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EXACT GROUND STATE OF A QUANTUM MECHANICAL ANTIFERROMAGNET
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We present some exact results for the ground state of a quantum mechanical antiferro-
magnetic mode! in the two dimensions with next-nearest neighbor interactions.

We have found some exact results tor the
ground state(s) of an anisotropic quantum spin
Heisenberg-Hamiltonian with next neighbor in-
teractions in two and three dimensions. For
clarity we present the two dimensional case in
detail and postpone the three dimensional
results to a forthcoming paper. We consider a
two dimensional lattice (Fig. 1) where each
dashed line represents a bond with strength 2a’
and each nearest neighbor bond has strength

unity. The Hamiltonian is
2
H=% h +2a I h -hcS§, (1)
<ijp 1 <gm>  Am i i

where <ij> represents a sum over all nearest
neighbors and <am> represents a sum over the
diagonal bonds. Also
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We restrict our attention to the non-trivial
case Jy,Jy,J; » 0. This model resembles the
triangular lattice Heisenberg antiferromagnet,
which has been studied extensively in recent
literature, [1,2,3] in that the Ising Timit
exhibits frustration [4]. It is our hope that
the exact solution sheds Vight on the interplay
between quantum effects and spinglass order-
ing [5].

A. QUANTUM CASE  Our solution is inspired by
the surprising solution of Majumdar's, [6] for
a linear chain Heisenberg antiferromagnet with
a nearest and next nearest neighbor coupling

which is half as strong as the first. We first
observe that the state
[> = =« [2,m] (3)
<am>

is an eigenstate of the Hamiltonian Eq. (1) with
efgenvalue

EN=Wz-alS(S+1)[J +J +J37 (4)
o 3 X y z

(We use the notation [2,m] for a singlet combin-
ation of the spins £ and m.) This is seen most

readily by using the identity si“(s e 4 ska)

x [j,k] = 0 and hence the first ter* in Eq. (3)

annihilates 1¢y>. We further show that E,
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saturates a lower bound to the ground state
energy for suitable values of the parameters
and hence |y> is the rigorous ground state.
We write H = £4 ht, where the sum is over
the N triagles (each diagonal hond supports
two triangles). Each triangular Hamiltonian
has the form

Hence a use of the variational principle implies
Eo » N et where et is the ground state energy of
Eq. (5). We have shown that ey equals W and
hence |y> is the ground state of H, provided

a » ap, where ay is: (a) 1 + h/J; for s = 1/2
and for arbitrary Jy, Jy and J,. (For the
isotropic case we have a better bound

ay =1+ h/20.) (b) 1 +s + h/2] fors > 1

n the isotropic 1imit (Jy = Jy = J; = J).

The nature of ground state correlations in
l¢> is seen to be liquid like, with only short
ranged order and hence we have termed it the
"quantum spin liquid" phase (Q.S.L.). This wave
function is of the type suggested by Anderson
[1] and is familiar from valence bond theory in
chemistry. For a smaller than the bounding
value ap, we have not succeeded in
solving the model exactly. However, we can
show that the character of the ground state
must change at some value of a between ap and
2s/(2s + 1) since at the latter value, the Né&l
(Ising) state provides a better upper bound to
the ground state energy.

B. ISING LIMIT We have studied the ground
state degeneracy of the Hamiltonian in the
Ising 1imit Jy =Jy = O and h = 0 for s = 1/2.
It is readily established that for a < 1, the
ground state entropy is 0(1) whereas for a » 1,
it is of O(N). The case o > 1 is quite simple
since in this case the only constraint is that
spins at the ends of a diagonal bond must be
antiparallel. The entropy then is S = kg
N(0.3466). The case o = 1 is much more complex,
since in this case, more configurations are
allowed than for a > 1. We have established
that the case a = 1 can be mapped on to a 10
vertex model containing N/2 sites with two
sublattices, which is a generalization of the
ice problem solved by Lieb [7]. We have
obtained a rigorous lower bound to the entropy
s > kg N(.4812) by using a braiding technique.
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C. CLASSICAL LIMIT As s + «», the singlet
state is the ground state only as a » =,
However, for arbitrary a, we have succeeded in
determining the ground state exactly in the
jsotropic limit. We observe that the classical
planar (i.e., x-y) and Heisenberg model share a
ground state for the triangular Hamiltonian (5).
Each triangle has a two-fold discrete "chiral"
degeneracy, over and above the continuous
degeneracy, of the sort discovered by Villain
in similar systems [8]. The optimum twist
angle between a spin at the base and apex of

a triangle is (7 % cos~! 1/2a) and the two
chiralities correspond to the two choices of the
sign. One may then assign arrows to the bonds
indicating the direction along which rotations
are anti-clockwise. The constraint on a square
containing a diagonal bond is that the arrows
on parallel sides be in the same direction.

The constraints on empty squares is that the
1ine integral of the arrows vanish (irrotation-
al flow). There are precisely four degenerate
ground states which satisfy these constraints.
Each ground state contains one preferred direc-
tion, say one of the four points of the compass,
such that there is an average flow of arrows in
this direction. Thus, the spins exhibit helical
ordering as we proceed in this preferred direc-
tion. for a < 1/2, the Neel state is the ground
state.

D. SUMMARY  Our understanding of the model in
the isotropic 1imit is summarized in the "phase
diagram" (Fig. 2). The line bounding the Q.S.L.
phase is the point of highest frustration in

the Ising limit. In the Q.S.L. phase the Ising
limit has macroscopic degeneracy but the quantum
effects freeze this degeneracy out for arbi-
trarily small J, and Jy. It is interesting that
similar behavior is found in approximate treat-
ments of similar systems [2,3,5].

Finally we would like to point out the
remarkable property of the ground state |y> for
s = 1/2 in the case a > 1 and Jy # Jy # Jz. In
this case the ground state possesses rotation
invariance (being a singlet) even though the
Hamiltonian does not. This is the only example
of symmetry breaking in reverse that we are
aware of. This provides an exmple in non-
relativistic physics where the invariance of
of the vacuum exceeds the invariance of the
world [9].
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Fig. 1. The Lattice

| ~HELICAL
LiR:0,
p—
5;? NEEL LiR:Os
EEo K 2
1/s

Fig. 2. The Phase Diagram



