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We establish a correspondence between the evolution of the distribution of eigenvalues of a N x N
matrix subject to a random Gaussian perturbing matrix, and a Fokker-Planck equation postulated
by Dyson. Within this model, we prove the equivalence conjectured by Altshuler and co-workers
between the space-time correlations of the Sutherland-Calogero-Moser system in the thermodynamic
limit and a set of two-variable correlations for disordered quantum systems calculated by them.
Multiple variable correlation functions are, however, shown to be inequivalent for the two cases.
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In a series of recent papers, an interesting generaliza-
tion of the problem of eigenvalue statistics for complex
quantum systems has been introduced by Altshuler, Si-
mons, and co-workers [1]. They consider the change in
the positions of the eigenvalues in response to an external
perturbation; after an appropriate normalization of the
perturbing potential, they show that the evolution of the
eigenvalues of the system as a function of the strength of
the perturbation is universal. By treating this extra pa-
rameter (the strength of the perturbation) as a timelike
coordinate, they conjecture that this problem is identi-
cal to the ground state dynamics of an integrable one-
dimensional interacting many-body quantum model, the
Sutherland model [2]. The ground state equal time cor-
relations of this latter model are known to correspond
to the eigenvalue statistics at (any) fixed strength of the
perturbation for an appropriate choice of the coupling
constant, depending on the universality class of the per-
turbation (real, complex, or symplectic). If the equiva-
lence between the two systems is valid, then the full time-
dependent correlation functions of this model are known
from Ref. [1], and constitute a dramatic progress in our
understanding of this many-body problem. Although the
complete spectrum of an integrable many-body problem
can often be found, the time-dependent correlations in-
volve matrix elements, and the above calculation is one
of the very few for a nontrivial many-body system.

In this work, we prove the equivalence between the
space-time correlators of a Sutherland type quantum
model and those of a novel version of the quantum chaos
problem wherein we interpolate parametrically between
two random matrices of a given ensemble [3] in a peri-
odic fashion. By integrating over all perturbations from
a given ensemble, we show that the eigenvalues evolve ac-
cording to a Fokker-Planck equation proposed by Dyson
[4] in the course of his classic work on random matrices
[8]. This equation is equivalent, under a Wick rotation,
to the quantum mechanics of the Calogero model [6]. In
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the thermodynamic limit, the Calogero model has iden-
tical bulk properties as the Sutherland model, provided
the constants scale properly with N, the size of the ma-
trix [2]; this scaling is shown to be fulfilled, whereby we
establish the conjecture of Ref. [1]. Our work basically
demonstrates that the Dyson Fokker-Planck dynamics [4]
represents the equations of motion describing the evolu-
tion of eigenvalues of random matrices within a given
ensemble.

For the evolution of eigenvalues, Simons and co-
workers consider a system with a Hamiltonian H =
Hy + zV, where V is the perturbation, and z is the
strength of the perturbation. Units are normalized so
that the mean level spacing of the eigenvalues ¢; of Hy
is unity, as is the rms “velocity” of the eigenvalues, de-
fined as ((d¢;/0z)?). The autocorrelation function of the
energy eigenvalues is defined as

k(r;w) = <Z(5(e —&(T))6(e —w — €;(T + 1:))> (1)
]

By explicit calculation for disordered systems, Simons
and co-workers provide strong evidence that k is univer-
sal, and depends only on whether H is in the orthogo-
nal, unitary, or symplectic ensemble. Numerical simula-
tions are used to argue that this is also true for quantum
chaotic systems.

For z = 0, k is known to be the same as the ground
state equal time correlations in the positions of a collec-
tion of N particles confined to a circle, interacting with
the Sutherland [2] Hamiltonian. Here we consider the al-
ternative Calogero model [6], in which the particle posi-
tions are allowed to range over (—o0, 00), with a confining
parabolic potential:

2
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The width of the confining potential is chosen to give a
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mean ground state interparticle separation in the center
of the distribution to be unity. This requirement yields

2 =2N/m?3. (3)

The coupling constant 3 is equal to 1, 2, and 4 when H
is in the orthogonal, unitary, and symplectic ensembles,
respectively. Under the mapping [7]

2=2it, e= )\, (4)
Simons and co-workers argue that k(z;w) is equal to
the corresponding time-dependent correlation function
for the Sutherland model. This correlation function can
be calculated explicitly for 8 = 2, where it agrees with
the expression obtained by Simons and co-workers. For
[ =1 and 4, while a complete calculation is not possible
for the Sutherland model, the asymptotic forms of k for
large and small ¢ can be calculated; these agree with the
asymptotics of the expressions derived for k(z;q) [1] for
the orthogonal and symplectic ensembles, respectively.

In this paper we demonstrate that, when V is a Gaus-
sian random matrix from the appropriate ensemble, the
evolution of all quantities such as k, involving only the
eigenvalues ¢;(z) at two different values of z, are equal
to the corresponding time-dependent correlation function
for the Calogero model. However, correlation functions
involving quantities at more than two values of = are in
general different, so that the full dynamics for the two
systems are not identical.

In order to do this, it is more convenient to work with a
Fokker-Planck equation that is equivalent to the Calogero
Hamiltonian. With P({\;};t) = vo({N})v({Ai}it),
where 1 is the ground state wave function for the
Calogero model, we obtain [4,5]

oP( {/\ s t) 0 >\i
-Yon %+ 37
i
P|. (5)
;Z OXi [ Ai — A
Equation (4) is then changed to
=21, e= A (6)

Equation (5) is the Fokker-Planck equation correspond-
ing to the Langevin dynamics of a collection of NV classical
particles at finite temperature, with logarithmic repulsive
pairwise interactions, the Wigner-Dyson Coulomb gas [5].
Because of the repulsion between the particles, no steady
state distribution is achieved without the parabolic con-
fining potential. Correlation functions involving the par-
ticle positions at two different times 7; and 72 > 71 can be
found by considering the evolution from a general initial
state for a time 7o — 71, and then averaging over initial
states.

For the quantum system, we modify the parametriza-

tion of the disorder strength from H(z) = Ho + zV to

H(z) = Hycos(Qz) + Vsin(Qz) /9. (7
Here V is taken to be of the form V = E A-1 o Vrer, @
la Dyson, where e, are units of the approprlate alge-
bra, so that (V2) = S0-1(V;)2) = (8/2)(V?). This
parametrization has the advantage that when V/Q and
Hj are considered to be Gaussian random matrices from
the same distribution, the distribution for H(z) is sta-
tionary as a function of z. For unit mean eigenvalue
spacing, we obtain

(Vi2) = 20°N/x?B, (Vi) = Q*N/=°. (8)
From the additional normalization condition that the rms
velocity of the eigenvalues must be unity, it is easy to see
from first order perturbation theory that (V2) = 1, so
that we must choose

= /762N =1/a. (9)

Since 2 — 0 for large N, the change we have made in
parametrizing the disorder strength is inconsequential for
finite x.

We first note that, for any perturbation V, the evo-
lution of the eigenvalues ¢;(z) as a function of z can
be expressed in the form of a set of first order differ-
ential equations in the continuously changing eigenbasis

of H(z) perturbed by H'(z) = 8H(x)/0x:
de; ., dH, 2 2|Hy|?
dr i g =-0 €i+; P
dH’
-> = kH,zj(e,_le + o)
ki g % k €5 — €
1
+H,(H}; — H};) . (10)
€ — €

Equation (10) can be viewed as a classical Newtonian
system, with N degrees of freedom corresponding to the
eigenvalues €;, and v = N + SN(N — 1)/2 degrees cor-
responding to the diagonal and off-diagonal elements of
H’, obeying appropriate Poisson bracket relations. This
classical system can be shown to be integrable [8]. The
integrability of this system implies that it is essential to
make assumptions about the nature of the matrix V, ei-
ther of the form we have made above or otherwise [9].

It is possible to integrate these equations of motion
formally; irreversible equations in = arise when V;; are
averaged over. In the present work, we find it convenient
to follow a different strategy to obtain a Fokker-Planck
equation for the eigenvalues. Our method follows closely
along the lines of a beautiful proof by Dyson [4] for the
behavior of the eigenvalues of a matrix subject to ran-
dom thermal noise; although our problem does not have
a source of thermal noise, this will be seen to be unim-
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portant for two time correlation functions. Since V is a Gaussian random matrix, for any given initial Hy the matrix

H(x) has the distribution at a given z:
v

P(H,z|Hp) =

We recognize this distribution as the solution to the equa-
tion [4]

P 2P 1 0
Zr i+ — ———(H;; 1
% =3 |soam ey P 02
with the initial condition H = Hy, where 4 = 1/,
# = —4%In [cos(Qx)],
9ij = 65 + (1 = 635)8/2. (13)

This is the Fokker-Planck equation for a system in
which all the matrix elements H;; undergo independent
Langevin dynamics [starting from inital values (Hp);;] in
a parabolic confining well, with an appropriate width and
time coordinate. The temperature at which the Langevin
motion takes place is unity for the diagonal elements of
the matrix and (/2 for the off-diagonal elements. Equa-
tion (11) thus implies that, for any given Hy, all mo-
ments of the different elements of H(z) will be exactly
the same at any z as if the elements of H were mov-
ing independently in parabolic confining wells at a finite
temperature. But for such a thermal motion, as shown
by Dyson [4], it is possible to go to the eigenbasis of H
at any time, and obtain to second order in perturbation
theory for an infinitesmal increase in time 67 a simplified
form of Egs. (10):

bei = 6Hii+ Y (6Hi;j)? /(e — €;). (14)
J#i
The normalization of Eq. (13) then implies that
€ . , .
(6ei) = —=567 + 0 > 1/(ei — €5)67,
J#i
(6€2) = 267. (15)

The distribution of eigenvalues P({e;},7|{e}) at any
time 7 then satisfies a Fokker-Planck equation like
Eq. (5), with \; replaced by €;, and 7 and a replaced by
7 and @, respectively. But comparing Egs. (6) to Egs. (9)
and (13), we see that, in the large N limit, a = & and
T = 7, yielding Eq. (5). Thus the distribution of eigen-

Q 1
sin” (Qx) P ( B §Tr

[ (z) — Ho cos(Q)) —2

m) (11)

values of the quantum system evolves in the same way as
the distribution of particle positions in a Wigner-Dyson
gas.

While the equivalence between the time coordinate de-
fined in Eq. (13) and Eq. (6) is true only in the large N
limit, the form given in Eq. (13) is true for any N. From
the form of Eq. (7), we see that 27/ is the Poincaré
recurrence “time” interval in z for all the eigenvalues to
return to their initial values. From Eq. (13) we see that
the interval (0,7/2) in z is stretched out to (0, 00) in 7,
so that the system continues to lose memory of its ini-
tial configuration for all 7, with complete equilibration
achieved only in infinite time.

Note that we have found that the two distributions
evolve in the same way for arbitrary initial conditions.
Quantities such as k(z; ¢) can be seen from Eq. (1) to in-
volve a sum over various moments of €, weighted suitably
and then averaged over equilibrium initial conditions, re-
quiring only a weaker equivalence. Under a self-averaging
assumption, such equilibrium averages will be the same
as for a generic choice of initial conditions taken from the
equilibrium distribution.

Since our results are independent of initial conditions,
it is also possible to dispense with the parabolic confining
well: Although there is no longer any steady state, one
can follow the transient dynamics. This actually corre-
sponds to the original parametrization of H = Hy + 2V
although conceptually slightly subtle, the algebra is ac-
tually simpler. Although time translational invariance is
now broken, for any fixed finite time the correction terms
vanish at large N.

The result obtained above has been for explicit av-
eraging over a Gaussian random perturbing potential.
Apart from the issue of self-averaging, which is relevant
for quantum chaos, it is necessary to verify that the addi-
tional non-Gaussian terms in the distribution of V' (prop-
erly scaled with V) do not affect the result in the large
N limit, in order to claim universality [9]. We hope to
return to this problem in the future.

The ground state correlation function of Eq. (1) can
be expressed for Gaussian random matrices Hy and V in

J the closed form expression

k(z;w) = TmT?{Q—a:)l/dH dHo Tr[6(e — w — H)]Tr[6(e — Hy)]

X e _——
P { 202 sin?(Qx)

Tr[H§ + H? — 2HoH cos(Qz)] }

(16)

All the dependence on time is explicitly present in the cos(Qz) and sin(Qz) factors. It is sometimes possible to
evaluate generalized two matrix Gaussian integrals [10], and it would be interesting to apply these techniques to

calculating the above.
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It is important to realize that, while Eq. (11) implies
that all moments of the eigenvalues calculated at any x
will be equal to the corresponding moments of the parti-
cle positions of a Wigner-Dyson gas undergoing Brow-
nian motion, this does not mean that the motion of
the eigenvalues is indeed Brownian. The randomness in
the dynamics of the eigenvalues comes from the matrix
V', which acts like quenched disorder. As a simple il-
lustration of the result of the disorder being quenched,
we consider the case of N = 1. Equation (10) yields
e(z) —e(0) = Vsin(Qz) /2 + €(0)[cos(Qz) — 1]. Averaging
over V, for small z we find that, with €(z) = e(z) — €(0),

For the Wigner-Dyson gas, on the other hand, for N =1
we have a particle in a parabolic well with thermal noise,
so that with X(7) = A(7) — A(0),

X(11)X(72)) = 2min[ry, 7] + A2(0)[r172/a?]. (18)
When 7 = 79, with 27 = 2%, Eqs. (17) and (18) are
identical [since a = 1/ from Eq. (9)]. However, when
71 # To, the two equations are different; this difference
persists even for large N.

It is precisely such multiple time averages that are in-
volved in three point (and higher order) correlation func-
tions. For instance, the density correlation function that

(&(z1)E(z2)) = 2122 + €2(0) Q42223 /4]. (17)  is an extension of Eq. (1) is
k(z1, T2;wi,we) = < Z 6(e — €(T))0(e — w1 — €;(T+x1))6(e — w2 — € (T + .’172))> (19)
il

This involves moments of the eigenvalues at two values of
x, x1, and x5 (averaged over initial conditions). For the
Wigner-Dyson gas, the n point correlation functions can
be expressed in terms of the two point functions, since
each measurement “rezeros” time, yielding an n matrix
integral. For the matrix version of quantum chaos, the n
point function remains a two matrix integral.

In this paper, we have proved the equivalence of the
dynamics of the Wigner-Dyson gas (or, alternatively, the
Sutherland model) with the evolution of the eigenval-
ues of a Hamiltonian under a perturbation drawn from a
Gaussian ensemble for two time correlation functions, as
argued by Simons, Altshuler, and co-workers [1]. Multi-
ple time correlation functions are not the same in general
for the two systems, because of the difference between an-
nealed and quenched randomness. It is also possible to
prove the equivalence of the two time velocity-velocity
correlation function, c¢(w;z), that measures the correla-
tions in the rate of change of the eigenvalues [1], by a
perturbative method, to all orders in perturbation the-
ory.
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sions, and Boris Altshuler for stimulating our interest in
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from the Society of Fellows at Harvard University.

Note added—A recent Letter [11] addresses similar
equivalences between the two time correlators, but only
within a hydrodynamical limit.
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