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We observe that the semiclassical Hall constant for a strongly correlated Fermi system is most
directly related to the high frequency Hall conductivity. For the square lattice, the sign of the latter is
found to be holelike (while the Fermi surface is electronlike) for fillings close to half, and electronlike
for almost empty bands. For the ¢-J model on the square lattice in two dimensions the change
of sign occurs at roughly 1/3 hole filling in good agreement with measurements o Laz—_»Sr, CuQOy
compounds, and is weakly temperature dependent. We suggest that the high frequency Hall constant
can be directly measured in a Faraday rotation experiment.

PACS numbers: 74.20.Mn, 71.28.4+d, 72.15.Gd, 72.15.Qm

The measurements of the Hall constant in high-T,
materials {1] raise two major questions. The first one
is how to reconcile the positive (holelike) sign of the
Hall constant observed in LaySr,Cus_.04, as well as
YBa2Cu3O7_s families of compounds [1, 2], with the
“electronlike” shape of the Fermi surface. The latter
follows from the band structure calculations [3], and is
consistent with the photoemission data in these and re-
lated Bi compounds [4]. One could introduce terms in a
tight binding model that give holelike curvature to parts
of the Fermi surface, but such modifications cannot, even
in principle, give a Hall constant that has an unbounded
increase as half filling is approached. The second ques-
tion is the unusual temperature dependence: it shows
considerable universality in the high-T, compounds, es-
pecially upon taking the Hall angle as the central vari-
able, as suggested by Anderson [5]. In this work we shall
only consider the first question which concerns the depen-
dence of the sign of the Hall constant on doping for the
Mott-Hubbard system. Of course, it is expected that Ry
is electronlike at very low filling (since in this Galitskii
limit, the lattice is presumably irrelevant) and holelike
very near half filling, as seems reasonable from the point
of view of an antiferromagnet with a few holes, or the
Nagaoka limit, although these extreme pictures involve
magnetic order and lead to non-Luttinger Fermi surfaces.

It is well known that the interpretation of the Hall re-
sistivity is notoriously nontrivial even in relatively simple
metals [6]. The reason is that while the familiar semiclas-
sical expression Ry = 1/n*ec, with n* the effective car-
rier density, does not contain the relaxation time 7, the
Hall resistivity is in fact a transport measurement and
the effects of scattering drop out only in the single relax-
ation time approximation. In practice (as is already the
case for the metals with complex Fermi surfaces) the re-
laxation time at low T is anisotropic and depends on the
wave number resulting in a nontrivial dependence of Ry
on 7(k) on the Fermi surface [6]. Thus, the magnitude
and sign of Hall resistivity Ry do not provide a direct
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measurement of the number and the sign of the carriers.
One is then led to ask if there is a direct experimen-
tal access to the “semiclassical” quantity R} = 1/n*ec
with the familiar interpretation. The “answer” that we
propose here is the Faraday rotation experiment which
measures Hall resistivity at finite frequency, Ry (w). For
sufficiently high w, Ry(w) — R}%. In the case of Mott-
Hubbard systems such as the CuO based materials, we
will be interested in w high compared to the bandwidth,
but still below the Mott-Hubbard “gap” or optical edge.
In this way R} will be free of the low energy scattering
effects but will include the correlation effects. The moti-
vation to consider a high frequency measurement is the
observation that the semiclassical formula for the Hall
effect is essentially the Lorentz force acting on moving
carriers normalized to the charge current. As such, it
is an instantaneous measurement and is not sensitive to
the details of the irreversible processes involved in set-
ting up the current in contrast to the w = 0 transverse
resistivity measurement. On the other hand, the conse-
quence of R} being defined at finite w is that it is not, in
general, related to the shape of the Fermi surface. This
helps one to understand the “paradox” of the holelike
Hall effect coexisting with the electronlike Fermi surface.
We have studied the minimal models for high-T} systems,
the Hubbard and the ¢-J models on a square lattice us-
ing the moments scheme to calculate R};. We shall find
below that for the Hubbard model with strong on-site
repulsion, R} changes sign at a filling n ~ %, in good
agreement with the transport measurements [1, 2].

We shall proceed by using Kubo formulas and the mo-
ment expansion to define R}, and its relation to Rp.
The resulting explicit expression for the R¥ in terms of
the equal time many-body correlation functions will then
be evaluated for (i) small Hubbard U/¢, by perturbation
theory and for (ii) large U/t by a high-temperature ex-
pansion for the ¢-J model using the projected fermions.
Finally, in the conclusion, we will quote an estimate
of the expected Faraday rotation angle via the high-
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temperature series.

We recall the Peierls phase factor, governing the couphng between the electromagnetic field and the lattice
fermions; the kinetic energy is written as T' = —t 26=x’y{exp[zeA(r) 6]cT(r + 8)c(r) + H.c.}, where A is the
vector potential. The (matter) current operator Jo, = —16T/6A, and the stress tensor 745 = L82T /5 AnbAp =
>k 6%e(k)/Ska 67(:[;]0]L (k)c(k) are defined as usual, in terms of which the conductivity tensor is [7, 8]
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The Hall resistivity, at a frequency w, may be obtained from

o O ()
R(w) = a3 ( y )B=0 @)

02,5 (W)0y,y (W) — 03,y (W)oy,a(w)

in the weak field regime. The relevant part of o, is antisymmetric in x,y, and hence we may write

olasi(©) =~ 57 220 =0 =) 17 a1, @)
For large w (>> €, — €,), we have Co

et ) = g (Ul T} + S B, L, )+ 0% @
while r

g is similar to the magnetic translation commutator, while
_ e 1 4 th ctation value in the denominator is the same on

Ta(@) = g | () + 5 (7o, I, Tol) + O(1 /)| the expectation va enomine °
W w _ that appears in the f-sum rule and counts the total os-

(5)  cillator strength. The nice thing is that R}, is directly

measurable provided the probe frequency w exceeds a
typical electronic level separation inside a band, i.e., say,
~ 1 eV. In a typical Mott-Hubbard situation, we have
the relevant bands with mobile holes sandwiched in en-
_ergy, between filled and empty “inert bands,” and it pre-
sumably suffices to have w avoid resonant energy level

We will assume cubic symmetry and substituting these —
expansions into Eq. (2) generates a moment expansion,
and we may use a standard Stieltjes trick to resum it in
the form of a high frequency “residue” R}, and a “self-
energy” Tg(w) as

Ry spacings (as evinced say in the peaks in the dielectric
Ry (w) = m: (6) function). We distinguish between two cases, a weakly
ith interacting Fermi system where the effective U ~ ¢, and
wi - _ astrongly interacting Fermi system where U > t. In the
R% = lim _tagN ([Jz, Jy]) (7) ¢ first case, it suffices to have w > max{U, t}, while in the

H ™ Boo\ Be? (754)2 second we require ¢t < w < U.

In the weak coupling case, we have w > max{¢,U}, and
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where the self-energy X — 1/w* for large w. In the the expression for R}; simplifies considerably and we find

case of purely elastic scattering by impurities, as in the _
Drude model, the self-energy Xz wvanishes identically,
and the frequency dependence of Ry(w) drops out com-_ . Ry = Ek o COsky cosk (ca(k) <o (k) (8)
pletely, in contradistinction to that of the Hall conductiv- ko cosks (Cv(k) co(k))]?
ity Ofe,yj(w). The functional form of Eq. (6) expresses a
decomposition of Ry with the self-energy carrying all the  where ro is the dimensionful constant [7], and the sums
information about inelastic scattering, and the numera-  are normalized to unity. It must be first remarked that
tor, namely, R}, the information about the kinematics of  the expression Eq. (8) reduces to the familiar expression
the problem, and also, as we shall show, the interaction 1/ne, for any interaction strength, provided the filling
between particles in a strongly correlated Fermi system. _ of the electrons is very low; i.e., as n — 0, by simple
The quantity R} is the effective high frequency Hall  kinematics, the cosine functions can be expanded in pow-
“constant” of the system, which controls the sign of ers of k and to leading order we may set them equal to
Rpg(w). The fundamental nature of R} is apparent from  unity, the sums reduce to densities and hence the re-
Eq. (7) which expresses it as a ratio of two equal time sult. The second point is that the final sign of the Ry
correlation functions: The current commutator in the  Is not necessarily that of e, but rather depends on that
numerator vanishes in the absence of magnetic field and  of the weighted integral of (cJr (k)e(k)). For an interact-
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ing system, the entire Brillouin zone tends to get pop-
ulated. The dynamics determines the favored regions
of occupations and Eq. (8) suggests that, for the sign
of R} to reverse, we must have a preferential occupa-
tion of regions where cos(kz)cos(ky) < 0. In fact, we

can calculate the change of ng = (c‘L (k)e(k)) out to sec-
ond order in U using perturbation theory at T' = 0 to
evaluate the numerator of Eq. (8); one finds that close
to half filling, § = 1 — n ~ 0 the perturbative result
(cles) = —0.36{1 — 0.8(U/4)2} + O(82). This implies
that R} changes sign at small § for U/4t > 1.1, which is
strictly speaking outside the perturbative regime. This
change of sign has, of course, nothing to do with the
shape of the Fermi surface, which remains electronlike.
Exact diagonalization of small Hubbard clusters should
give reliable results for the short distance correlations
involved in Egs. (8), demarcating regions in the {§,U}
space where R} is holelike. However, if the interactions
are turned off, then the numerator of Eq. (8) can be
rewritten by Stokes theorem as an integral over the Fermi
surface yielding a standard relation [6] between the Hall
constant and the curvature of the Fermi surface.

Let us now evaluate R} for the large U case. The
point here is that even though R} is defined by the high
w limit, we are interested in the order of limits where
both w/t, U/t — oo, with w <« U. Before proceeding
further, we note that the Hall resistivity in this limit has
been considered by Brinkman and Rice [9], who also used
the moment expansion but concentrated on Ry (w = 0).
The U — oo limit can be taken simply by replacing the
fermion operators ¢, (r) by the projected fermions é,{r).
We can compute R}, in a high-temperature limit in a
very instructive calculation. The numerator of Eq. (7) is

(o 3y = Emem®( 7, 7, + 0(8%). ©)

The trace can be evaluated directly, giving

i, 75 (e Tl) == #0261 =8) [22 = 22— o7
+0(p%, (10)

where 6 = 1 — n is the number of holes per site.
The two terms in this expression correspond to a single
electron hopping around the square (occupied by three
holes), and a single hole hopping around the square (oc-
cupied by three electrons). In the second case, the trace
over the electron spin gives an extra factor of %. The
denominator of Eq. (7) to the leading order in 71! is
{(Toz) = —BN TrHrpy + O(B3) = —2Bt25(1 — 6) so that
finally

., [1 1 3

The second term in this expression diverges at low par-
ticle fillings § —- 1 with the coefficient expected from
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the Galitskii limit, and is electronlike. The first term,
on the other hand, is lattice dependent and holelike [10].
The usual attempt at extracting the carrier density from
a holelike Hall constant, naively yields four holes as an
effective carrier for the square lattice. This number is
renormalized as a function of J, T, as will become clear
later [see, e.g., Eq. {12)]. Also, note that the gauge the-
ory calculations [11-14] of the Hall constant have very
similar functional dependence as our Eq. (11), but with
coefficients that are also functions of 4.

The consequence of Eq. (10) is that R} computed to
leading order in 3, changes sign at § = % We eval-
uate further terms out to order (B)7 using the high-
temperature series developed in [15]. This technique was
tested by evaluating the exact result for Eq. (7) of nonin-
teracting electrons on the square lattice, where we found
that the seventh order terms in 8 are sufficient to repro-
duce the answer to within a few percent for T' > ¢/2. The
results are presented in detail below and in the figures,
but it is remarkable that the leading order term contains
essentially most of the final answer (approximately 60%
numerically for the range considered). The two leading
terms in the expansion are

., ro|1-3%L 4 387 2
RH~4 5 T 3+ 5 + O(F%).

(12)
We can work out an order of magnitude estimate
of the Faraday rotation angle in transmission through
YBayCugOy films of thickness zg, say, 1000 A, in a field
of a Tesla, using known optical constants [16], n, , = 3.5
at a wavelength of 0.5 pum. Taking R} = 0.3 x 1073
em®/C, we find the angle 6 = 2w %ie, /. /€5 of rota-
tion of the plane of polarization, to be ~ 0.1 mrad. This
value appears to be well within the limits of resolution
achieved so far [16], and it should be interesting to mea-
sure it. Figures 1 and 2 display typical results obtained
from the series analysis for the ¢-J model.
In summary, we have focused attention on the Hall
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FIG. 1. Ry (in units of 0.3 x 1072 cm®/C) vs T/J at

n =10.9,0.85,0.8 for ¢/J = 3.
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FIG. 2. Solid curve is R} (in units of 0.3 x 10~% cm®/C)
vs § at T' = o0, Eq. (11), and the three sets of points are from
the Padé approximants at three sets of values of T and ¢ in
units of J.

constant at high frequencies, and shown that it contains
valuable information on the role of interaction on the Hall
effect. The sign of the Hall constant is shown to be hole-
like close to half filling and electronlike close to empty
bands, within a ¢-J model on the square lattice, with a
change occurring at a filling § ~ 0.33. The sign is shown
to be unrelated to the topology and curvature of the fermi
surface, when the interaction effects dominate. The re-
sult for the change of sign of R}, agrees well with the
experiments of Takagi et al. [2], which report Ry (w = 0)
changing sign at § ~ 0.3. On the other hand, the absolute
magnitude of the observed Ry (w = 0) is about an order
of magnitude higher at, say, § = 0.1 than the calculated
R%. It is also strongly temperature dependent. This
indicates that the self-energy in Eq. (6) is important as
w — 0. The Ry(w = 0)/R}; enhancement is consistent
with Anderson’s notion [5] of distinct relaxation rates 7y,
and 7 for transport and Hall effects. From the Hall an-
gle: O ~ O[3 y)/0zz ~ weTe ~ T72, so that g /Tt ~

T, The relatively smaller 7y at low temperatures then

leads to the enhancement of Ry (w = 0) ~ 7g /7er ~ T
It then appears that Ry (w = 0)/R} ~ %, which crudely
reconciles the calculation with the experiments.
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