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Abstract

Low energy properties of the metallic state of the two-dimensional -] model are presented for second
neighbor hopping with hole-doping (' < 0) and electron-doping (¢’ > 0), with various super-
exchange energy J. We use a closed set of equations for the Greens functions obtained from the
extremely correlated Fermi liquid theory. These equations reproduce the known low energies features of
the large U Hubbard model in infinite dimensions. The density and temperature dependent
quasiparticle weight, decay rate and the peak spectral heights over the Brillouin zone are calculated.
Wealso calculate the resistivity, Hall conductivity, Hall number and cotangent Hall angle. The spectral
features display high thermal sensitivity at modest T for density n 2> 0.8, implying a suppression of the
effective Fermi-liquid temperature by two orders of magnitude relative to the bare bandwidth. The
cotangent Hall angle exhibits a T > behavior at low T, followed by an interesting kink at higher T. The
Hall number exhibits strong renormalization due to correlations. Flipping the sign of ¢’ changes the
curvature of the resistivity versus T curves between convex and concave. Our results provide a natural
route for understanding the observed difference in the temperature dependent resistivity of strongly
correlated electron-doped and hole-doped matter.

1. Introduction

The t-J model in 2-dimensions (2d) has been argued to be of fundamental importance for understanding
strongly correlated matter, including the high T, superconductors [1, 2]. Due to the difficulties inherent in the
strong coupling problem, very few techniques are available for extracting its low temperature physics. Towards
this end we have recently developed the extremely correlated Fermi liquid (ECFL) theory [3, 4]. Itis an analytical
method for treating very strong correlations of lattice Fermions, employing Schwinger’s technique of functional
differential equations togather with several important added ingredients. While further details can be found in
[3, 4], abrief summary of the main idea behind the ECFL theory seems appropriate. We consider the Hubbard
model with a large interaction U — o0, and hence the name of the theory. A well known expansion in the
inverse powers of Uleads to the -] model (defined below [2]). Taking the infinite Ulimit forces one to abandon
the conventional Feynman diagram based perturbation theory in U, and to make a fresh start. The ECFL theory
starts with the graded Lie-algebra of the Gutzwiller projected, i.e. infinite- U limit Fermi operators equations (2),
(3). This leads to an exact functional differential equation for the Greens functions, known as the Schwinger
equation of motion equation (18) or (22). In this equation, a parameter A is introduced; A is bounded in the
range € [0, 1]and represents the evolution from the free Fermi limit. We then use a systematic expansion in the
parameter A, for solving the Schwinger equations perturbatively in A. In this scheme we start with the
uncorrelated Fermi gasat A = 0 and end up at the fully correlated projected Fermion problem at A = 1. The
scheme thus represents a generalization of the usual perturbation theory for canonical Fermionic models, in
order to handle a non-canonical Fermionic problem such as the -] model. The context of interacting Bosons
provides a useful parallel. In the well known problem of representing spin S variables in terms of canonical
Bosons, one uses the expansion parameter 21—5 with a similar range % € [0, 1]. We may think of )\ as being
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analogous to the parameter % as shown in [4]. The introduction of the parameter A and the A-expansion scheme
thus enabled are among the main technical advances introduced in the ECFL theory.

This approach has been recently benchmarked [5-7] against the numerically exact results from the single
impurity Anderson model, and the d = oo Hubbard model from dynamical mean field theory (DMFT) [8, 9].
These tests provide quantitative support to our general scheme described below, especially for low energy
response. Our scheme has no specific limitation to d = oo, and is expected to be reasonably accurate in any
dimension d > 1, including 2 dimensions, a case of great experimental importance due to the High T, cuprate
materials. It is applied here to probe the metallic state of the -] model in 2d. We present results for the electron
self energy, the spectral functions, the resistivity the Hall constant and the Hall angle at various temperatures and
electron density n = N /N, (number of electrons per site). We also frequently use the notation of hole density
6 = (1 — n) (inaddition to n), following the convention used in several experimental studies of doped Mott
systems.

We explore various values of the parameters of the -] model, including the second neighbor hopping, which
turns out to play a very important role in determining the effective Fermi liquid (FL) temperature scale. We
investigate the resistivity due to mutual collisions of electrons at low temperatures, and its dependence on the
parameters of the model. We pay special attention to the resistivity since this easily measured—but notoriously
hard to calculate object, reveals the lowest energy scale physics of charge excitations in metallic systems, and
therefore is of central importance.

2. Methods

In this section we summarize the equations used in the present calculation, together with the arguments leading
to them- further details may be found in earlier papers on this theory [3, 5-7]. In section 2.1 the model is defined
and the exact Schwinger—Dyson equations of motion (EOM) are written out. In section 2.2 the A parameter is
introduced and the exact factorization of the Greens function into an auxiliary Greens function and a caparison
function are noted. In section 2.3 we summarize the shift identities of the t-J model. The shift transformationisa
simple and yet important invariance of the -] model leading to important constraints on possible
approximations. Within the A expansion, this invariance obligates the introduction of a second chemical
potential uy, which is then treated as a Lagrange multiplier to be fixed through sum-rules. In section 2.4 we
collect the equations of the second order theory. In section 2.5 we summarize the rationale for a high energy
cutoff of the equations given in section 2.4.

2.1. The t-J model preliminaries

The t-J model is a two component Fermi system on a lattice, defined on the restricted subspace of three local
states, obtained by excluding all doubly occupied configurations. The allowed states at a single site are |a) with

a =0, 7, |,and the double occupancy state | T| ) is removed by the (Gutzwiller) projection operator

Ps = II;(1 — nyyn;)). We use the Hubbard operators Xi“’b = |a) (b|, which are expressible in terms of the usual
Fermions C;,, C;, and the Gutzwiller projector P as:

X7° = PoCf P X" = PsCiyPs; X{7 = PC} CiorPs. ¢))
These obey the anti-commutation relations
(X707, X7} = 6;(80,0, — 010X @)
and the commutators
(X0 X7 = 6800 X0 IX70 X701 = — 85650 X", 3)
The Hamiltonian of the general -] model Hy; is
Hy = H, + Hj,
1 g 1 -
H ==Y t;X7°X)" — pu> X/% H = > > ]ij(si.sj — ZX;’”Xf 7 ) (4)
ij i if

where we sum over repeated spin indices. Here p is the chemical potential and the spin is given in terms of the
Fermions and the Pauli matrices 7 as usual § = %X o0 ?UU/XI-OU/. We will restrict in the following to nearest
neighbor exchange J, and first () and second neighbor (') hopping on a square lattice.

For the purpose of computing the Green’s functions we add Schwinger sources to the Hamiltonian; the
commuting (Bosonic) potential 1 couples to the charge as well as spin density. These sources serve to generate
compact Schwinger EOM, and are set to zero at the end. The zero source equations are usually termed as the

Schwinger—Dyson equations. In that limit we recover spatial and temporal translation invariance of the Greens
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function. Explicitly we write
A [EEN ~ ! /
As=3 [ Ay ndrs Astiy 1) = VI @OX () ®)
~Jo
1
and all time dependences are as in Q(7) = €™ Qe~"". The generating functional of Green’s functions of the -]
model is
Z[V] = Try e i T.(e~As). (©6)

It reduces to the standard partition function on turning off the indicated source terms the Green’s functions for
positive times 0 < 7; < 3, are defined as usual:

Goo i3, frp) = — (T (e XY () X7 (7)), )
where for an arbitrary Q we define
(Q) = %Trﬂ e T (e 45Q). ®)

We note that #,,, the number of particles per site, is determined from the number sum rule:

Ng = gao’(iTi) 17—) (9)

and p the chemical potential is fixed by this constraint. By taking the time derivative of equation (7) we see that
the Green’s function satisfies the EOM

0rGoa(is f) = —6(1 — 785 (1 = Yo (i) — (Tr(e S[Hy + AsGi, 7), X2 (m)] X7 (7)), (10)

where the local Green’s function is defined as

Youor, (1T8) = 0a0bG33,5,(iT5 > 1T5), (11)

with the notation
0 = — 0 (12)

Using the Hamiltonian equation (4) and canonical relations equations (2), (3) we find
[Hy, X2 = 3" ;X7 + pX?% = 3" ty(00) X[ X7 + % > Ji (G0 X7 IX (13)
j joj j=i
and

[Ag(im), X7 = —V7IX. (14)

Substituting into equation (10) and using the free Fermi gas Green’s function:
gg,:,i,%(iﬁ, J7) = {60,0;[65(r — 07) + t5] — 6 V77 (1)}6(1 — 7)), (15)
we obtain

go_):,“[,](”?» jTj)go'jo'f(jTj’ fo) - 6(7—1 - Tf)élf(l - ’70’;0‘f(i7-i))

=" ti(oiop) (LX) X () X7 () + %ZJik(aio]o<TT(X,§’*'"’f(n)xi‘)"f(n)X;’f(’(Tf)). (16)

joj koj

We next ‘reduce’ the higher order Green’s function to a lower one using the identity (valid for any operator Q):

SR o) 17)
(5V§m (7)

and rearranging terms we obtain the fundamental Schwinger EOM:

(T.X7° (1) Q) = (T,X{" () (T, Q) —

800,170 JT) = Koy (071> 1) = Yieye, (i7is 7)) X G (T fr7) = b3 6 (73 = T1) Bz = Yo (i), (18)

where we defined the functional derivative operator at site iand time 7;
6

S 19
oV;(m) (4

D(T,‘O‘j (im) = 0i0j
the composite derivative operator

5 . . 1
Xo’,-(rj(lTi’ ]7_]) = 6(7_1 - T]) X _tijD(riaj(lTi) + 61]2 E]ikDo,-aj(kTi)) (20)
k




10P Publishing

NewJ. Phys. 20 (2018) 013027 B S Shastry and P Mai

and corresponding Y, as
. . 1
Yio,o; (i, jTj) = —6(1 — 7)) X (—tijWa,crj(lﬂ) + 6; Y Efikﬁ’o,:,—j(kﬁ))- (21)
k

By considering the spin, space and time variables as generalized matrix indices, we can symbolically write
equation (18)as

g ' —X—-%).G=5601-1. (22)

2.2.The X expansion and the auxiliary Greens function

The main task is to compute solutions of the Schwinger—Dyson equation, i.e. the functional differential
equation (18) or (22). If symmetry-breaking, such as magnetism or superconductivity is ignored, then a liquid
state ensues, where we would like the solution to connect continuously with the Fermi gas. For this purpose we
seek guidance from standard Feynman—Dyson perturbation theory for canonical models. The repulsive
Hubbard model is an ideal example, where the corresponding Schwinger—Dyson equation can be schematically
written as:

(g, —Us/6V—UG) .G=61. (23)

Comparing with equation (22), we see that the left-hand sides are of the same form, but the right-hand sides
differ, in equation (22) the local Greens function y multiplies the delta function. In turn this extra term originates
from the second (non canonical) term in the anti-commutator in equation (2), and is therefore the signature
term of extremely strong correlations.

Within the Schwinger viewpoint of equation (23), we can view the skeleton graph perturbation theory
(Feynman—Dyson) as an iterative scheme in U, i.e. using the nth order results to generate the (n + 1)th order
terms by functional differentiation. In the ECFL theory the iterative scheme used is defined by generalizing
equation (22) to

€, ' — XX = AN).G=6U—- \y). (24)

The explicit solutions in the ECFL theory start from this basic equation. More explicitly, in equation (24) the
exact equation (18) is generalized to include the A parameter’ by scaling

chry Yioop Voo = /\XWJ., AYigop A%, The starting point for the iteration is A = 0, corresponding to the
Fermi gas. As we iterate towards A = 1, equation (24) reduces to the exact equation equation (22). The
Gutzwiller projection is fully effective only at the end point of the iterative scheme A = 1, while for intermediate
values of A\, we have only a partial reduction of the number of doubly occupied sites. The role of Uin

equation (23) is roughly similar, at U = 0 we have the Fermi gas, which evolves into an interacting theory with
increasing U, giving us the Feynman—Dyson perturbation theory. The range of A (€[0, 1]) in equation (24) is
bounded above, as opposed to that of U € [0, oco] in equation (23). Therefore the ECFL theory avoids dealing
with a major headache of the canonical theory whenever a coupling constant becomes large. Recall that realistic
interactions in correlated matter usually involve a large coupling parameter U. For this purpose one is forced to
make hard-to-control approximations, such as summing specific classes of diagrams in different parameter
ranges. The introduction of X into the ECFL equations opens the possibility that alow order calculation might
suffice to give accurate results at low excitation energies. This possibility is in-fact realized for important strong
coupling problems as shown earlier [5].

We found in [3] that an efficient method for proceeding with the iterative scheme is to first perform a
factorization of the Greens function into two parts. The first is an auxiliary Greens function g satisfyinga
canonical equation, thus admitting a Dysonian expansion with its attendant advantage of summing a geometric
series with every added term of the denominator. There remain some terms that cannot be pushed into the
denominator, these are collected together as the caparison function fi. In the matrix notation used above we first
decompose the Greens function as:

G=g. (25)
this implies a product in the k, w domain as written below in equation (32). The differential operator Xin

equation equation (24) is distributed over the two factors of equation (25) using the Leibniz product rule, as

B T 26
X.gn=Xgn+ X.gp (26)

1 . L. . . .

In [4] we have noted an important generalization of these commutators to include a continuous parameter A € [0, 1], thus defining the so
called A fermions. Using them one can systematically obtain the A expansion encountered below from these relations directly. Here we stick
to asimpler description with X introduced by hand, in the EOM below.
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where the contraction symbol Xaindicates the term being differentiated by the functional derivative terms in X,
while the matrix indices follow the dots. Using g~L.g = 1 equation (24) is now written as
_ | - - L
(8, — \X.gg ' — AY).gi =6 (1 — A\y) + AX.gJi. (27)

This equation factors exactly into two equations upon insisting that g has a canonical structure:

(8, — Mgg ' — \) =g 28)
and

fi=61— M)+ \X.gi. (29)
We can then use g.g7! = 1 to simplify the term Xgg ' = -Xgg, giving rise to a Dyson self-energy expressed

in terms of a Dyson vertex function. The idea then is to iterate the pair of equations (28), (29) jointly in \. Details
of the skeleton expansion nature can be found in [3, 5, 6]. The main point to note is that while g =%, jz in
equations (28) and (29) are expanded in powers of ), the function g is kept unexpanded as a basis term (or
‘atom’) of the skeleton expansion, temporarily ignoring its relationship as the inverse of g 1. The equal time
value of the variable yin equation (11) is taken from the exact sum-rule for G in equation (9). The initial values
at A = Oare g = g,and i = 1, and we must remember to use the product form equation (25) to determine the
local Greens function «yin equation (11). We should note that when the source is turned off )V — 0 we recover
space and time translation invariance so that equation (25) is simply Q(E , lwy) = g(lz s 1w;).Ji (E , iw;), with the
Matsubara frequency w; = (2j + 1)k T. Atlow T, the leading singularities of G are co-located with those of g,
provided the caparison function fi is sufficiently smooth- this situation is realized in all studies done so far.

2.3. The shift identities and second chemical potential u,
Before proceeding with the iterative scheme, it is important to discuss a simple but crucial symmetry of the ¢-]
model—the shift invariance, first noted in [10]. In an exact treatment shifting t;; — ; + ¢, ;; with ¢, arbitrary, is
easily seen to be innocuous, it merely adds to equation (4) aterm —¢, 3", N, whereby the center of gravity of the
band s displaced. (Here N, is the number operator for electrons with spin o.) However in situations such as the
A expansion, the Gutzwiller constraint is released at intermediate values, here it has the effect of adding terms
derivable from alocal (i.e. Hubbard type) interaction term.” To see this consider the fundamental commutator
term [Hy, X 991 in equation (13), here under the shift tij — tj + ¢; 0jj, thethird term gives rise to an extra term
aX7%X iO‘T’. ThlS term vanishes only in a Gutzwiller projected state, the EOM by themselves do not eliminate it.
Its appearance is tantamount to adding a Hubbard like term %Zi X7 X7 to the Hamiltonian H,;. As argued in
[10] we would like the EOM for the Greens functions to be explicitly invariant under the above shift of ;; to each
order in . Enforcing this shift invariance to each order in the A expansion plays an important ‘watchdog’ role on
the ) expansion.

An efficient method to do so is to explicitly introduce an extra Lagrange multiplier u, through aterm
AugY_; NitNj| to the Hamiltonian equation (4). This amounts to replacing t;; — t;; + 51] in all terms other
than in the bare propagator g . The u, term makes no difference when \is set at unity in the exact series, since
double occupancy is excluded. In practice, we set A = 11in equations that are truncated at various orders of A,
and the magnitude of 1, is fixed through a second constraint. We thus have two variables to fix, namely 1y and p.
We also have two constraints, the number sum-rules n, = g__(i77, i7),and n, = G,,(i7", iT) (equation (9)).
In the absence of a magnetic field the number densities #,, reduce as n, — %, where nis the number of particles
per site.

After turning off the sources, in the momentum—frequency space we can further introducing two self
energies W(k, iwj),and ®(k, iw;) with

fi(K, iw) =1 — Ag + AU(K, iw)), (30)

g \(k, iwj) = go Dk, iwj) + )x( e + ]o) — AD(k, iwj). (31)

Here & and Ji are the Fourier transforms of —¢;; and Jj;. In the right hand side of equation (31), the second and
third terms arise respectively from the equal-time limit of \Y; and AX.g g.g~'in equation (28) respectively. The two

self energies @, W are explicitly A dependent, they vanish at infinite frequency for any A. Thus we write

2 Similarly we note that shifting J; — Ji; + ¢;6; with arbitrary ¢;also adds a similar unphysical local interaction term, as discussed in greater
detailin [10].
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Gk, iwy) = gk, iw;) x fick, iw;). (32)

The auxiliary Greens function satisfies a second sum-rule that is identical to equation (9), both may written in
the Fourier domain:

(ks )Y €% Gy (k, iwj) = ny; forboth G = G and g. (33)
kj

Equation (25) can now be written explicitly in the non-Dysonian form proposed in [3]
1= A AWK, iw))

Gk, iw)) = - . .
g, (k,iwj) + /\Egk + )‘ZJO — A®(k, iw))

(34)

We observe that simple FL-type self energies U and @ can, in the combination above, lead to highly asymmetric
(in frequency) Dyson self energy Y (k, w) obtainable from the Greens function through ¥ = G, ' — G~!

[3, 5, 6, 10]. Finally we note that our calculations are performed in terms of spectral function obtainable from
analytic continuation of the Matsubara frequencies into the upper complex half plane of frequencies:

pg(z, w) = _1 Im Q(l?, iwj — w + i07),
s

o pg(k, w)
Gk, i) = [ L= (35)
iwj — w
and similarly defined spectral functions for variables g, ®, ¥ etc. Note that the physical spectral function
pg(k, w)isidenticalto A(k, w),anotation used in much of experimental literature.

2.4. Summary of equations to second order in A

In the following, we use the minimal second order equations [5—7] obtained by expanding equations (28) and
(29) to second order in \. The calculation is straightforward and a systematic derivation is detailed in [6], which
is followed here. We use the abbreviation” k = (E , iw,), and also redefine ®(k) = x (k) + & V(k), keepingin
mind that one set of terms in ® have an external common factor of ; multiplied by all terms in ¥. We next
collect the answers below in terms of the two self energies y, ¥

g () = iwy + p — o+ Ain}o - ek(—Ag + A\If) — Ay (k), (36)

the tag below the band energy &k can be ignored after the next paragraph. We now expand ¥ and x from
equations (28) and (29) in powers of A. To the lowest two orders we find ¥ = A¥;;; + O(X?) and
X = Xjop T Xy + O(N), where y;q = -, gp(sp + %]k,p).

The next step is to introduce 1, explicitly: we write g, — ¢} = g — % in every occurrence of &, exceptin
the bare band energy term =3 in equation (36).

870 = i, 1+ Al = 1o = I — Mg () — Vg (0 (37)
Note that the shift with u, also applies to the term ), it now reads x;o; = -2, gp(gjv + %]k,p). We note the
expressions for Xiip W from [6] equations (65)—(67):
X (k) = —Z(a; + &5 + %(kap + ]qu)) X (Eprqk + J-08P)g@ (P + g — k), (38)
ra
(k) = = () + €5 + T pg(P)g@gp + q — k). (39)
pq

Wenowset A = 1and record the final equations:
-1 . 1 1 ]k ~ /
g k) =iw, + | + Zn(]o — up) — Euo + ngsp + EZ g,cosp, | — ke — xpy k), (40)
p P

ik =1 — g + Ty k), (41)

where we used a nearest neighbor J;;and cubic symmetry in the simplifications. We can verify that the above
expressions obey the shift invariance: if we shift ¢, — ¢, + ¢y, the arbitrary constant ¢y can be absorbed by
shifting 1 — p + cpand up — 1y + 2cp, and is thus immaterial. The band energy is given explicitly as

ksT

3 Wedenote k = (E , wy), wy = (2n + 1)mkp T the Matsubara frequencies, N; the number of sitesand Y_, = N

Dkokpn Tk is the Fourier
transform of the exchange.
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er = —2t(cos(kyag) + cos(k,ag)) — 4t' cos(kyag)cos(k,ag), where tand ' are the first and second neighbor
hopping amplitudes.

2.5. High energy cutoff scheme

The self consistent solution of the second order equations of equations (38)—(41) plus the number sum-rules,
can be found numerically by discretizing the momentum and frequency variables on a suitable grid. This
procedure can be carried out in a straightforward way for low T < t and high hole densities § 2> 0.3 (low
particle densities n < 0.7). Atlower hole densities or at high temperature T >> t, the equations run into
convergence problems. The origin of this problem is the formation of weak and featureless tails of the spectral
functions extending to quite high energies. These tails are known to be artificial, since they do not occur in the
exact numerical solutions where available. Thus the second order theory seems insufficient in the regime of low
hole densities § < 0.2, where much of the current interest lies. A technically rigorous resolution of the problem
of weak tails seems possible. However it requires the non-trivial calculation of higher order terms in the A
expansion. Such higher order terms oscillate in sign and hence cancellations at high energies are expected.

In view of the substantial magnitude of the program of summing the A series to high orders, it seems
worthwhile to investigate simpler and physically motivated approximations for improving the lowest order
scheme. It turns out that there are a few interesting alternatives in this direction. In [5] we showed one
convenient way to handle the high energy tail problem practically, through the introduction of a high energy
cutoff. The choice of an objective cutoff was rationalized by considering two physically different limits, that of
high particle density n — 1 and the simpler high temperature limit, where related tails are found. The cutoffis
chosen using the analytically available high T'limit results and then applied to all densities and T.

The cutoff scheme of [5] is not rigorous, but enables us to extract meaningful results for low energy excitations
from the second order A equations, out to fairly low hole densities 6 < 0.2. Itis benchmarked in the case of d = oo,
where the cutoff scheme quantitatively reproduces the spectral weights in the most interesting regime of low energies
|w| < t, while erring somewhat at energies above the scale of quarter bandwidth. In [5, 7] the resulting physical
quantities such as resistivity are shown to be in good correspondence to the exact results from DMFT. In view of this
success we use a similar cutoff scheme for 2d below, with the expectation that the physics of the low energy excitations
is captured. In the present 2d case we employ a single (re)-normalization the spectral function for each k as

P (R, w) = %kwr(w — 200k, w), “2)

where Wris a smooth window (even) function shown in figure 3 [5]. Itis centered on g, the self-consistent
location of the peak in pg(k, w), determined iteratively. It has width 4D, where 2D is the bandwidth (~8t in this

case). The constant MV is fixed by the normalization condition f Dy (l? , w)dw = 1.In the present case of 2d we
can impose this cutoff window at each k individually, so that only k states very far from the chemical potential
are affected by the cutoff.

The two chemical potentials g and u, are determined through the number sum rules written in terms of the
Fermi function f (w) = (1 + %) !'and the spectral functions:

n

P, (k, W)f(W)dw == P (k, w)f(w)dw. (43)
z}; f 8 2 zk: f g

The set of equations equations (38)—(43) constitute the final set of equations to be computed. These are valid in
any dimension, and reduce to the ones benchmarked in d = oo after setting ] — 0[5, 7].

After analytically continuing iw, — w + i0" we determine the spectral function of the interacting electron
spectral function pg (E ,w) = — %Jm Q(E , w). The set of equations (1)—(5) was solved iterativelyon L x L
latticeswith L = 19, 37, 61 and a frequency grid with N, = 2!, 216 points. We find that L = 61 produces the
most accurate results at low temperature, while different L do not make a difference at high temperature. Also,
N, = 24, 2'%]ead to the same result in the relevant range of parameters. Therefore, we only display the result
computedat L = 61 and N, = 2! in this paper. Other details are essentially the same as in our recent study of
thed = oo, J] — O casein[5,7].

3. Results

Band Parameters: The t-] model is studied on the square lattice with hopping parameters tand ¢’ for firstand
second neighbors. The hopping parameter ¢ > 0, while ¢’ is varied between — 0.4t and 0.4¢, thereby changing
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Figure 1. Hole density ,and /¢ variation of the nodal Z (kg) at T = 63 K. The ratio ¢'/t is marked at the top. Decreasing ¢ hasa
similar effect to decreasing .
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Figure 2. 6 = 0.15: the decay rate equation (44) and (inset) the nodal —Jm X (kg). The ratio t//t is marked at top. While ¢’ = 0.4¢
has a positive curvature for both variables, t' = —0.4¢ displays a prominent negative curvature in —Jm3, and an almost flat T".

the Fermi surface (FS) from hole-like to electron-like. Parameters relevant to cuprate High T, materials are
summarizedin[2, 11]% Following [2] we assume t ~ 0.45 eV, giving a bandwidth ~3.6 V.

Single-particle spectrum: The quasiparticle energy E (E ) and quasiparticle weight Z (k) are found from G as
usual [5]. In figure 1 we display the hole density § and ¢’ dependence of the low temperature Z (kr), along the
nodal (i.e. (11)) direction. The typical magnitudes of Z are comparable or lower than those reportedin d = oo
[5]. A new and important feature is the strong sensitivity of Z (kg) to the sign and magnitude of t'/¢. Both
decreasing ' (at fixed §) and decreasing 6 (at fixed ¢) reduce Z. This feature is basic to understanding our main
results. We next study the decay rate of the electrons

(k) = —2(k) x Im S(k, E(k)), (44)

found as the half-width at half-maximum of the spectral function pg (k, w)at fixed k. We display the T'variation
of I'and —Jm ¥ at the Fermi surface for three representative values of ' /¢ in figure 2. Both variables display
considerable variation with modest change of T. The case of t’ > 0 shows a distinct quadratic T dependence, but
for t' < 0 we note the strong reduction, or absence, of such a quadratic dependence. Below we note a closely
parallel Tand ¢’ dependence of the resistivity.

In figure 3 we display the photoemission accessible peak heights of the spectral function {#xpg (k> W) hmax
over the BZ at three representative values of '/, at three temperatures T = 63, 210, 334 K.The peaks locate the
interacting Fermi surface and its thermal sensitivity. The Fermi surface closely tracks the non-interacting FS,
changing from hole-like in panels (a)-(c) to strongly electron-like in panels (g)—(i). This implies that the
momentum dependence of the Dyson self energy is mild. In contrast a strong momentum dependence would
distort the Fermi surface shape significantly—while retaining the Luttinger—Ward volume. Several features are

*In high T, systems [2] estimate ' < —.27 for BSCCO, while for LSCO ¢’ ~ —0.16¢. NCCO is modeled with ¢’ > 0 after invoking a
particle hole transformation. In this case we must flip the sign of the calculated Ry and ©p to compare with data.
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(a) t/t=-0.4, T= 63K (b) #/t=-0.4, T= 210K (¢) t'/t=-0.4, T= 334K

(d) #/t=0, T= 63K (e) t/t=0, T= 210K (f) #/t=0, T=334K

02 7T

(g) t'/t=0.4, T= 63K (h) #/t=0.4, T= 210K (i) #'/t=0.4, T= 334K

Figure 3. The spectral function A(E , w) peak heights over the zone at a fixed hole density § = 0.15, ¢’ increasing from top to bottom
and Tincreasing from left to right. At a fixed T, the peak heights increase on proceeding down any column (i.e. increasing t'/1),
signifying sharper quasiparticles. Proceeding across any row (i.e. increasing T) illustrates the dramatic thermal sensitivity in all cases.
Recalling that our bandwidth is ~3.6 eV, we observe that upon warming from 63K to 210K, a tiny variation (~0.35%) of temperature
relative to the bandwidth, the peak height drops by a factor between 5 and 10, followed by a more gentle fall to 334K. This
extraordinary thermal sensitivity is characteristic of our solution of the t-] model, it is also reflected in other variables discussed here,
such as the resistivity.

noteworthy. The peaks are higher in the nodal relative to the anti-nodal direction at low T. We observe the high
sensitivity to warming, in going from T = 63 Kto T = 334 Kasmall (~0.7%) change in T relative to the
bandwidth causes a five to fifteen-fold drop in the spectral peaks at the Fermi surface. This is correlated to the
thermal variation of —Jm ¥ atthe same set of ¢/, shown in the inset of figure 2, since the intensity at k. is
essentially the inverse of this object. Meanwhile the background spectral weight rises rapidly in all cases, to a
roughly similar magnitude. The figure shows that at low T'the curve with ¢/ > 0 has much higher peaks than
t' < 0, giving the impression of weaker correlations. However the drop on warming is the largest in this case,
which signifies another facet of strong correlations. The heights of the spectral peak and that of the background
is predicted quantitatively in figure 3. Their ratio is straightforward to measure in angle resolved photo emission
studies, and we suggest it should be interesting to closely study this ratio experimentally, as a check of the
theoretical understanding of the temperature dependence of Jm>:(kr) and the decay rate I (k).

Resistivity: We now study the behavior of the resistivity from electron—electron scattering. We use the
popular bubble approximation, factoring the current correlator as (J (£) ] (0)) ~ >, v2 G2(k), where the bare

_ 9%

current vertex is the velocity /" = Z=.In tight binding theory v oscillates in sign, resulting in a vanishing

average over the Brillouin zone. This oscillation is expected to reduce magnitude of the vertex corrections [12].
For a 3d metal having well separated sheets in the ¢ direction (¢, the separation of the sheets), with each sheet
represented by the 2d t-/ model, the DC resistivity p,, can be written in terms of the electron spectral function as
follows. We define a dimensionless resistivity g, whose inverse is given by

9
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Figure 4. The resistivity at three typical densities. The lowest Tregion is expected to be cutoff by superconductivity. For a fixed T'the
curvature changes from positive (concave) to negative (convex) as ¢’/ varies upwards in each panel, and also slightly as § increases
across the panels—resembling the experimental findings of [15-19]. The Fermi liquid p oc T? regime is suppressed as t' becomes
more negative, and is difficult to discern here with '/t = —.4. Panel (b) (inset) is the local approximation from equation (48). It
illustrates the t' dependence of p'°< from the spectral functions, or equivalently the self energies. The ¢’ dependence of the velocities,
included in the result from equation (45) in the main panel (b), exhibits an enhanced convexity of the resistance. The magnitude of p,,
increases with decreasing § within the displayed range of T. The electron-doped case t' > 0 shows a somewhat smaller resistivity than
the hole-doped case ' < 0.In thelatter, p,, approaches the unitarity value 1.71 m{cm only at the lowest § and highest T.

T = (X)) ad)is (45)
where (A), = %E A (E ), while the momentum resolved relaxation scale is:
TE) = @n) f ¥ dw (—0f /0w) A (R, w), (46)

and f = 1/(1 + exp (w) is the Fermi function. This object resembles the spectral peaks in figure 3, losing height
and broadening rapidly with T. The physical 3d resistivity is given by p,. = p, X p,,» where p, = coh/e?
(~1.71 mQ cm) serves as the scale of resistivity’, and using the measured values of the lattice constants we can express
our results in absolute units. For understanding the magnitude of the inelastic scattering it can be useful to convert the
resistivity into the dimensionless parameter (kg) \,, of an effective 2d continuum theory, where \,,, is the mean-free-
path and where (k) is an (angle averaged) effective Fermi momentum. We can use a relation argued for in °[13, 14]
(ke) A = PZICO - _i (47)
P Pxx

In [13, 14] (see footnote 6) the authors note that in a metallic system this parameter is expected to be greater than
unity, and its least value is (kz) A,, = 1for the case of unitary (impurity) scattering. Thus we expect that

P < Pprie. P, < linagood metal. The Ioffe-Regel-Mott resistivity scale used in [5, 7, 8] provides a similar
measure for quantifying the magnitudes of the resistivity found in strongly correlated metals. However we
should keep in mind that both estimates suffer from ambiguities in defining a precise threshold value of
resistivity, since factors of 2 (or of 27) cannot be ruled out in equation (47).

5 The numerics assume a bet unitcell (a, a, ¢) with a = 3.79 A’and ¢ = 13.29 A°. In the expression for p, ¢, corresponds to the interlayer
separation ¢y = ¢/2.Inequations (50) and (51) we use v, /|e] = .596 x 107> cm® C~'and ®,/® = 1440 with B = 10 T.

©See equation (6) ip [13]. The origin of this formulais simple to understand, 3d conductivity is written in terms of the two dimensional
densityas o = 24" and writing 1,y = kp/(27) and \,, = Thkz /m we obtain o = €2/ (hco) kg Ay

>
com
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Figure 4 shows the temperature dependence of the resistance at three densities, and their strong variation
with ¢//t. J is taken as 900 K here, varying ] between 0 and 1500 K makes almost no difference at these
temperatures. We see that the scale of the resistivity for #' < 0 exceeds the (approximately estimated) unitarity
value 1.71 mS2 cm for the lowest § and the highest displayed T. On the other hand ' > 0 shows a considerably
smaller resistivity at most densities.

In all curves we see that the curvature changes from positive (for t' > 0) to negative (for t' < 0)atsay 150 K. To
understand the role of ¢/ / t we note that the resistivity in equation (45) depends on ¢’ /¢ through the velocity v, in
addition to a dependence through the self energies equations (38), (39). To gauge their relative importance it is useful
to examine a local approximation of equation (45) where the two functions are averaged separately over momentum:

a_)l;cal _ <T(E)>k X ((ﬁv,f)z/a§>k. 48)

The velocity squared average is independent of the sign of ¢/, therefore the local approximation, shown in
figure 4, inset of panel (b), probes only the dependence through equations (38), (39). Comparing the inset and
main figure in panel (b), we see thatat t' = 0.4¢ both resistivity curves display a positive curvature. At
t' = —0.4t we see that p'°<@! is essentially linear in T, while p,_shows a negative curvature. The difference is
therefore related to the velocity factors, which are very different effect between ' < 0 and #' > 0. These cause
the integrals to have very different thermal variation.

Hall response: Within the bubble scheme, we may also calculate the Hall conductivity [9, 20, 21] as

Oy = — 2 / Po X (%) X Gy, the dimensionless conductivity:
42 >
oy = [ dw (<0f/00) (o ks In(o (49)
and n(k) = % { )? ?,;kif - i) aliz;kky .Here ® = Bag is the flux (see footnote 5) and ®, = hc/(2]el)is

the flux quantum. In terms of these we can compute the Hall constant Ry and Hall angle O from

4 2
cRy=— 7|T|Vo By X pjx’ (50)
e
1 5 d
cot(Oy) = - T 0 (51)
2m% 5y, i)
with vy = (ad co) (see footnote 5). We also define the Hall number as
Vo
ng=—
U leleRy
_2
1 O (52)
472 Oxy

where the definition ensures that in the limit of a circular Fermi surface without interactions, ny — 7, where nis
the number of electrons per copper in the effective single band ¢-] model (see footnote 8). The tight binding Fermi
surface in the presence of t' is not circular, but rather resembles the surfaces shown in figure 3. Under these
conditions we can evaluate the conductivities in equations (45) and (49), using an approximate Lorentzian
spectral function peaked at the bare Fermi surface’: The resulting ‘bare’ Hall number n{; contains the corrections
due to the curvature of the Fermi surface, including the change in sign in going from open to close surfaces as ¢’
becomes negative. It is therefore helpful to compare our computed Hall number g, containing the effects of
interactions and a complicated scattering rate I, with nf; containing only the band effects. This helps us to gauge
the effects of interactions, left out in the formula for nf;. The computed 1, bare Hall number #{; and their ratio
ny /ng are shown in table 1. We see that strong correlation generally suppresses 71 from the bare value nfy, in
some cases by as much as 40%. The ny} itself differs from # quite substantially, depending on doping,
temperature and ¢/, and therefore one must exercise great care in extracting carrier densities from Hall numbers.
In figure 5 we display the computed Hall variables. In panel (a) tan Oy is shown for two values of t/ /¢
displaying hole-like and electron-like behavior. A decrease in hole density reduces the magnitude in either case.
In panel (b) we display the computed cot(Oy) versus T> with three values of ¢’ giving an electron-like FS. We
note that cot Oy is approximately linear with 7% [22—-24] and is strongly affected by the magnitude of ¢’. The two
distinct cot(©y) o< T? regimes seen in figure 5(b) are also seen in many experiments but seem to have evaded
attention so far. In [24] it is noted that the bending temperature corresponds to a crossover from the Fermi liquid

7 These definitions lead to intuitive results in simple cases. For 2-d electrons with &, = hi%?/(2m), and a Lorentzian pg(k, w) =
2

1 o . . o _ I . o
T3+ (Wt ep—ep)?) upon se.mng the. width Iy — 0, we recover the Dru<.1e result. O = N4, T / mand g, = n TmadTo with 7 = h/2IY).
Thus |e]Ry ¢/vy = —1/ninequation (50),and cot(©y) = —1/(w,7) inequation (51) where w, = |e|B/(mc). If on the other hand we take
€x from the Fourier transform of —t;;, the limit I, — 0 yields the “bare” Hall number gy, incorporating the effects of a non-circular band

structure.
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Table 1. The Hall number n;; from equation (52), the bare Hall number n{y, and their ratio ny; /nj. nyy is
computed atlattice size 61 x 61at T = 63 Kand 13, is computed in the bare band with lattice size 4000 x 4000
at T = 0. Note that the ratio ny/ ng varies from .6 to .8. This substantial correction is due to strong correlations.
Therefore the inverse problem of deducing the carrier density n from the Hall number #y; is quite complex. Finite
temperature effects make this even more complicated, as seen in figure 5.

Electron density Hall number t = —04 t = —02 =0 =02 t =04
ny —0.819 —2.514 1.119 0.679 0.675

n = 0.82 nOH —1.163 —3.389 1.51 0.879 0.823
nH/noH 0.704 0.742 0.741 0.773 0.82
ny —.768 —1.918 1.249 0.67 0.65

n = 0.85 noH —1.137 —2.448 1.774 0.927 0.855
nH/noH 0.676 0.783 0.704 0.722 0.76
ny —.706 —1.479 1.436 0.67 0.637

n = 0.88 f’l?{ —1.109 —1.963 2.148 0.977 0.884
nH/nOH 0.637 0.754 0.669 0.686 0.721

o .18 15 & 12 a4 18 v 15 0 .12
o t'=0 m t'=0.2t o t'=0.4t

|cot®y| at 10 T
1000

tan®y at 10 T
0.004F ° o

[ ]
[
b [ ]

0.002F **++35 3§

. : 800
SWO o B0 9 o T .
~0.002,00°° N : 600/ .
v A

0004, v . £'=0 a0,
-0006, © s 200, o .o
-0.008; N gzt . K * ‘ ‘
—00100 * o 1 2 3 4

5 T2(10°K?)

(a) tanO©Op, 6 marked above (b)| cot © |, 6 = 0.15. ¢'/t marked above

(¢)Rp full,dotted,dashed lines are at

d =0.18,0.15,0.12. ¢/t marked above

Figure 5. Panel (a) tan Oy for B = 10 T at three densities versus T. The set with t’ = —0.4¢ have a hole-like FS while the set with t' = 0
an electron-like FS. In both cases we see a rapid fall-off with T, and a decreasing magnitude with 6. Panel (b) for B = 10 Tat 6 = 0.15
shows | cot(Op) | for three values of t///¢. It is approximately linear with T> over the range. In fact it is linear on both sides of a bend,
whichisalsoseenindata[17, 19, 22-27] but seems to have evaded comment in literature. Panel (c) gives the T'dependent Ry; for three
densities, each with four values of ¢’ /. The magnitude of cRy; atlowest T is related to the Hall numbers ny in table 1 via the relation
equation (52) cRy = —v,/nyle|, where vy /|e] = .596 mm? C~!. The sign change resembles the change seen in experiments [28].

to astrange metal, and is therefore of fundamental importance. In panel (c) we show the Hall constant Ry; at
three densities for representative values of '/t Its sign is electron-like for ¢’ > 0 and hole-like for t' < 0,
tracking the change in topology of the Fermi surface in figure 2. The magnitude of Ry; is substantially affected by
changing t'. This is a strong correlation effect, and discourages envisaging any simple relationship between the
Hall number and hole density.
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4. Discussion

Using the recently developed second order equations of the ECFL theory in [5], we have presented results for the
2d t-J model atlow and intermediate temperatures. In keeping with our recent findings for the d = oo solution
of the same equations, we note that the quasiparticle weight Z (kr) is non-zero, but remarkably small. This fragile
FL therefore has an extremely low effective Fermi temperature, above which it displays characteristics of a
Gutzwiller correlated strange metal, as listed in [5, 7], including a resistivity that is linear in T.

By varying ¢/, the second neighbor hopping at a fixed rand J, we found in figure 1 a remarkable variation of
the quasiparticle weight Z (kg) that is characteristic of the 2d square lattice, with no simple analogin d = co. We
found ¢’ < 0leadsto a considerable reduction in its magnitude, while ¢’ > 0 leads to alarger value and thus a

more robust FL. A direct calculation of the single particle spectral width I' = —Z% confirms this observation
in figure 2, and when studied as a function of the temperature, shows a much larger magnitude, and hence
broader spectral lines.

In figure 3 we present the Fermi surface, as found from the peaks of the spectral function. The shapes of the
Fermi surfaces are quite close to those implied by the bare band parameters. This implies that the momentum
dependence of the self energy, while non-zero, is fairly small. This also suggests that the vertex corrections,
neglected here in 2d, may actually be quite small as well. Two key results concern the spectral heights over the
Brillouin zone, and the resistivity as a function of T'at various densities and #’. The spectral height is the peak
value of pg (lz , w) scanned over w, and equals the inverse of the least magnitude of ij(I? , w). In figure 3 we
present both the T evolution (going horizontally) and the #’ evolution (going vertically) of this important object
visible in ARPES. We note that #' < 0 model with a very small I" also displays a rapid loss of coherence on
warming. The quasiparticle peaks drop rapidly, while the valleys, representing the background spectral weight in
photoemission, catch up with the peaks in magnitude. A similar variation happens for t = 0 but the drop of the
peak heights is more pronounced. The case of ¢’ > 0 has the largest drop of peak heights, while its effective
Fermi temperature is the largest of the three cases. It follows that the electron doped case has a more robust FL
appearance for T'lower than its Fermi scale. Our study provides absolute scale values for these observable
heights, and it should be interesting to study these experimentally for comparison. Towards that objective we
note that #/ > 0 maps to the electron doped High T, superconductors, while ¢ < 0 maps to the hole doped
cases, as we may also deduce from the shapes of the Fermi surfaces in the above figure.

The other key result concerns the resistivity. We are able to calculate the longitudinal resistivity p,, ona
doubly absolute scale, both the magnitude of p,, and that of T are given in physical units by using reasonable
values for the basic parameters of the -] model and the lattice constants figure 4. We find essentially the
experimentally observed scales for both axes, and there is room for further adjustments of bare scales if needed.
The main finding is that as  is varied towards half filling, the regime of linear resistivity increases in the hole-like
cases (' < 0)and the quadratic dependence regime shrinks to very low T'scales, falling below the known
superconducting transition temperatures. The other important finding is that the concavity (convexity) of
resistance versus T, usually taken to denote a (non) FL behavior, requires an enlarged viewpoint; we find that the
sign of ¢t/ flips the two cases. As an example, the case ¢’ < 0 has a pronounced convex regime atlow T. This could
be naively ascribed to a non-FL behavior, but in reality is a crossover range to the strange metal regime.

We also present results in figure 5 for the Hall constant and the Hall angle. These are calculated using simple
versions of the Kubo formula, found by neglecting the vertex corrections, in the same spirit as the longitudinal
resistivity. This approximation is as yet untested against exact results and hence requires some caution. We find
that the Hall angle changes sign with ¢'. The cot(Oy) is found to be roughly linear with 77, in agreement with the
experimental situation. As noted above, the cot(Og) o T? regime is followed at higher T'by a bend (or kink)
corresponding to a crossover from the Fermi liquid to a strange metal, and is therefore important. A similar bend
is also seen in many experiments [17, 19, 22-27], but seems to have evaded comment so far. In [24] this kink is
discussed further and its connection to the crossover is explained.

In table 1, we present the Hall number #1; obtained from the Hall constant for various nand ¢ /. It is
compared with the corresponding n¢; obtained from a non-interacting theory that incorporates the band-
structure effects of changing curvature when ¢’ < 0. We note that the n?; already captures the changes in sign due
to varying #'. However, there are substantial quantitative corrections even at the lowest T, originating in strong
correlations. This makes the inference of electron density n from #y; quite non-trivial; table 1 provides an
estimate of the errors involved in this inversion.

5. Conclusions

In this work, we employed a recently developed scheme from the ECFL theory where the second order A
expansion terms are supplemented with a high energy cutoff. This scheme has been benchmarkedin d = oo
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against DMFT [5, 7] for computing transport and other low energy excitations, giving good agreement with
exact numerical results. As detailed in [5] the magnitude of the quasiparticle weight Z is somewhat lower in this
scheme as compared to the exact DMFT values for hole density 6 < 0.8. In this work the same equations are
applied to the 2-d tJ model. While the close agreement found in the d = oo case might not guarantee the
accuracy of these results in d = 2, it is plausible that the variations of resistivity and Hall constant, induced by the
magnitude and sign of ¢’ found here, will persist in more exact (future) results. Hence it seems that we can draw
some useful conclusions already, especially with regard to the difference between hole and electron doping.

We have shown a range of results for the 2d -] model, obtained by varying different parameters within our
scheme. It is interesting that the magnitudes of various transport variables, presented here in physical units®, are
roughly on the scale of reported measurements [15, 25, 16—19, 26, 27]. Although it is not our primary aim here to
produce exact fits, we note that the agreement can be improved in many cases with suitable changes of the bare
(band) parameters.

In the range of parameters considered here, a metallic state has been posited, and therefore the role of the
exchange J is limited; we find very little variation of the transport quantities with a change in J. The transport
parameter variation with density seems very similar to that foundin d = oo in [5, 7, 8] where a large variety of
Gutzwiller correlated metallic states were shown to arise [7], with their origin in the U = 0o or Gutzwiller
correlation rather than with J. The added feature in d = 2 is the important role played by #’, as stressed here. We
expect magnetic, superconducting and possibly other broken symmetry states at the lowest T'and § to arise,
largely due to the effect of J. Further work is necessary to find reliable calculational schemes for these broken
symmetry states.

A few broad conclusions suggest themselves. The parameter ¢/t plays a key role in determining the low-
energy scales. In figure 1 we see that the quasiparticle weight Z has a large variation with #'. The origin of this
sensitivity lies in the self energies in equations (39), (38), where combinations of the band energies & play the
role of an effective interaction. Varying '/t therefore changes the self-energies strongly, in contrast to the usual
weak change via the band parameters in equation (37).

Our main findings are as follows. (I) The spectral functions are highly sensitive to thermal variation; in
figure 3 we observe a five to fifteen fold drop in intensity with a variation of ks T'about 1/100th the bandwidth
~3.6 eV. This is in severe conflict with expectations from conventional theories of metals. (II) We note from
figure 4 that with t/ < 0,aFL resistivity p oc T?is seen only at very low T. The very low T (FL) regime is followed
by a ‘strange metal’ regime, also at low T, where we find a p versus T curve, with zero or negative curvature. This
regime parallels the Gutzwiller-correlated strange metal regime reported in d = oo [7], the negative curvature
making it even stranger. (III) For the electron-doped case t' > 0, figure 4 shows that the curvature is positive
and the FL regime extends to higher temperatures.

Itis significant that the ECFL theory captures the diametrically opposite resistivity behaviors of hole doped
[15-17] and electron doped materials [18, 19] within the same scheme, only differing in the sign of t//¢. The
resistivity curvature mapping of [15] can also be viewed in terms of a variation of this ratio and the temperature,
asin figure 4. In conclusion this work provides a sharp picture of the difference made by the second neighbor
hopping ¢’ in the presence of Gutzwiller correlations. It also yields quantitative results for several famously hard
to compute variables in correlated matter, that are in rough agreement with a variety of experiments.
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