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The spin dynamics of the classical Heisenberg model on the bcc lattice is computed with a
Monte Carlo molecular-dynamics approach in the paramagnetic phase at 7=1.0257, and
1.275T,.. The resulting scattering function S(g,w) and its integral over restricted energy
windows are computed and compared with the recent neutron-scattering experiments on
iron. Reasonable overall agreement with much of the experimental data is found.

PACS numbers: 75.10.Hk

Recent experiments by Wicksted efal! and
Brown efal? on paramagnetic iron using spin-
polarized neutron scattering have brough a new and
welcome exactitude to the old debate on the
magnetism of iron. These measurements yield the
scattering function S(g,w), and its convolution
with resolution functions of a given energy width,
on an absolute scale. These measurements are of
considerable importance since they provide
stringent tests of possible theories. The existing
theories are broadly in two classes. Theories of one
class assume that vast short-ranged order is present
in the paramagnetic phase of iron® as suggested by
the early work using unpolarized neutron scatter-
ing.* Another class of theories®’ view iron as a
disordered local-moment situation wherein fluctuat-
ing Anderson-type local moments exist in the
paramagnetic phase. These theories have been
rather successful in explaining the thermodynamic
data on iron. In addition, the spin dynamics of the
Heisenberg model in an approximation scheme®
due to Shastry, Edwards, and Young (SEY) is con-
sistent with the raw data of the early neutron-
scattering work.* The one apparent difficulty with
the calculation was with regard to the propagating
modes; the theory yielded none at the value of ¢
suggested by the experiment. In view of the recent
data, this particular feature would appear to be sat-
isfactorily resolved.

Turning to the recent experiments, Brown et al.
have measured the scattering function and its con-
volution with an instrumental resolution function
with width [full width at half maximum (FWHM)]
=43 meV at various temperatures. If the width
were infinite, then the measurement would yield
the static correlation function (CF) in ¢ space, from
which the.r-space CF could be deduced. However,
Edwards® pointed out that the measured pseudo-
CF’s lead to unreasonably small values of the rms
local moment, and suggested that the energy win-
dow used was insufficient to extract the true static
CF. The initial experiments at Brookhaven used an
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even smaller energy window (=40 meV), and
more recent measurements use a larger window
(100 meV).? The quantum of missing intensity and
its distribution in energy are problems of great
current interest.

The aim of this investigation is to calculate
S(g,w) of iron from a Heisenberg model, with the
object of finding the expected ideal intensities and
also of finding the expected pseudo-CF by convo-
luting the ideal spectrum with resolution functions
of various widths. The results are expected to be
sensitive to the extent and nature of inelasticity
(i.e., the line shapes, and widths) in addition to the
absolute values of the static CF’s. I compared the
spectrum of SEY with preliminary experimental
data from Wicksted et al. and found that for small
g, the theoretical lines were narrower than the data.
Also, Brown et al. pointed out that the situation at
larger ¢ (0.5Q,,) was reversed; the theoretical lines
were considerably wider than the experimental ones
(see Fig. 1).

This situation motivated the present study. In
the present work we avoid analytical approxima-
tions, and seek to estimate S(g,w) from a direct
computation of the time evolution of spin arrays by
the Monte Carlo molecular-dynamics technique.

The technique used in this work has been applied
previously!®!? to the Heisenberg model on sc and
fce lattices. The standard Monte Carlo (MC) meth-
od is used to generate typical arrays at a given tem-
perature, and these are used as initial conditions for
the natural dynamics. We consider the nearest-
neighbor exchange model in this work. An analysis
of the room-temperature spin-wave spectrum shows
that this hypothesis is reasonably adequate up to
100 meV. We consider the spins S to be classical
vectors with length [s (s +1)172 where s = 1. Thus
the semiclassical Heisenberg model is given by

H=—Js(s+1) E&','c‘r’,; & l=1, (¢))
<ij)

with S;=&,;[s(s+1)]1Y2 The dynamics of the
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FIG. 1. S(gw)/h multiplied by a constant N at

1.0257,. Curves I, II and III are from present calculation
for q/q»=0.125, 0.25, 0.375 with N =1.28, 3.93, and
8.4. Curves IA, etc., are from SEY at the same ¢’s with
N=0.074, 2.0, and 9.98. Inset is at ¢ =0.5g,, with
T =1.275T, and the dashed line is from data of Brown
et al. normalized at w = 0.

unit vectors is given by replacing the quantum-
mechanical equation of motion of S; by appropriate
classical equations. Thus

tO%&’,=&’,x‘2.&'J, )
Jj€nni

where ‘‘nni/’’ denotes ‘‘nearest neighbors i.”’ The

natural time unit in the problem is fo=#/J[s

x(s+1)]1Y2. The equation of motion [Eq. (2)]

leads to spin waves in the perfectly ordered state

with dispersion E, =8/ [s (s + 1Y 2y, where

¥, =1-cos(g.a/2) cos(qya/2) cos(q,a/2).

We determine J, the only parameter in the theory,
by comparing this expression with the observed
spin-wave data (extrapolated to 7 =0 by multiply-
ing by 1.15). This yields J=22.42 meV. The
high-temperature series estimate of 7, for the clas-
sical Heisenberg model'® for the bcc lattice gives
T.=1069.4 K, in reasonable agreement with exper-
imental values = 1000 K.

The scattering function S (g,w) is found from the
auto-CF of &. With &,=N""23,5 exp(—iq

+T;),and C, (1) = (' _,(1)- 7,(0)), we have

N + oo
Caw = [ (@2m)C (D exp(—iwt),  (3)

25 (s +1)C,(w)

S(gw)= 1+ exp(—fkw/kgT) "

4

The detailed-balance factor in Eq. (4) has been in-
troduced following Windsor'? and is in the spirit of
the semiclassical approximation. It should be noted
that there is no unique prescription for reconstruct-
ing the quantum correlations given the classical
ones. The popular prescription used here has
several advantages.!® I have also checked that other
treatments of the detailed-balance factor lead to
comparable results. The object of special interest is
the pseudostatic CF defined as

+ 00
MZw) =4 [ awS(gwIR(wiwp). (5

Here R (w;wy) is an instrumental resolution func-
tion assumed to be Gaussian with R =exp(— w¥/
0?), where o= Jwo(In2) “V2, Thus wy is the full
width at half maximum (FWHM). In the limit
wo=oco, the ideal CF’s are recovered as
M} (o0) — 8X, with X, = C,(+=0), an equilibrium
quantity. The bulk susceptibility is related to X,
through Xg=(N/3) guds(s+1)Xo/kgT.

In the present calculation, the major effort in-
volved is in the time evolution of typical arrays
through Eq. (2). The time evolution must neces-
sarily be truncated at some value of time, say fpx.
This introduces an intrinsic linewidth into the com-
puted S(gq,w), of order %/t.,,,, and one would like
to minimize it. I chose ¢,,,,=24t, and constrained
the maximum time lag to be 12¢y,. This calculation
is, I believe, the longest for the array sizes con-
sidered, and was forced on me by the large value of
J in comparison with typical experimental resolu-
tion widths. Each dynamical run requires some 6 h
central-processing-unit time on a Cyber 170/730
computer.

In brief, the computation consists of a MC pro-
cedure by which I generated ten samples of arrays
at each temperature. The array size was chosen to
be of 2x163(=8192) spins in order to minimize
finite-size effects. The MC ages of the samples re-
tained were 2000,..., 11000 steps per spin. I es-
timated the equilibrium values of static CF’s in real
space out to the tenth-neighbor shell. The CF’s of
o, were also estimated. Stable averages of CF’s
resulted in the ¢ space on averaging over a few
thousand samples. This procedure was followed by
the time evolution through Eq. (2). The initial-
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value problem was integrated by the fourth-order
Runge-Kutta method due to Gill.!* This method
has the advantage of requiring only 3N storage
spaces for a fourth-order method where N is the
number of coupled equations solved (24 576). The
step size was chosen (0.01) after tests involving the
behavior under time reversal. The variables moni-
tored were o,(¢) which were stored for =0,
0.3,0.6,...,24. We study the popular (110) direc-
tion in this work, which provides eight nonzero ¢
vectors with periodic boundary conditions.

The procedure adopted was to compute the auto-
CF C,(1)/C,(0) for each sample. The estimate of
the spectral function was obtained by multiplying
the auto-CF by the average of the static CF’s ob-
tained from the MC procedure and further multi-
plying by the Tukey spectral smoothing function
0.5[1+ cos(2mt/tmax)] in order to reduce the dis-
tortions in the spectrum.!® The resultant function
was Fourier transformed. The intrinsic linewidth
is 16.6 meV (FWHM). This procedure was carried
out for each sample at a given temperature and the
final estimate of the S (g,w) was found by averaging
over the ten samples. The rms fluctuations were
computed and are indicated as error bars in Fig. 1.

The resulting S(g,w) at the two temperatures
considered are shown in Fig. 1. The SEY spectrum
should be broadened by convoluting with the Tukey
window function in order to compare with the
present spectrum. In the inset in Fig. 1 the spec-
trum is compared with the data of Brown et al. It is
seen that the energy scale over which S falls off is
considerably smaller in the present calculation as
compared to the SEY spectrum and closer to the
experimental curve. A shoulder in the theoretical
curve is also consistent within the error bars.

The computed static CF’s in g space are expressi-
ble rather neatly in terms of the Ritchie-Fisher
functional form!® for the CF X,=a(8+yy,)"Y
(B+¥,), where n=+ and y=(5—7)/3. The
uniform static susceptibility is «8"?~! and the
correlation length £ =a/(88)"2. The CF’s in real
space can be obtained by Fourier transforming X,
and are in close correspondence with the direct esti-
mates from the MC procedure. The parameters «
and B are estimated as (0.7528, 0.0043) and
(0.9647, 0.1305) at T=1.025T, and T=1.275T,,
respectively, leading to the uniform susceptibility
and correlation length (156.5 +10, 15.55 A) and
(7.07 +0.6, 2.81 A) at the two temperatures. The
CF in real space is quite similar in nature to the
spherical-model estimates of SEY and does not pos-
sess giant short-range order.

In Fig. 2 I compare the computed M (w =100
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FIG. 2. M, vs q at T/T.=1.025 compared with the
Brookhaven data at 1.027, (circles) using pure Fe
(FWHM =100 meV). The inset corresponds to T
=1.275T, and the triangles are from the Grenoble data
(FWHM =43 meV). The dashed lines are from SEY.
M, is in units of wp.

meV) with the experimental data of Wicksted
etal'' at T=1.02T,. The data are seen to be in
good accord on an absolute scale over the entire
zone. The recent results of Wicksted et al. are with
pure single crystals of Fe and are in better accord
with theory as compared to earlier data using Fe (4%
Si). The computed M (wy=43 meV) is compared
with the data of Brown et al.2 at T=1.273T, in the
inset of Fig. 2. It is remarkable that in both cases
the SEY results for M, are quite close to the
present calculation and also the experiments despite
the deviations in Fig. 1.

In Fig. 3 1 have plotted the intensity loss as a
result of the frequency cutoff for various values of
the energy window. The remarkable feature is the
somewhat large loss for windows as large as 100
meV for g close to the zone boundary. This is a
consequence of the small tails in S (g,w) extending
out to 150 meV or so. For the itinerant-electron
model we should expect weak tails extending out to
much higher energies, a few electronvolts. This
implies that it is extremely difficult, if not impossi-
ble, to extract the true static CF from limited ener-
gy integrations as performed in the recent experi-
ments. I propose that meaningful results can be ex-
tracted by performing limited energy integrations
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FIG. 3. Intensity loss I, = M, (wo)/M,() at 1.275T..
The FWHM of windows are indicated along the curves.

with varying windows at a fixed temperature and
comparing with theoretical predictions, such as are
implicit in Fig. 3. In conclusion I feel that this in-
vestigation demonstrates that the Heisenberg model
description of paramagnetic iron is in reasonable ac-
cord with a considerable amount of existing experi-
mental data, both in equilibrium and away from it.
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