T2 1n B theMatsubara frequencies,Ns the number of sites and å º å wk

k T

N k k, ,
B

s x y n
. Jk is the Fourier

transformof the exchange.
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e = - + - ¢( ( ) ( )) ( ) ( )t k a k a t k a k a2 cos cos 4 cos cosk x y x y0 0 0 0 , where t and ¢t are thefirst and second neighbor
hopping amplitudes.

2.5.High energy cutoff scheme
The self consistent solution of the second order equations of equations (38)–(41) plus the number sum-rules,
can be found numerically by discretizing themomentum and frequency variables on a suitable grid. This
procedure can be carried out in a straightforwardway for low 1T t and high hole densities 2d 0.3 (low
particle densities 1n 0.7). At lower hole densities or at high temperature �T t , the equations run into
convergence problems. The origin of this problem is the formation of weak and featureless tails of the spectral
functions extending to quite high energies. These tails are known to be artificial, since they do not occur in the
exact numerical solutions where available. Thus the second order theory seems insufficient in the regime of low
hole densities 1d 0.2, wheremuch of the current interest lies. A technically rigorous resolution of the problem
ofweak tails seems possible. However it requires the non-trivial calculation of higher order terms in theλ
expansion. Such higher order terms oscillate in sign and hence cancellations at high energies are expected.

In view of the substantialmagnitude of the programof summing theλ series to high orders, it seems
worthwhile to investigate simpler and physicallymotivated approximations for improving the lowest order
scheme. It turns out that there are a few interesting alternatives in this direction. In [5]we showed one
convenient way to handle the high energy tail problempractically, through the introduction of a high energy
cutoff. The choice of an objective cutoff was rationalized by considering two physically different limits, that of
high particle density ln 1 and the simpler high temperature limit, where related tails are found. The cutoff is
chosen using the analytically available highT limit results and then applied to all densities andT.

The cutoff schemeof [5] is not rigorous, but enables us to extractmeaningful results for lowenergy excitations
fromthe secondorderλ equations, out to fairly lowhole densities 1d 0.2. It is benchmarked in the caseof = ¥d ,
where the cutoff schemequantitatively reproduces the spectralweights in themost interesting regimeof lowenergies
w �∣ ∣ t , while erring somewhat at energies above the scale of quarter bandwidth. In [5, 7] the resultingphysical
quantities such as resistivity are shown tobe in good correspondence to the exact results fromDMFT. In viewof this
successweuse a similar cutoff scheme for 2dbelow,with the expectation that the physics of the lowenergy excitations
is captured. In thepresent 2d casewe employ a single (re)-normalization the spectral function for each

G
k as

&
r w w e r w= -
G G

ˆ ( ) ( ¯ ) ( ) ( )k W k,
1

, , 42
k

T kg g

whereWT is a smoothwindow (even) function shown infigure 3 [5]. It is centered on ēk, the self-consistent
location of the peak in r w( )k,g , determined iteratively. It has width D4 , where D2 is the bandwidth (~ t8 in this

case). The constant &k isfixed by the normalization condition ò r w w =
G

ˆ ( )k , d 1g . In the present case of 2dwe

can impose this cutoff window at each
G
k individually, so that only

G
k states very far from the chemical potential

are affected by the cutoff.
The two chemical potentialsm and u0 are determined through the number sum rules written in terms of the

Fermi function w = + bw -( ) ( )f 1 e 1 and the spectral functions:

�ò òå år w w w r w w w= =ˆ ( ) ( ) ( ) ( ) ( )k f
n

k f, d
2

, d . 43
k k

g

The set of equations equations (38)–(43) constitute the final set of equations to be computed. These are valid in
any dimension, and reduce to the ones benchmarked in = ¥d after setting lJ 0 [5, 7].

After analytically continuing w wl + +i i0n wedetermine the spectral function of the interacting electron
spectral function ��r w w= -

p

G G
( ) ( )Ik m k, ,1 . The set of equations (1)–(5)was solved iteratively on L×L

lattices with =L 19, 37, 61and a frequency gridwith =wN 2 , 214 16 points.Wefind that L=61 produces the
most accurate results at low temperature, while different L do notmake a difference at high temperature. Also,

=wN 2 , 214 16 lead to the same result in the relevant range of parameters. Therefore, we only display the result
computed at L=61 and =wN 214 in this paper. Other details are essentially the same as in our recent study of
the = ¥ ld J, 0 case in [5, 7].

3. Results

Band Parameters:The t-Jmodel is studied on the square lattice with hopping parameters t and ¢t forfirst and
second neighbors. The hopping parameter >t 0, while ¢t is varied between- t0.4 and t0.4 , thereby changing
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the Fermi surface (FS) fromhole-like to electron-like. Parameters relevant to cuprateHighTcmaterials are
summarized in [2, 11] 4. Following [2]we assume ~t 0.45 eV, giving a bandwidth∼3.6 eV.

Single-particle spectrum:The quasiparticle energy
G

( )E k and quasiparticle weight
G

( )Z k are found from � as
usual [5]. Infigure 1we display the hole density δ and ¢t dependence of the low temperature ( )Z kF , along the
nodal (i.e. á ñ11 ) direction. The typicalmagnitudes ofZ are comparable or lower than those reported in = ¥d
[5]. Anew and important feature is the strong sensitivity of ( )Z kF to the sign andmagnitude of ¢t t . Both
decreasing ¢t (atfixed δ) and decreasing δ (atfixed ¢t ) reduceZ. This feature is basic to understanding ourmain
results.We next study the decay rate of the electrons

G = - ´ S
G G G G

( ) ( ) ( ( )) ( )Ik Z k m k E k, , 44

found as the half-width at half-maximumof the spectral function �r w
G

( )k , atfixed
G
k .We display theT variation

ofΓ and- SIm at the Fermi surface for three representative values of ¢t t infigure 2. Both variables display
considerable variationwithmodest change ofT. The case of ¢ >t 0 shows a distinct quadratic T dependence, but
for -¢t 0we note the strong reduction, or absence, of such a quadratic dependence. Belowwe note a closely
parallelT and ¢t dependence of the resistivity.

Infigure 3we display the photoemission accessible peak heights of the spectral function � �r w
G

{ ( )}t k , max

over the BZ at three representative values of ¢t t , at three temperatures =T 63, 210, 334K.The peaks locate the
interacting Fermi surface and its thermal sensitivity. The Fermi surface closely tracks the non-interacting FS,
changing fromhole-like in panels (a)–(c) to strongly electron-like in panels (g)–(i). This implies that the
momentumdependence of theDyson self energy ismild. In contrast a strongmomentumdependence would
distort the Fermi surface shape significantly—while retaining the Luttinger–Ward volume. Several features are

Figure 1.Hole density δ, and ¢t t variation of the nodal ( )Z kF atT=63 K. The ratio ¢t t ismarked at the top. Decreasing ¢t has a
similar effect to decreasing δ.

Figure 2. d = 0.15: the decay rate equation (44) and (inset) the nodal- S( )Im kF . The ratio ¢t t ismarked at top.While ¢ =t t0.4
has a positive curvature for both variables, ¢ = -t t0.4 displays a prominent negative curvature in- SIm , and an almostflatΓ.

4
In highTc systems [2] estimate 1¢ -t .27 for BSCCO,while for LSCO ¢ ~ -t t0.16 . NCCO ismodeledwith ¢ >t 0 after invoking a

particle hole transformation. In this casewemustflip the sign of the calculatedRH andQH to compare with data.
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noteworthy. The peaks are higher in the nodal relative to the anti-nodal direction at lowT.We observe the high
sensitivity towarming, in going fromT=63 K toT=334 K a small (~0.7%) change inT relative to the
bandwidth causes a five tofifteen-fold drop in the spectral peaks at the Fermi surface. This is correlated to the
thermal variation of- SIm at the same set of ¢t , shown in the inset offigure 2, since the intensity at kF is
essentially the inverse of this object.Meanwhile the background spectral weight rises rapidly in all cases, to a
roughly similarmagnitude. Thefigure shows that at lowT the curvewith ¢ >t 0 hasmuch higher peaks than
-¢t 0, giving the impression of weaker correlations.However the drop onwarming is the largest in this case,

which signifies another facet of strong correlations. The heights of the spectral peak and that of the background
is predicted quantitatively infigure 3. Their ratio is straightforward tomeasure in angle resolved photo emission
studies, andwe suggest it should be interesting to closely study this ratio experimentally, as a check of the
theoretical understanding of the temperature dependence of S( )Im kF and the decay rate G( )kF .

Resistivity:Wenow study the behavior of the resistivity from electron–electron scattering.We use the
popular bubble approximation, factoring the current correlator as �á ñ ~ å( ) ( ) ( )J t J v k0 k k

2 2 , where the bare

current vertex is the velocity � =a e¶
¶ a

vk k
k . In tight binding theory avk oscillates in sign, resulting in a vanishing

average over the Brillouin zone. This oscillation is expected to reducemagnitude of the vertex corrections [12].
For a 3dmetal havingwell separated sheets in the c direction (c0 the separation of the sheets), with each sheet
represented by the 2d t-Jmodel, theDC resistivity rxx can bewritten in terms of the electron spectral function as
follows.We define a dimensionless resistivity r̄xx whose inverse is given by

Figure 3.The spectral function w
G

( )A k , peak heights over the zone at afixed hole density d = 0.15, ¢t increasing from top to bottom
andT increasing from left to right. At afixedT, the peak heights increase on proceeding down any column (i.e. increasing ¢t t ),
signifying sharper quasiparticles. Proceeding across any row (i.e. increasingT) illustrates the dramatic thermal sensitivity in all cases.
Recalling that our bandwidth is∼3.6 eV,we observe that uponwarming from 63K to 210K, a tiny variation (~0.35%) of temperature
relative to the bandwidth, the peak height drops by a factor between 5 and 10, followed by amore gentle fall to 334K. This
extraordinary thermal sensitivity is characteristic of our solution of the t-Jmodel, it is also reflected in other variables discussed here,
such as the resistivity.
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�s = á¡ ñ
G

¯ ( )( ) ( )k v a , 45xx k
x

k
2

0
2

where á ñ º å
G

G ( )A A kk N k
1

s
, while themomentum resolved relaxation scale is:

òp w w r w¡ = -¶ ¶
-¥

¥G G
( ) ( ) ( ) ( ) ( )k f k2 d , , 462

G
2

and bwº +( )f 1 1 exp is the Fermi function.This object resembles the spectral peaks infigure 3, losingheight
andbroadening rapidlywithT. Thephysical 3d resistivity is givenby r r r= ´ ¯xx xx0 ,where r º c h e0 0

2

(∼1.71mΩ cm) serves as the scale of resistivity5, andusing themeasured values of the lattice constantswe can express
our results in absoluteunits. Forunderstanding themagnitudeof the inelastic scattering it canbeuseful to convert the
resistivity into thedimensionless parameter lá ñkF m of an effective 2d continuumtheory,wherelm is themean-free-
path andwhere á ñkF is an (angle averaged) effectiveFermimomentum.Wecanuse a relation argued for in 6[13, 14]

l
r r

á ñ = =
¯

( )k
hc

e

1
. 47F m

xx xx

0
2

In [13, 14] (see footnote 6) the authors note that in ametallic system this parameter is expected to be greater than
unity, and its least value is lá ñ =k 1F m for the case of unitary (impurity) scattering. Thuswe expect that

-r rxx 0, i.e. -r̄ 1xx in a goodmetal. The Ioffe–Regel–Mott resistivity scale used in [5, 7, 8] provides a similar
measure for quantifying themagnitudes of the resistivity found in strongly correlatedmetals. However we
should keep inmind that both estimates suffer from ambiguities in defining a precise threshold value of
resistivity, since factors of 2 (or of p2 ) cannot be ruled out in equation (47).

Figure 4.The resistivity at three typical densities. The lowestT region is expected to be cutoff by superconductivity. For a fixedT the
curvature changes frompositive (concave) to negative (convex) as ¢t t varies upwards in each panel, and also slightly as δ increases
across the panels—resembling the experimental findings of [15–19]. The Fermi liquid r µ T 2 regime is suppressed as ¢t becomes
more negative, and is difficult to discern here with ¢ = -t t .4. Panel (b) (inset) is the local approximation from equation (48). It
illustrates the ¢t dependence of rLocal from the spectral functions, or equivalently the self energies. The ¢t dependence of the velocities,
included in the result from equation (45) in themain panel (b), exhibits an enhanced convexity of the resistance. Themagnitude of rxx
increases with decreasing δwithin the displayed range ofT. The electron-doped case ¢ >t 0 shows a somewhat smaller resistivity than
the hole-doped case -¢t 0. In the latter, rxx approaches the unitarity value W1.71 m cmonly at the lowest δ and highestT.

5
The numerics assume a bct unit cell ( )a a c, , with �=a 3.79 0 and �=c 13.29 0. In the expression for r0, c0 corresponds to the interlayer

separation =c c 20 . In equations (50) and (51)weuse = ´ - -∣ ∣v e .596 10 cm C0
3 3 1 and F F = 14400 with =B 10 T.

6
See equation (6) in [13]. The origin of this formulais simple to understand, 3d conductivity is written in terms of the two dimensional

density as s = tn e

c m
d2

2

0
, andwriting p= ( )/n k 2d F2 and �l t= /k mm F we obtain s l= ( )/e hc kF m

2
0 .
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Figure 4 shows the temperature dependence of the resistance at three densities, and their strong variation
with ¢t t . J is taken as 900 Khere, varying J between 0 and 1500 Kmakes almost no difference at these
temperatures.We see that the scale of the resistivity for -¢t 0 exceeds the (approximately estimated)unitarity
value 1.71 mΩ cm for the lowest δ and the highest displayedT. On the other hand ¢ >t 0 shows a considerably
smaller resistivity atmost densities.

In all curveswe see that the curvature changes frompositive (for .¢t 0) tonegative (for ¢ <t 0) at say 150 K.To
understand the role of ¢t t wenote that the resistivity in equation (45)depends on ¢t t through the velocity vk

x, in
addition to adependence through the self energies equations (38), (39). To gauge their relative importance it is useful
to examine a local approximationof equation (45)where the two functions are averaged separately overmomentum:

�s = á¡ ñ ´ á ñ
G

¯ ( ) ( ) ( )k v a . 48xx k k
x

k
local 2

0
2

The velocity squared average is independent of the sign of ¢t , therefore the local approximation, shown in
figure 4, inset of panel (b), probes only the dependence through equations (38), (39). Comparing the inset and
mainfigure in panel (b), we see that at ¢ =t t0.4 both resistivity curves display a positive curvature. At
¢ = -t t0.4 we see that rLocal is essentially linear inT, while rxx shows a negative curvature. The difference is
therefore related to the velocity factors, which are very different effect between ¢ <t 0 and ¢ >t 0. These cause
the integrals to have very different thermal variation.

Hall response:Within the bubble scheme, wemay also calculate theHall conductivity [9, 20, 21] as
s p r s= - ´ ´F

F( ) ¯2xy xy
2

0
0

, the dimensionless conductivity:

òs
p

w w r w h= -¶ ¶ á ñ
-¥

¥
¯ ( ) ( ) ( ) ( )f k k

4

3
d , 49xy k

2

G
3

and �h = -e e¶
¶

¶
¶ ¶{ }( ) ( ) ( )k v v v

a k
x

k k
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k
y

k k
2 k
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k

x y

2

0
4

2

2

2

. Here F = Ba0
2 is the flux (see footnote 5) and F = ( ∣ ∣)hc e20 is

theflux quantum. In terms of these we can compute theHall constantRH andHall angleQH from

p
s r= - ´

∣ ∣ ¯ ¯ ( )c R
v

e

4
, 50xy xxH

2
0 2

p
s
s

Q = - ´
F
F

( ) ¯
¯

( )cot
1

2
, 51xx

xy
H 2

0

with = ( )v a c0 0
2

0 (see footnote 5).We also define theHall number as

p
s
s

=-

=

∣ ∣
¯
¯

( )

n
v

e cR

1

4
, 52xx

xy

H
0

H

2

2

where the definition ensures that in the limit of a circular Fermi surface without interactions, ln nH , where n is
the number of electrons per copper in the effective single band t-Jmodel (see footnote 8). The tight binding Fermi
surface in the presence of ¢t is not circular, but rather resembles the surfaces shown infigure 3.Under these
conditionswe can evaluate the conductivities in equations (45) and (49), using an approximate Lorentzian
spectral function peaked at the bare Fermi surface7: The resulting ‘bare’Hall number nH

0 contains the corrections
due to the curvature of the Fermi surface, including the change in sign in going fromopen to close surfaces as ¢t
becomes negative. It is therefore helpful to compare our computedHall number nH, containing the effects of
interactions and a complicated scattering rateΓ, with nH

0 containing only the band effects. This helps us to gauge
the effects of interactions, left out in the formula for nH

0 . The computed nH, bareHall number n0H and their ratio
n nH H

0 are shown in table 1.We see that strong correlation generally suppresses nH from the bare value n0H, in
some cases by asmuch as 40%. The nH

0 itself differs from n quite substantially, depending on doping,
temperature and ¢t , and therefore onemust exercise great care in extracting carrier densities fromHall numbers.

Infigure 5we display the computedHall variables. In panel (a) Qtan H is shown for two values of ¢t t
displaying hole-like and electron-like behavior. A decrease in hole density reduces themagnitude in either case.
In panel (b)wedisplay the computed Q( )cot H versusT2 with three values of ¢t giving an electron-like FS.We
note that Qcot H is approximately linear withT2 [22–24] and is strongly affected by themagnitude of ¢t . The two
distinct Q µ( ) Tcot H

2 regimes seen infigure 5(b) are also seen inmany experiments but seem to have evaded
attention so far. In [24] it is noted that the bending temperature corresponds to a crossover from the Fermi liquid

7
These definitions lead to intuitive results in simple cases. For 2-d electrons with �e = ( )k m2k

2 2 , and a Lorentzian r w =( )k,G

p w e e
G

G + + -( )
1

F k

0

0
2 2 , upon setting thewidth G l 00 , we recover theDrude result s t= nq mxx e

2 and �s =
G( )¯ nxy ma2

22

0
2 0

with �t = G( )2 0 .
Thus = -∣ ∣e R c v n1H 0 in equation (50), and w tQ = -( ) ( )cot 1H c in equation (51)where w º ∣ ∣ ( )e B mcc . If on theother handwe take
ek fromtheFourier transformof-tij , the limit G l 00 yields the “bare”Hall number nH

0 , incorporating the effects of a non-circular band
structure.
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to a strangemetal, and is therefore of fundamental importance. In panel (c)we show theHall constantRH at
three densities for representative values of ¢t t . Its sign is electron-like for ¢ >t 0 and hole-like for -¢t 0,
tracking the change in topology of the Fermi surface infigure 2. Themagnitude ofRH is substantially affected by
changing ¢t . This is a strong correlation effect, and discourages envisaging any simple relationship between the
Hall number and hole density.

Table 1.TheHall number nH from equation (52), the bareHall number n0H, and their ratio n nH H
0 . nH is

computed at lattice size 61×61 atT=63 K and nH0
0 is computed in the bare bandwith lattice size 4000×4000

atT=0.Note that the ratio n nH H
0 varies from .6 to .8. This substantial correction is due to strong correlations.

Therefore the inverse problemof deducing the carrier density n from theHall number nH is quite complex. Finite
temperature effectsmake this evenmore complicated, as seen infigure 5.

Electron density Hall number ¢ = -t 0.4 ¢ = -t 0.2 ¢ =t 0 ¢ =t 0.2 ¢ =t 0.4

nH −0.819 −2.514 1.119 0.679 0.675
n=0.82 n0H −1.163 −3.389 1.51 0.879 0.823

nH/n
0
H 0.704 0.742 0.741 0.773 0.82

nH −.768 −1.918 1.249 0.67 0.65
n=0.85 n0H −1.137 −2.448 1.774 0.927 0.855

nH/n
0
H 0.676 0.783 0.704 0.722 0.76

nH −.706 −1.479 1.436 0.67 0.637
n=0.88 n0H −1.109 −1.963 2.148 0.977 0.884

nH/n
0
H 0.637 0.754 0.669 0.686 0.721

Figure 5.Panel (a) Qtan H forB=10 T at three densities versus T.The setwith ¢ = -t t0.4 have a hole-like FSwhile the setwith ¢ =t 0
an electron-like FS. In both caseswe see a rapid fall-offwithT, and a decreasingmagnitudewith δ. Panel (b) forB=10 T at d = 0.15
shows Q∣ ( ) ∣cot H for three values of ¢t t . It is approximately linearwithT2 over the range. In fact it is linear onboth sides of a bend,
which is also seen indata [17, 19, 22–27] but seems tohave evaded comment in literature. Panel (c) gives theTdependentRH for three
densities, eachwith four values of ¢t t . Themagnitude of cRH at lowestT is related to theHall numbersnH in table 1 via the relation
equation (52) = - ∣ ∣cR v n eH 0 H , where = -∣ ∣v e .596 mm C0

3 1. The sign change resembles the change seen in experiments [28].
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4.Discussion

Using the recently developed second order equations of the ECFL theory in [5], we have presented results for the
2d t-Jmodel at low and intermediate temperatures. In keepingwith our recent findings for the = ¥d solution
of the same equations, we note that the quasiparticle weight ( )Z kF is non-zero, but remarkably small. This fragile
FL therefore has an extremely low effective Fermi temperature, abovewhich it displays characteristics of a
Gutzwiller correlated strangemetal, as listed in [5, 7], including a resistivity that is linear inT.

By varying ¢t , the second neighbor hopping at afixed t and J, we found infigure 1 a remarkable variation of
the quasiparticle weight ( )Z kF that is characteristic of the 2d square lattice, with no simple analog in = ¥d .We
found ¢ <t 0 leads to a considerable reduction in itsmagnitude, while ¢ >t 0 leads to a larger value and thus a
more robust FL. A direct calculation of the single particle spectral width G = - S´Z confirms this observation
infigure 2, andwhen studied as a function of the temperature, shows amuch largermagnitude, and hence
broader spectral lines.

Infigure 3we present the Fermi surface, as found from the peaks of the spectral function. The shapes of the
Fermi surfaces are quite close to those implied by the bare band parameters. This implies that themomentum
dependence of the self energy, while non-zero, is fairly small. This also suggests that the vertex corrections,
neglected here in 2d,may actually be quite small as well. Two key results concern the spectral heights over the
Brillouin zone, and the resistivity as a function ofT at various densities and ¢t . The spectral height is the peak
value of �r w

G
( )k , scanned overω, and equals the inverse of the leastmagnitude of wS

G
( )Im k , . Infigure 3we

present both theT evolution (going horizontally) and the ¢t evolution (going vertically) of this important object
visible in ARPES.Wenote that ¢ <t 0 model with a very smallΓ also displays a rapid loss of coherence on
warming. The quasiparticle peaks drop rapidly, while the valleys, representing the background spectral weight in
photoemission, catch upwith the peaks inmagnitude. A similar variation happens for ¢ =t 0 but the drop of the
peak heights ismore pronounced. The case of ¢ >t 0 has the largest drop of peak heights, while its effective
Fermi temperature is the largest of the three cases. It follows that the electron doped case has amore robust FL
appearance forT lower than its Fermi scale. Our study provides absolute scale values for these observable
heights, and it should be interesting to study these experimentally for comparison. Towards that objective we
note that ¢ >t 0 maps to the electron dopedHighTc superconductors, while -¢t 0maps to the hole doped
cases, as wemay also deduce from the shapes of the Fermi surfaces in the abovefigure.

The other key result concerns the resistivity.We are able to calculate the longitudinal resistivity rxx on a
doubly absolute scale, both themagnitude of rxx and that ofT are given in physical units by using reasonable
values for the basic parameters of the t-Jmodel and the lattice constants figure 4.Wefind essentially the
experimentally observed scales for both axes, and there is room for further adjustments of bare scales if needed.
Themainfinding is that as δ is varied towards halffilling, the regime of linear resistivity increases in the hole-like
cases ( -¢t 0) and the quadratic dependence regime shrinks to very lowT scales, falling below the known
superconducting transition temperatures. The other important finding is that the concavity (convexity) of
resistance versusT, usually taken to denote a (non) FL behavior, requires an enlarged viewpoint; we find that the
sign of ¢t flips the two cases. As an example, the case -¢t 0 has a pronounced convex regime at lowT. This could
be naively ascribed to a non-FL behavior, but in reality is a crossover range to the strangemetal regime.

We also present results infigure 5 for theHall constant and theHall angle. These are calculated using simple
versions of theKubo formula, found by neglecting the vertex corrections, in the same spirit as the longitudinal
resistivity. This approximation is as yet untested against exact results and hence requires some caution.Wefind
that theHall angle changes signwith ¢t . The Q( )cot H is found to be roughly linear withT2, in agreementwith the
experimental situation. As noted above, the Q µ( ) Tcot H

2 regime is followed at higherT by a bend (or kink)
corresponding to a crossover from the Fermi liquid to a strangemetal, and is therefore important. A similar bend
is also seen inmany experiments [17, 19, 22–27], but seems to have evaded comment so far. In [24] this kink is
discussed further and its connection to the crossover is explained.

In table 1, we present theHall number nH obtained from theHall constant for various n and t′/t. It is
comparedwith the corresponding nH

0 obtained fromanon-interacting theory that incorporates the band-
structure effects of changing curvaturewhen t′< 0.Wenote that the nH

0 already captures the changes in sign due
to varying t′. However, there are substantial quantitative corrections even at the lowestT, originating in strong
correlations. Thismakes the inference of electron density n from nH quite non-trivial; table 1 provides an
estimate of the errors involved in this inversion.

5. Conclusions

In this work, we employed a recently developed scheme from the ECFL theorywhere the second orderλ
expansion terms are supplementedwith a high energy cutoff. This scheme has been benchmarked in = ¥d
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against DMFT [5, 7] for computing transport and other low energy excitations, giving good agreementwith
exact numerical results. As detailed in [5] themagnitude of the quasiparticle weightZ is somewhat lower in this
scheme as compared to the exactDMFT values for hole density 1d 0.8. In this work the same equations are
applied to the 2-d tJmodel.While the close agreement found in the = ¥d casemight not guarantee the
accuracy of these results in d= 2, it is plausible that the variations of resistivity andHall constant, induced by the
magnitude and sign of ¢t found here, will persist inmore exact (future) results. Hence it seems thatwe can draw
some useful conclusions already, especially with regard to the difference between hole and electron doping.

We have shown a range of results for the 2d t-Jmodel, obtained by varying different parameters within our
scheme. It is interesting that themagnitudes of various transport variables, presented here in physical units8, are
roughly on the scale of reportedmeasurements [15, 25, 16–19, 26, 27]. Although it is not our primary aimhere to
produce exact fits, we note that the agreement can be improved inmany cases with suitable changes of the bare
(band) parameters.

In the range of parameters considered here, ametallic state has been posited, and therefore the role of the
exchange J is limited; we find very little variation of the transport quantities with a change in J. The transport
parameter variationwith density seems very similar to that found in = ¥d in [5, 7, 8]where a large variety of
Gutzwiller correlatedmetallic states were shown to arise [7], with their origin in the = ¥U orGutzwiller
correlation rather thanwith J. The added feature in d=2 is the important role played by ¢t , as stressed here.We
expectmagnetic, superconducting and possibly other broken symmetry states at the lowestT and δ to arise,
largely due to the effect of J. Further work is necessary tofind reliable calculational schemes for these broken
symmetry states.

A few broad conclusions suggest themselves. The parameter ¢t t plays a key role in determining the low-
energy scales. Infigure 1we see that the quasiparticle weightZ has a large variationwith ¢t . The origin of this
sensitivity lies in the self energies in equations (39), (38), where combinations of the band energies ek play the
role of an effective interaction. Varying ¢t t therefore changes the self-energies strongly, in contrast to the usual
weak change via the band parameters in equation (37).

Ourmain findings are as follows. (I)The spectral functions are highly sensitive to thermal variation; in
figure 3we observe afive tofifteen fold drop in intensity with a variation of kBT about 1/100th the bandwidth
∼3.6 eV. This is in severe conflict with expectations from conventional theories ofmetals. (II)Wenote from
figure 4 thatwith -¢t 0, a FL resistivity r µ T 2 is seen only at very lowT. The very lowT (FL) regime is followed
by a ‘strangemetal’ regime, also at lowT, wherewefind a r Tversus curve, with zero or negative curvature. This
regime parallels theGutzwiller-correlated strangemetal regime reported in = ¥d [7], the negative curvature
making it even stranger. (III) For the electron-doped case ¢ >t 0,figure 4 shows that the curvature is positive
and the FL regime extends to higher temperatures.

It is significant that the ECFL theory captures the diametrically opposite resistivity behaviors of hole doped
[15–17] and electron dopedmaterials [18, 19]within the same scheme, only differing in the sign of ¢t t . The
resistivity curvaturemapping of [15] can also be viewed in terms of a variation of this ratio and the temperature,
as infigure 4. In conclusion this work provides a sharp picture of the differencemade by the second neighbor
hopping ¢t in the presence ofGutzwiller correlations. It also yields quantitative results for several famously hard
to compute variables in correlatedmatter, that are in rough agreement with a variety of experiments.
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