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We study an interacting one-dimensional quantum lattice gas, based on the Heisenberg-Ising ring.
The particles are given a charge, and the ring is threaded by a magnetic flux. We then calculate exactly
the energy of the state, which begins as the ground state with zero magnetic flux, when the magnetic flux
is adiabatically increased. We find the result that the period of the ground state is two flux quanta,
which can be interpreted as charge carriers with half-integer charge.

PACS numbers: 05.30.—d, 05.60.+w, 71.30.+h, 72.90.+y

In this Letter, we consider an interacting one-dimen-
sional quantum many-body system on a ring of cir-
cumference L, with M particles—either one-component
fermions or bosons—carrying a charge —q. The ring is
threaded by a magnetic flux of strength Ac®/q. Follow-
ing Beyers and Yang,' the sole effect of the magnetic
flux is to impose twisted boundary conditions ¥(. ..,
x;+L,...)=e®¥( .. x,...). If this system were a
continuum system with Galilean invariance, the problem
would be trivial, for then we could simply take an energy
eigenstate for ®=0 with total energy E and total
momentum P, and multiply it by a phase factor
exp(i®X x;/L). This new state will satisfy the correct
twisted boundary conditions, and will also be an energy
eigenstate with an energy E(®) equal to E(®)=E
+2®P/L+M®?/L? (We use units where A =1 and
2xmass=1.) On the other hand, if the particles move
on a lattice, Galilean invariance is destroyed, and the
problem is nontrivial.

Denoting by Eo(®) the ground-state energy for a
given @, we can readily establish' that Eo(®+2x)
=Ey(—®)=Ey(®). On the other hand, if we begin
with the ground state for ®=0, and then follow this
state adiabatically for increasing ®, we find the energy
E(®)=E(0)+AE(®) to be a continuous function of ®.
It is this adiabatic variation that concerns us in this
Letter. If the original spectrum has a gap above the
ground state of order 1, then Eo(®) and E (®) will coin-
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cide for all @, and in fact be independent of ®. Other-
wise they need not, and will only coincide up to the first
level crossing of Eq(®). For the continuum case, Eo(®)
and E(®) coincide only for 1=®> — 7. At |®|=n,
there will be level crossings.

The model we study is the familiar Heisenberg-Ising
spin chain governed by the Hamiltonian?

N
H==1 X lofojr1+ofofsi +acjoii}.
/=
As is well known, 2 this has an interpretation as a lattice
gas of either fermions or bosons, where spin up repre-
sents an empty lattice site and spin down represents a
particle. The energy eigenfunctions are given by Bethe’s
ansatz in the form

M
wixy,...,xnm) =ZP:A(P)exp i lepjx,
=
In this expression, P is a permutation of the integers
from 1 to M, A(P) are M! coefficients related by two-
body scatterings, and the M variables p; are given as
solutions to a set of M coupled transcendental equations
when we impose boundary conditions.

Much is known about this problem, especially in the
thermodynamic limit.>* For the considerations of this
Letter, we quote a recent result of Hamer, Quispel, and
Batchelor® who, using methods of Woynarovich and Eck-
le® which in turn were based on Wiener-Hopf techniques
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of Yang and Yang,? find for the ground state with twist-

ed boundary conditions, at m=1% and with A

m st YinGa) |, msin(u)®?
Eon(®) —Eq (0) =~ — Zsinlu rsin(y ,
on(®) = Eo~(0) 6uN 4u(r—u)N

SO
Eo(®) — Eo(0) =nsin(u)®*/4u(x—pu)N .

We begin with the familiar coupled transcendental
equations for the wave vectors of the Bethe-ansatz solu-
tion of the spin chain, modified only by the addition of
the phase ® of the twisted boundary conditions:

M

Npj=2nli+®— 3

o(p;,p;) .
1=10=)) Pi-pi

Since we wish to follow adiabatically the state which is
the ground state at ® =0, as we continuously vary ®, we
choose the quantum numbers /; to be the ground-state
quantum numbers: Iy,...,Iy=—(M—1)/2,..., (M
- 1)/2.

The phase shift 6(p,q) = —6(q,p) is the familiar
function

Asin[(p—g)/2]
cosl(p+g)/21 —Acosl(p—g)/2] |

In this Letter, we shall only treat the repulsive case
0=A= —1, or n/2=pu=0. This function 6, con-
sidered for now as a function of two real variables p and
g, has branch points at p=qg =t (x—u), and periodic
images of these. We choose the cuts so that as we vary
@, the p’s remain on the same sheet. (We find continuity
in @ to be extremely useful, as was continuity in A in
previous investigations.) This criterion places branch
cuts at x—u=p=qg=r+u, and requires 6(p +2x,q)
=—-21+6(p,q).

There are three physical quantities of interest: (a) M,
the number of particles, (b) the energy E=—NA/
2+23 M (A—cosp;), and (c) the total momentum
P=M®/N=3X'p/N.

We want to start from the ground state and adiabati-
cally vary the flux until we return to our initial state.
The energy E(®) must then also return to its initial
value, although it might return sooner (to order 1/N), so
that the period of the wave function is an integer multi-
ple of the period of the energy. Further, we see that the
relation between the momentum and the flux, P
=M®/N, which can be proven generally, also places re-
strictions on the period of the wave function, since P
must return to its initial value mod2x. However, the en-
ergy may return to its initial value without P returning
to its initial value (mod2n), provided there is a degen-
erate state (to order 1/N) at the proper momentum. We
will return to this point later.

Let us first review the case of free particles when
A=0. Since this corresponds to free fermions, clearly
the period of E (®) is 27V, and
cos(®/N)sin(zM/N)

sin(n/N)

6(p,q) =2arctan

E(@)=-2
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For the interacting case with 0>A= —1, or
n/2> u =0, the situation is very different. We restrict
ourselves in what follows to the most interesting case of a
half-filled band or lattice when M =N/2. Following the
p’s, and thus the wave functions, as continuous functions
as ®, the behavior we find is the following. Starting
from the ground-state p’s characterized by the ground-
state quantum numbers, we adiabatically turn up the
flux ®. As long as |®| <2(x—pu), all p’s stay within
|pl <z—u. As ® increases past 2(x—pu), py—the
maximum p—increases beyond w—yu. It continues to
increase, so that at ® =2z, py =n, until finally at
®=2(zr+pu), py crosses m+pu. During the time that
2(r—p) <®<2(n+pu) and n—u <py < n+p, all the
other M—1 p’s stay within |p| <z—pu. Finally, for
2(n+u) <®<2(3r—u) the p’s are the same as for the
original |®| < 2(zx—u), mod(2x), provided we relabel,
so that pyr—1 > par—2> -+ > p; > pp—2x. The state
is thus periodic in @ with period 47, which may be inter-
preted as implying charge carriers with charge —gq/2.
The remainder of this paper verifies this scenario and ex-
amines the consequences.

First let us consider some special points where the
equations simplify.

(a) Let py=r—pu, so Iy=(M—1)/2, and 6(p,,
pm) =n—2u for j <M. Remembering that a half-filled
lattice implies NV =2M, the equation for p,s gives the flux
to be ®=2(x—yu). On the other hand, the remaining
M — 1 equations reduce to

Np=2zI'(p) —ZHB(p,p') ,

where I'(p) are the ground-state quantum numbers for
M — 1 particles, and the double prime on the summation
over p' indicates that both p and pys are to be omitted.
Thus neither py nor ® appears in these equations, and
the M —1 p’s are just the ground-state distribution for
M — 1 particles and no flux. We find for the momentum
and energy that

P=py=n—pu=a/2,
E=Eopu-1+2[A—cos(py) 1 =FEop-.

Yang and Yang? have calculated the susceptibility at
zero magnetization, and thus give us the final result for
AE(Q’)EE((D) —E)=E(W®) _E()‘M,

AE((D) =E0_M—-| _E()'M =7t(ﬂ_ﬂ)5in(/1)/N/.l
= ~— (chemical potential) .

This result agrees with Hamer, Quispel, and Batchelor,?
whose derivation is valid for |®| <2(x—pu), or up to
this point and not beyond.

(b) There is a similar point when py=r+u,
@ =2(x+yu) =2P, with the same energy as (a).

(c) If we let pyy =nr, and assume that the remaining
M—1 p’s are symmetric about the origin so that
2'0(p;,p)=(M—1)r, we then find the flux to be
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®=2x. Now, the remaining M — | equations reduce to
Np=2xI'(p) = X" 6(p,p") +x—6(p,m)].

The last term is an odd function of p, justifying our orig-
inal assumption. The total momentum is x; however, the
energy is not so easy to evaluate. It appears to give AE
of order 1, when in fact, as we shall soon see, AE is really
of order 1/N.

We now investigate the region when |®—2x| <2y,
|py — 7| < . We thus define new variables s&=® — 2,
ép=puy — m, and find the equations become

Np=2xI'(p)—X."0(p,p') + 60+ [r—0(p,n+3p)],
Nép =60+ [x—0(p,n+6p)].

Thus the equations resemble a system of M — 1 particles
with flux, and some type of excitation.

The p variables are not the most useful for explicit cal-
culations, since the two-body phase shift is so complicat-
ed. Therefore we now introduce a useful change of vari-
ables by first defining a function f(a|u) of a complex
variable a and a real parameter u:

f(a|u)=2arctanlcot (u/2)tanh(a/2)] .

This function has branch points at
+2ri(integer). We choose the branch so that

a==iu

—w<g< to gives —(r—u) <f<+(x—u),
and with ¢ =ir+p,
—o<f<+oo gives t1—u<f<rzgtpu.

The derivative of f occurs so frequently that we give it a
name,

dfaly) _ _ sin(u)
da =k(alu) cosh(a) —cos(u) ’

and calculate the Fourier transform as

_ sinh[(x—p)y]

A =_l_ = ~ira
k(ylu)= o f_md“" k(alp) sinh(xy)

An extremely important point is that this expression is
only valid for 22> p > 0. For other values of the pa-
rameter we must use the symmetry relations

k(ylp)=—k(y| —p) =k(y|lu+2r)

to extend the range of the parameter. We shall use the
convention that when we write k(y|u), the argument u
will always be in the range 0-27. Note that k(y|u) is
even in u_about z._ The Fourier transform of f itself is
given by f(y|u) =k(ylu)/iy.

We now make a change of variables, so that

p=fla;lw), j=1,....M—1,
and

pu =flin+plp) =n—fBla—p),

so that

sp=—fBlz—pn).

Also,

0(p,p)=0(f(alu),fla'|u))=—f(a—d'|2u),
and
r—0(p,pr) =n—0(f(alp),x—fBlr—p))

=r—fla—B—ir|2u)=f(B—alr—2u).

The basic equations thus now have the form

Nf(alp) =2xI'(a)+ X f(a—a'|2u)

+f(B—alr—2u)+s0,
NfBlr—p) =X f(B—alr—2u) — 6.

One further expression we need is the energy, given as
E=—NA2—2sin(u) | X k(alp) —kBlz—u)|.

The coupled equations have terms of very different
sizes, and consistency requires that they be satisfied to
each order in 1/N. The lowest-order equations are

flalp) =2xI'(a)/N+ X f(a—d'|2u)/N,
fBlr—u)=X f(B—alr—2u)/N.

The first equation is familiar from Yang and Yang,?
and requires that the a’s be distributed from —oo to
+oo with a density NRo(a)/2x. Differentiating both
equations and replacing sums by integrals, they become

k(a|y)=R0(ot)+Lfoo k(a—a'|2u)Ro(a')da’,
2 v~

k(Blr—p) =31;f_2k(,6—a|7r—2u)Rg(a)da.

Thus Ro(a) appears to be overconstrained. The integral
equations can be easily solved by Fourier transforms,
and we find that the first equation gives

T

Rola) = 2ucosh(zwa/2u) -

The second equation is identically satisfied due to the
remarkable identity between Fourier transforms,

k(ylr= )+ k(2w =kl k (vl —2u) .

This equation appears even more remarkable when
rewritten as

KGrtplu) =5 [ kGn+p—al2w)Ro@)da=0.

If we had taken the first equation and analytically con-
tinued a to B+in, we would have had for the right-hand
side of the second equation not zero, but instead
Ro(ir+p)=0. Analytically extending the equation is a
trick that is often used, for instance, in the Wiener-Hopf
techniques or the calculation of the excitations of the
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7 3sin(y)
[ p(m-p)
= _;sin(y) 2
N AE Ap(m-1) P N AE
(- (- p)sin(p)/p
‘ ; 0
0 i) 2(‘"’“’) 2n

FIG. 1. The results for u=n/3. The curve is the exact
theoretical result, while the small squares give numerical re-
sults for a ring of 64 sites.

Heisenberg-Ising ring. However, as we can easily see, it
is not permissible to continue from the real axis to the
line in because there is an essential singularity of the in-
tegral at + in/2.

The corrections due to the extra terms in the equations
are of order 1, and they add. There is a correction to
Ro(a) from 8®, obtained by adjusting the finite limits,
and very likely in fact of order 1/N, as was the case
when |®| <2(x—pu). In addition, there is a shift of the
a’s due to the B term, so that we write R(a)
=Ro(a)+ R (a—pB)/N. The first equation,

k(alr—2u) =R|(a)+wa k(a—d'[2u)R (e )da' ,
2 v —

implies that R;(a) is even, and so the second equation
gives 6@ =0, since f is odd.

The energy to order 1 is given by E=Fq+E,, where
Eg is the ground-state energy of order N as found by
Yang and Yang,? while

E\=2sinu |k Blr—p)

_';;f_lk(ﬂ"abr—Zu)R.(a)da .

Again, we can solve for R (a) and evaluate E, by
Fourier transforms. Remarkably, the same identity as
before gives the surprising result that £ =0.

To summarize, the whole region where S goes from
— oo to + o0 occurs with no change of energy to order 1,
and with no variation of flux from ®=2r.

Thus, the energy AE is order order 1/N, and all varia-
tion of both flux and energy occurs while |py — | =p.
An exact theoretical derivation using Wiener-Hopf tech-
niques gives the final result for the energy as

AE (®) =[rsin(u)/Nau(z — )12, |®| <21,

AE(®d+4n) =AE (D) .
1836

The derivation will be presented in a longer publication,
but we have numerically iterated the equation, and the
convergence is excellent. In Fig. 1, we show the results
for u=n/3. The curve is the exact theoretical result,
while the small squares give numerical results for a ring
of 64 sites. The results are particularly impressive since
different iteration schemes must be used on each side of
the point ®=2(xr—u). [The point at ®=2(x—pu) is ac-
tually one point from each of the two schemes.] For any
finite N, the curve is quadratic at ® =2z, while in the
limit N— oo, NAF has a cusp.

Since the spectrum is periodic in @ with period 2,
E(27) must be a state in the spectrum with momentum
P=®/2=n. This state has the energy of the first excited
state in the M =N/2 sector with zero flux, it is the
momentum 7 state at the bottom of the well-known des
Cloizeaux and Gaudin* dispersion curve, and it is degen-
erate with the ground state in the thermodynamic limit.
If we had started from this state, we would have had an
energy-flux relation AE(®+2x), and these two curves
intertwine as @ is varied. In fact, our calculation gives
an exact calculation of the energy gap above the ground
state in the S, =0 sector,

AEQr)=r3sin(u)/Nu(xr—pu) ,

for the Heisenberg-Ising model with 0= A= —1. This
agrees with the numerical result 72/N for A=—1 of
Bonner’ and the analytic result of Woynarovich.®

One can reverse the argument and give a partial ex-
planation of the 4r periodicity for AE(®) as follows:
For finite /V, we know the ground state to be nondegen-
erate. If we can sharpen this statement to show the
ground state to be nondegenerate to order 1/N, then
since P does not return to 0(mod2x) until @ increases to
4r, the periodicity of NAE(®) cannot be less than 4x.
Of course for A=0, we have a case where the period is
much larger than 27z. And, on the other hand, we know
that for A < — 1, the ground state is doubly degenerate
to order 1/N, with a gap above of order 1, so
NAE (®) =0 and the period is zero.

We define a topological winding number to be the
number of times the flux @ increases by 2z before the
state returns to its initial value. Thus, the winding num-
ber of our state is 2, for 0 < u < /2. However, we find
for the free-particle case u =x/2 that the winding num-
ber is V. This result indicates that there are branch
points in the u-® plane at y=nr/2 and ®=2(r % u), so
that as we walk a closed curve in the u-® plane, we do
not necessarily return to our initial state. Or, in other
words, zero interaction is fundamentally different from
weak interaction.

To our knowledge, this is the first such calculation for
an interacting many-body system. Results for the at-
tractive case and for the Hubbard model will be present-
ed in subsequent papers.
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