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EXACT GROUND STATE OF A QUANTUM MECHANICAL ANTIFERROMAGNET 

B. Sriram Shastry and B i l l  Sutherland 

Department of Physics, University of Utah, Salt Lake City, UT 84112 

We present some exact results for  the ground state of a quantum mechanical ant i fer ro-  
magnetic model in the two dimensions with next-nearest neighbor interact ions. 

We have found some exact results for the 
ground state(s) of an anisotropic quantum spin 
Heisenberg-Hamiltonian with next neighbor in- 
teractions in two and three dimensions. For 
c l a r i t y  we present the two dimensional case in 
detai l  and postpone the three dimensional 
results to a Forthcoming paper. We consider a 
two dimensional l a t t i c e  (Fig. 1) where each 
dashed l ine represents a bond with strength 2a" 
and each nearest neighbor bond has strength 
unity. The Hamiltonian is 

z 
H = ~ h + 2a ~ h - h ~ S (1) 

<ij> i j  <¢m> ~m i i 

where <ij> represents a sum over a l l  nearest 
neighbors and <~m> represents a sum over the 
diagonal bonds. Also 

z z x x YS y 
h = J S S + J S S + J S (2) 
ab z a  b x a  b y a  b 

We r e s t r i c t  our at tent ion to the non- t r iv la l  
case Jx,Jv,Jz ) O. This model resembles the 
triangula~ l a t t i c e  Heisenberg antiferromagnet, 
which has been studied extensively in recent 
l i t e ra tu re ,  [1,2,3J in that the Ising l i m i t  
exhibi ts f rus t ra t ion [4] .  I t  is our hope that 
the exact solution sheds l i gh t  on the interplay 
between quantum effects and spinglass order- 
ing [5 ] .  

A. QUANTUM CASE Our solution is inspired by 
the surprising solution of Majumdar's, [6] for  
a l inear  chain Heisenberg antiferromagnet with 
a nearest and next nearest neighbor coupling 
which is half  as strong as the f i r s t .  We f i r s t  
observe that the state 

I~> = . [~,m] (3) 
< zm> 

is an eigenstate of the Hamiltonian Eq. (1) with 
eigenvalue 

E /N = W z - a~S(S  + 1)[J + J + J ] (4) 
o 3 x y z 

(We use the notation [~,m] for  a s inglet  combin- 
ation of the spins ~ and m.) This is seen most 
readi ly by using the ident i ty  s ia (s l  ~ + Sk ~) 
x [ j , k ]  = O and hence the f i r s t  term in Eq. (3) 
annihilates I~>. We fur ther show that E o 

saturates a lower bound to the ground state 
energy for suitable values of the parameters 
and hence I~> is the rigorous ground state. 
We wr i te  H = ~t ht, where the sum is over 
the N t r iag les  (each diagonal bond supports 
two t r iangles) .  Each t r iangular  Hamiltonian 
has the form 

h h + h + a h h (S z z = - _ + S ) (5) 
t i¢ i ~ ~m 2 ~ m 

Hence a use of the var iat ional  pr inc ip le  implies 
E o ) N e t where e t is the ground state energy of 
Eq. (5). We have shown that e t equals W and 
hence I~> is the ground state of H, provided 

) ab, where ~b is: (a) l + h/Jz for s = I /2 
and for  arb i t rary  Jx, Jv and Jz" TFor the 
isotropic case we have ~ better bound 
~b = l + h/2J.) (b) 1 + s + h/2J for  s ) I 
in the isotropic l i m i t  (Jx = Jy = Jz = J)- 

The nature of ground state correlat ions in 
I~> is seen to be l iqu id  l i ke ,  with only short 
ranged order and hence we have termed i t  the 
"quantum spin l iqu id"  phase (Q.S.L.). This wave 
function is of the type suggested by Anderson 
[1] and is fami l ia r  from valence bond theory in 
chemistry. For a smaller than the bounding 
value ab, we have not succeeded in 
solving the model exactly. However, we can 
show that the character of the ground state 
must change at some value of ~ between ~b and 
2s/(2s + 1) since at the l a t t e r  value, the N~l  
(Ising) state provides a better upper bound to 
the ground state energy. 

B. ISING LIMIT We have studied the ground 
state degeneracy of the Hamiltonian in the 
Ising l i m i t  Jx = Jy = 0 and h = 0 for s = 1/2. 
I t  is readi ly established that for  ~ < 1, the 
ground state entropy is 0(1) whereas for a ) 1, 
i t  is of O(N). The case ~ > 1 is quite simple 
since in th is case the only constraint is that 
spins at the ends of a diagonal bond must be 
an t i pa ra l l e l .  The entropy then is S = k B 
N(0.3466). The case a = 1 is much more complex, 
since in th is case, more configurations are 
allowed than for ~ > 1. We have established 
that the case ~ = 1 can be mapped on to a 10 
vertex model containing N/2 sites with two 
sublatt ices, which is a generalization of the 
ice problem solved by Lieb [7 ] .  We have 
obtained a rigorous lower bound to the entropy 
s ~ k B N(.4812) by using a braiding technique. 
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C. CLASSICAL LIMIT As s + ®, the singlet 
state is the ground state only as a ÷ ®. 
However, for arbitrary a, we have succeeded in 
determining the ground state exactly in the 
isotropic l imi t .  We observe that the classical 
planar ( i .e . ,  x-y) and Heisenberg model share a 
ground state for the triangular Hamiltonian (5). 
Each triangle has a two-fold discrete "chiral" 
degeneracy, over and above the continuous 
degeneracy, of the sort discovered by Vi l la in  
in similar systems [8]. The optimum twist 
angle between a spin at the base and apex of 
a triangle is (~ ± cos -I I/2~) and the two 
chira l i t ies correspond to the two choices of the 
sign. One may then assign arrows to the bonds 
indicating the direction along which rotations 
are anti-clockwise. The constraint on a square 
containing a diagonal bond is that the arrows 
on parallel sides be in the same direction. 
The constraints on empty squares is that the 
l ine integral of the arrows vanish ( irrotat ion- 
al flow). There are precisely four degenerate 
ground states which satisfy these constraints. 
Each ground state contains one preferred direc- 
tion, say one of the four points of the compass, 
such that there is an average flow of arrows in 
this direction. Thus, the spins exhibit helical 
ordering as we proceed in this preferred direc- 
tion. for a ~ 1/2, the Neel state is the ground 
state. 

D. SUMMARY Our understanding of the model in 
the isotropic l im i t  is summarized in the "phase 
diagram" (Fig. 2). The l ine bounding the Q.S.L. 
phase is the point of highest frustration in 
the Ising l imi t .  In the Q.S.L. phase the Ising 
l im i t  has macroscopic degeneracy but the quantum 
effects freeze this degeneracy out for arbi- 
t ra r i l y  small Jx and Jy. I t  is interesting that 
similar behavior is found in approximate treat- 
ments of similar systems [2,3,5]. 

Finally we would l ike to point out the 
remarkable property of the ground state I~> for 
s = I/2 in the case a ~ 1 and Jx ~ Jv ~ Jz. In 
this case the ground state possesses-rotation 
invBriance (being a singlet) even though the 
Hamiltonian does not. This is the only example 
of symmetry br--r-ea-kTh-g in reverse that we are 
aware of. This provides an exmple in non- 
re la t iv is t ic  physics where the invariance of 
of the vacuum exceeds the invariance of the 
world [9]. 
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Fig. I.  The Lattice 
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Fig. 2. The Phase Diagram 


