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We discuss the recently discovered system SrCu2(BO3)2, a realization of an exactly solv-
able model proposed two decades earlier. We propose its interpretation as a Mott Hubbard
insulator. The possible superconducting phase arising from doping is explored, and its nature
as well as its importance for testing the RVB theory of superconductivity are discussed.

§1. Introduction

Quantum spin systems are of great current interest, as shown by this symposium,
with roots in two distinct sources. On the one hand the theory of model systems pro-
viding a rich variety of possibilities, and on the other, the field of synthetic materials,
which has generated a vast number of systems, often close to theoretical models. As
a result of this interplay, several interesting systems have been made in the labora-
tory, challenging our understanding by producing not only the expected, but also
on occasion, the unexpected. Such a system that has caught attention recently is
SrCu2(BO3)2, a two dimensional S = 1/2 isotropic Heisenberg antiferromagnet in
two dimensions on a particular lattice with the property that it is solvable exactly
for the ground state. Indeed it was solved two decades ago 1) by Sutherland and
one of us. In this article we summarize the story so far, and also explore possible
interesting physics that could arise if this system is doped.

The situation of exactly solvable models in the area of statistical mechanics is
rather limited. There is a general feeling that the special models are non-generic
and rare, and hence somewhat ornamental. Enlightened opinion 2) has been more
positive, and indeed the role of some solvable models is very well recognized. In
contrast, the situation in condensed matter physics is very positive. The interac-
tion between new systems, new phenomena and novel concepts has been rewarding.
Table I gives a few examples of popular systems, their realizations and the unique
concepts associated with them.

The 1/r2 system in the table is different from the rest in that the physical
realization comes from the world of quantum chaos, the continuum model is the
description of parametric correlations in chaotic systems. The sole two dimensional
system in the list is the main concern of this article. It has for long been unique in
its very existence as a two dimensional member of the family of solvable models. It
is particularly surprising since it is a model with essential simplicity as evidenced
by the absence of crossed bonds. It is now even more remarkable in that nature
finds a way of fulfilling the conditions for solvability in the compound SrCu2(BO3)2.

∗) Dedicated to Professor Bill Sutherland on occasion of his 60th birthday.
∗∗) The mean field theory of the doped dimer in §2 is joint work with B. Kumar.
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Table I.

Year Model Systems Realization New Concepts

1930 one dimensional Heisenberg Bethe

AFM

CPC, CuO chains Quantum Disorder, Spinons

1968 one dimensional Majumdar Ghosh

AFM

(approximate mapping)

CuGeO3

Broken Discrete Symme-

tries and Spinons

1969-

1987

one dimensional 1/r2 Calogero-

Sutherland, Haldane-Shastry

systems

Parametric Correlations

in Quantum Chaos

Spinons, Unusual Statistics

1969 one dimensional Hubbard Model Benzene, Annulenes Spin Charge Separation,

Holons, Spinons, SC Fluc-

tuations from repulsion,

Mott Hubbard Insulat-

ing state

1988 one dimensional Spin-1 Heisen-

berg AFM, Affleck, Kennedy,

Lieb and Tasaki chain

Ni Chains, NENP Haldane Spin Gap

1990 one dimensional n leg Heisenberg

Ladders

Vanadates CaVnO2n+1 Integer vs non integer

phenomena, Supercon-

ductivity from doping

Insulators

1981 two dimensional S = 1/2 Shas-

try Sutherland model

SrCu2(BO3)2 Dimer states, Magneti-

zation Plateaus...

We discuss the origin of the model, its discovery in real life, some recent interesting
developments in the physical properties, and some possible future directions.

1.1. Origin of the model

In view of the enormous current interest in the problem, and also questions from
colleagues, it may not be inappropriate to say a few words on the Shastry Sutherland
(SS) model on a special lattice, and how it came about. In 1980, I (BSS) joined the
University of Utah as a junior faculty member in the group consisting of Professor D.
C. Mattis and Professor B. Sutherland. After an inspiring talk from Professor J. R.
Schrieffer on polyacetylene, I mentioned to Professor Sutherland that a clear mag-
netic analog of polyacetylene ground state is the Majumdar Ghosh (MG) model, the
one dimensional Heisenberg with a second neighbour interaction half as strong as the
first. Professor Majumdar, my PhD advisor at TIFR in Bombay earlier, had invented
this model in an effort to go beyond the Bethe nearest neighbour antiferromagnet
(AFM). The model was well known to me, in spite of rather wise discouragement
by Majumdar from working on Exactly Solvable models, as a discipline unconnected
with traditional topics in Solid State and Many Body Physics, in view of the almost
zero probability of finding a new one! I remember being surprised that Sutherland,
already then a sensei in the area of exactly solvable systems, had not come across this
model! In that characteristically American way, there was no gap between learning
of a new thing, getting excited and plunging into. I also caught the excitement that
I had carried, but so far resisted (!). We first came up with the soliton excitations
of the MG model, the so-called spinons, as isolated unpaired spin 1/2 propagating
objects in the midst of a sea of singlet dimerized spins. These were identical to the
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solitons of Schrieffer in spirit, but fractionalized the spin degrees of freedom rather
than charge. Such excitations have since become a paradigm in the post high Tc

language of strongly correlated systems, where the fixed singlets of MG give way to
dancing singlets, the Resonating Valence Bond States envisioned by Anderson.

In an effort to go beyond one dimension to higher dimensions, we tried various
things. It was clear that a decomposition into triangles was the key to the MG
model, and there was no essential reason why this had to be only one dimensional.
The general point made was clear, 3) the search for Integrable systems in higher di-
mensions is not very rewarding, the conditions for integrability seem hard to satisfy
in higher than one dimension, however, the search for exactly solvable models (for
the ground state) is more promising a priori. In a d-dimensional Hilbert space there
is a huge number ( ∼ d2/2) of, in general, non commuting operators that simul-
taneously share a given eigenstate, for example the dimer covering, and the search
boils down to states and operators that satisfy the somewhat subjective criterion
of “naturalness”. As a result we pondered for several weeks on likely systems such
as the two dimensional triangular lattice, where it became clear that no dimer like
states work since the triangles share bonds with more than one other triangle. One
needed a lattice where for a given triangle, no more than one bond is shared with
another. This line of thinking led to the SS lattice shown in Fig. 1(a).

The proof of the ground state is simple and worth repeating if only briefly. The
Hamiltonian can be written as a sum over triangles

H = JΣtHt = J


∑

〈i,j〉
	Si.	Sj + 2αSS

∑
〈l,m〉

	Sl.	Sm


 , (1)

where the subscript t refers to triangles, with Ht = αSS
	S1.	S2+(	S1+ 	S2).	S3, αSS is

the bond strength parameter, sites 1, 2 refer to the two sites on the diagonal and 3
the third site. Here and later we will denote the “dimer” bonds by l,m and the non
dimer nearest neighbours as i, j. The first, and remarkable point is that the dimer
state ψ =

∏
l<m[l,m] is an eigenstate of H. Here the product runs over all dimers on

the lattice, which must provide a covering of the lattice (i.e. every lattice point must
occur once and only once in the product). This happens because we can rearrange
the operation of the Hamiltonian into two classes of terms, the wanted and the
unwanted terms. The wanted terms isolate the spin interactions on the dimer spins.
Remarkably all unwanted terms have the form 	Sj .(	S1 + 	S2),∗), 1), 2) for appropriate
indices, which vanishes on using the singlet property. By Rayleigh Ritz variational
principle Edimer ≥ E0, but by the Anderson decomposition strategy we have a lower
bound E0 ≥ Ntet. Happily the upper and lower bounds coincide for αSS ≥ 1, and
we are guaranteed that this is the ground state. Later work 15) improves this lower
bound on αSS somewhat to ∼ 0.74.

∗) Professor Fisher emphasized here and elsewhere, the crucial role played by the two dimensional
Ising model solution of Onsager in the development of the theory of critical phenomena. Our

colleague at IISc, Professor Chandan Dasgupta, has remarked in a similar vein that, if not for

Baxters solution of the two dimensional q state Potts model order parameter, a truly subtle object,

we might even today be debating the order of the phase transition in the system.
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These dimer ground states in two dimensions turn out to be surprisingly robust,
for example the coupling constant αSS is determined by an inequality rather than
an equality, so there is an entire phase where the dimer states are the ground state,
unlike the one dimensional case where one has a solution at isolated points only. This
clearly greatly increases the probability of finding such models realized in nature,
whereas in one dimension we should only expect proximities. Further the ground
state is insensitive to the spin space isotropy of the underlying Hamiltonian, and one
has the strange situation where the ground state has a greater symmetry than of the
Hamiltonian! The phrase “superstability” 3) describes this kind of robustness shared
by most of the dimer ground state systems. An example of robustness comes from
later in the story, where we find that the ground state of stacks of the SS lattice,
rotated by π/2 and coupled by vertical spin interactions, a model that describes the
real 3-d material SrCu2(BO3)2, “magically” manages to have the dimer state as the
true ground state ! 4)

1.2. The system SrCu2(BO3)2
Almost two decades later, Kageyama and coworkers at the ISSP in Tokyo found

that SrCu2(BO3)2, synthesized earlier in 1991 by Smith and Keszler, had very un-
usual properties. The spin 1/2 moments of Copper living in well isolated two di-

(b)

θ = π
4

(a)

θ = π
2

m

J αSSJ2

l

i j

(c)

θ = π
8

Fig. 1. The SS lattice. The angle θ is the apical angle for triangles that are the building blocks

of the lattice, and by continuously changing it, one generates different looking lattices with

essentially identical topology. (a) represents the original choice of SS, and (c) the case closest

to the Copper lattice of SrCu2(BO3)2.
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mensional layers seemed to lock up into singlets, and a clear spin gap behaviour
was observed by NMR. They concluded that this is a unique system, the first truly
two dimensional spin gapped system with S = 1/2. The data was analyzed by
Miyahara and Ueda (MU), 4) who realized that the physical system was describ-
able by an exactly solvable model. They proposed the model, found its solution,
and then realized that it was essentially (topologically) the same model as SS, but
looked different due to the details of the lattice. The Copper lattice is shown in
Fig. 1(c), and by opening up the angle θ continuously, one reaches the SS lattice
(with θ = π/2). An intermediate value of θ = π/4 in Fig. 1(b) aids the imagination.
Changing the angle θ clearly preserves the orthogonality of the “dimer” bonds but
changes the bond length relative to the inter dimer bond lengths. This is crucial,
since the criterion for solvability αSS � 0.74 becomes realizable only in this picture.
A nice visualization of this deformation is available courtesy Dr. H. Kageyama at
http://www.issp.u-tokyo.ac.jp/labs/mdcl/ueda/kage/head.html. The Hamiltonian
is written by MU and some recent papers as H = J [αMU

∑
i<j

	Si.	Sj +
∑

l<m
	Sl.	Sm],

with J ′ = JαMU, and hence we clearly have αSS ·αMU = 1
2 . The current estimates of

(J, αMU) using experimental data on SrCu2(BO3)2 range from Ref. 4) (85K, 0.635)
to Ref. 5) (71.5K, 0.603). Thus αSS ∼ 0.78 is perilously close to, but on the safe
side of the phase boundary at ∼ 0.74.
1.3. Recent developments

We next mention a few of the very large number of papers that have been
written recently, with apologies in advance for possible incompleteness. After the
discovery of the spin gap, neutron scattering has confirmed the absence of magnetic
LRO and inelastic scattering has given clear indication of a flat dispersionless triplet
excitation mode at about 3meV, as well as of many branches of dispersing bound
states of triplet excitations. 6) NMR experiments were the first to show the spin
gap 7) at about 30K. ESR experiments show the presence of a second gap at about
4.7meV which implies a substantial binding energy of two triplets. 8) Raman studies
show a singlet bound state at about 3.7meV. 9) The magnetic exchange constants, as
mentioned are in the 60-80K range. This is convenient for exploring with available
pulsed high magnetic field experiments, which reveal 7), 12) the surprising existence
of magnetic plateaus at M/Ms = 1/4, 1/3, 1/8 · · ·. There is interesting data on the
effect of magnetic excitations on phononic thermal conductivity. 10)

Thus a large set of experiments have already been done, and provide many con-
straints on the theory. We should mention that the knowledge of the exact solution
of the ground state does not give much insight into the excitations in this class of
systems. One knows that in general terms, the singlet dimers can be broken into
triplets, and that isolated triplets find it hard to propagate on the SS lattice due to
its topology. This leads to flat bands of triplet excitations, i.e. very massive objects,
consistent with neutron data. Pairs of triplets, however, escape the topological con-
straints, much as holes in the Nèel Antiferromagnet, and move about quite freely.
Thus one has kinetic binding and the bound state has substantial dispersion. 11)

In a sense the unexpected and new physics so far has been the presence of these
plateaus. 12) These are unique in that they are the first two dimensional plateaus
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seen, and have attracted considerable interest. Several possible scenarios have been
suggested to explain these. One picture is that of massive triplet excitations acting
as hardcore bosons, that hop as well as interact. The effective interactions are strong
due to large mass, and Wigner crystallization is proposed to explain the plateaus. 13)

Alternatively one can view this plateau formation as the Quantum Hall Effect of hard
core bosons, and a Chern Simons type field theory provides a fair description. The
structure of the Hofstadter spectrum on the SS lattice is reflected in the plateaus. 14)

At the moment it is not easy to reach a conclusion as to the best interpretation,
especially since the experiments do not show plateaus that have anything like the
precision of the Quantum Hall Effect.

The phase diagram at zero field has come in for close scrutiny by several authors,
using series expansion ideas, 15), 16) rigorous bounds, 17) large N field theories, 18) as
well as effective field theories of bosonic dimers. 19) Exotic and unusual intermediate
phases are suggested by these studies, including 18) a “topologically ordered phase
with deconfined S = 1/2 spinons, which should give rise to an exotic superconduc-
tor with anomalous flux properties under doping”. An early paper by Albrecht and
Mila 20) discusses the transition between the dimer and AFM phases using Schwinger
Bosons, and concludes that it should be first order. A qualitatively new intermedi-
ate spin liquid phase with power law correlations has been proposed by Koga and
Kawakami. 15) The phase diagram in Fig. 2 is from Ref. 18) for a large N theory,
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J2 / (J1 + J2)
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Fig. 2. The phase diagram of Ref. 18) in the large N limit. The abscissa may be read as 2αSS/(1+

2αSS).
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and represents a possible set of phases with various kinds of magnetic order. The
Koga-Kawakami phase may be viewed as the SRO (π, q) phase.

We should also mention new theoretical models that are generalizations of the SS
ideas to higher dimensions and other systems. 22), 21) The beautiful model of Müller-
Hartmann, Singh, Knetter and Uhrig 22) has a new set of exchange interactions added
to the SS model, and had a very rich set of constants of motion. It is very tractable,
giving rise to magnetization plateaus that are similar to but not identical to the
experimental ones.

§2. Mean field theory of the doped dimer superconductor, a possible
test of RVB

In this section we discuss the possibility of doping the dimer state, and what one
may expect from it. Firstly we remark that the insulating dimerized ground state of
SrCu2(BO3)2 may usefully be considered as a Mott Insulating state of an underlying
Hubbard model. To see this consider the Hubbard model on the SS lattice with

H = −t
∑
〈i,j〉,σ

(c†iσcjσ + h.c.)− αt
∑

〈l,m〉,σ
(c†l,σcm,σ + h.c.) + U

∑
r

nr,↑nr,↓, (2)

where the (somewhat overused) symbol α represents the ratio of hoppings on the two
kinds of bonds, and the Hubbard interaction term sums over all types of sites. Clearly
the superexchange argument fixes it in terms of the ratio of the exchange parameters
via α2 = 2αSS, and we note that α = ±1.25 using the insulating state estimates, with
the sign undetermined. In the non-interacting limit the band structure is interesting,
we have four subbands, with the extrema of two of them touching quadratically at
the zone center. At half filling, one has four electrons per unit cell and the system is
a semi-metal with a finite density of states, and thus it has typical metallic behaviour
such as a linear specific heat. A parallel may be drawn with the semi-metallicity
of graphite on the hexagonal lattice with two electrons per unit cell and also of a
fiduciary MgB2 with well separated planes. In the case of graphite however, one
has a “Dirac like” linear spectrum, and hence the density of states near the “fermi
point”, i.e the contact point vanishes.

This semi-metal becomes an insulator at large enough U , undergoing a transi-
tion to the dimerized state that does not break rotation invariance nor the lattice
translation symmetry, and may be called a Mott transition in the same sense as that
of the one dimensional Hubbard model at half filling at infinitesimal U . Since the
large U behaviour is exactly known, namely the dimer ground state, further terms in
the t/U expansion beyond superexchange should be useful in elucidating the nature
of the Mott transition here. 23) This transition has not yet been studied in literature.
Starting from the semi-metal and turning on U , one may either have a level crossing
transition to the gapped insulator, or more interestingly a continuous opening of
the charge gap. In the gapped insulating phase, the four spin correlation function
pertaining to dimer order 〈SaSbScSd〉 ∼ 〈SaSb〉〈ScSd〉, and thus there is ODLRO in
this correlation function without any obvious symmetries that are broken. With this
distinction, without necessarily a major difference, we may refer to SrCu2(BO3)2 as
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a Mott insulator.
Having this realization of the Mott Hubbard insulator, we naturally enquire if

the philosophy of the RVB theory of Superconductivity due to Anderson applies here.
This theory is built upon the idea that repulsive interactions of the Hubbard type
lead to superconductivity via the intermediate step of superexchange, or Heisenberg
interactions in the insulating state. The superexchange leads to singlet pairing be-
tween electrons of opposite spin, and these pairs are analogous to the Cooper pairs,
but are localized due to the Mott-Hubbard gap. Under doping the Mott-Hubbard
gap collapses, these preexisting pairs propagate freely, and lead to superconductiv-
ity. In the present case, the Cooper pairs at half filling should be viewed as the
dimer-singlets, which on doping should move around by the same logic, and lead
to superconductivity. Since the values of exchange are smaller by an order of mag-
nitude from those in high Tc systems, we expect lower Tc, say tens of degrees K,
but accompanied by the characteristic signature of singlet pairing and also of defi-
nite phase relations of Cooper pairs on the bonds, analogous to the d-wave pairing.
While this theory is remarkably effective in providing a comprehensive view point, it
still lacks unambiguous experimental support or a rigorous mathematical foundation,
and one would welcome other supports to its validity or otherwise. In this context
we work out in this section the mean field theory of a fiducial doped SrCu2(BO)3,
and calculate some characteristics of the proposed superconducting compound.

Before doing so, let us note that doping can be of either chemical type, as in say
Sr1−xMxCu2(BO3)2 with a monovalent alkali M or a trivalent lanthanide. However,
one interesting possibility is suggested by the comparison of MgB2 with graphite.
One learns that MgB2 is isoelectronic with graphite, but avoids being a semimetal
by dispersing the bands in the direction transverse to the two dimensional sheets, it
self-dopes by decreasing the transverse lattice constant. It is possible that a divalent
element like Mg in place of Sr with a smaller ionic radius could sufficiently decrease
the transverse lattice constant of SrCu2(BO3)2 so that it would have substantial
transverse dispersion. We should clarify that unlike MgB2 which appears to be a
case of phonon mediated superconductivity, 24) we are examining the case for a non
phononic mechanism, the RVB mechanism for doped SrCu2(BO3)2. Gate charging
might be another attractive possibility. We now turn to the calculation proper.

2.1. RVB type mean field theory on the SS lattice

We next present the mean field theory of a t-J type model on the SS lattice.
The hopping amplitudes and the exchange integrals on SS lattice are as shown in
Fig. 3. The nearest neighbour (n.n.) hopping amplitude is −t, and the next nearest
neighbour (n.n.n.) hopping amplitude is −αt where α is a dimensionless number.
The exchange couplings, J and J ′ along the n.n. and n.n.n. directions respectively,
are such that J ′ = α2J , as governed by the large U physics of the Hubbard model
on SS lattice. Thus α2 = 2αSS of the previous section. The t-J type model, thus
arrived at is an appropriate generalization of the original SS model, in order to deal
with doping. In the following, we will first describe the tight binding band structure
of the free electrons on the SS lattice. Then, we will do the mean field theory of
the interacting model and discuss its implications for superconductivity, in a manner
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Fig. 3. The Shastry-Sutherland lattice. Also shown is the labeling of sites in a unit cell of SS

lattice, as used in the text.

analogous to the early RVB mean field theories of t-J model on a square lattice done
in the context of high-Tc superconductivity. 25), 26)

The band-structure The SS lattice has a periodicity of 2a0, both along x̂ as well
as ŷ directions, where a0 is the lattice constant. With each site contributing just one
relevant orbital, the tight-binding model on SS lattice is described by a four band
Hamiltonian given below.

Ht =
∑
k,σ

[
c†0(k) c†1(k) c†2(k) c†3(k)

]
σ

T (k)




c0(k)
c1(k)
c2(k)
c3(k)




σ

. (3)

Here, σ =↑ or ↓, and the wave-vector, k = (kx, ky), is such that −π
2a0

≤ kx, ky ≤ π
2a0
.

The subscripts, 0, 1, 2, 3, refer to four different site within a unit cell. The dispersion
matrix, T (k), is a 4× 4 hermitian matrix as given below.

T (k) = −t




0 2 cos(kxa0) 2 cos(kya0) α ei(kx−ky)a0

2 cos(kxa0) 0 α ei(kx+ky)a0 2 cos(kya0)
2 cos(kya0) α e−i(kx+ky)a0 0 2 cos(kxa0)
α e−i(kx−ky)a0 2 cos(kya0) 2 cos(kxa0) 0


 .
(4)

The band-structure for |α| = 1.25 is shown in Fig. 4. This value of α is taken
from the studies on SrCu2(BO3)2, where the values of J and J ′ are extracted by
fitting the experimental data with the orthogonal dimer model. What is known
from the experiments is α2, and not α. This leaves us with the ambiguity of sign of
α, and hence we have considered both positive as well negative values of α.
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Fig. 4. The band-structure of free electrons on the SS lattice. The wave vectors are written in units

of 1
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. Notice that the band-structure is odd with respect to α.
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Fig. 5. The density of single-particle electronic states on Shastry-Sutherland lattice.

Let us make a few essential observations regarding the band-structure. First, the
system is a semi-metal at half filling, since the middle two bands touch each other
at the zone centre. Second, there is a band which is flat along the XΓ symmetry
direction in the Brillouin zone. This band gives rise to a severe van Hove singularity
at α. Third, the values of band energies at zone centre are (−4−α), α, α and (4−α).
For |α| > 2, the middle two bands no more touch each other, and there is a finite
band gap which makes it a band insulator at half filling. Since α for the material of
real interest is roughly 1.25, we have not tried to discuss other values of α.

Figure 5 shows the non-interacting single particle density of states on SS lattice
for both negative as well positive values of α. When we hole-dope the system to take
it away from half filling, it is expected to behave differently for positive and negative
α, since the flat band influences the case only when α is negative.
The mean field Hamiltonian The t-J Hamiltonian on SS lattice can be written
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as:

H̃ = PHtP +HJ − tµ
∑
k,σ

3∑
p=0

c†p,σ(k)cp,σ(k). (5)

The first term in H̃ accounts for the projected hopping. It is essentially Ht as given
in Eq. (3), but with projection operator P which suppresses the double occupancy of
any site (due to large Hubbard U). At a simple level, the effect of P can be brought
in by replacing t by δt. Here, δ(= 1 − n), is the number of holes per site, and n is
the electron filling per site. The last term is the chemical potential, µt, times the
total number of electrons. Here, p is the site (or the orbital) label within a unit cell.
The second term in Eq. (5), HJ , which accounts for the interaction among electrons
can be written as:

HJ = J

{∑
n.n.

+ α2
′∑

n.n.n.

}(
S(r) · S(r′)− n̂(r)n̂(r′)

4

)
. (6)

Here, r and r′ are the site labels, and n̂(r) denotes the number operator at site r.
The summation is pairwise in r, r′. The primed summation denotes the sum of only
those pairs of n.n.n. sites which are allowed by the connectivity of the SS lattice. The
operator, (S(r) · S(r′)− n̂(r)n̂(r′)/4), can also be written as −1

2b†(r, r′)b(r, r′),
which provides the basis for mean field decoupling of HJ in the off-diagonal channel.
The operator, b(r, r′) = c↓(r)c↑(r′)− c↑(r)c↓(r′), is the singlet bond operator.

Let us define an off-diagonal or the pairing mean field, 〈b(r, r′)〉, in the following
way.

〈
b(r, r′)

〉
=




∆eiθx for r − r′ = ±ax̂
∆eiθy for r − r′ = ±aŷ
∆′eiθx+y for r − r′ = ±a(x̂+ ŷ)
∆′eiθx−y for r − r′ = ±a(x̂− ŷ).

(7)

The phases, θx, θy, θx+y and θx−y, as well as the amplitudes, ∆ and ∆′, are all
independent of the coordinates. Hence, we are considering a uniform case. With
this choice of the order parameter, we decouple HJ . The corresponding mean field
Hamiltonian can be written as:

H̃MF = H̃t +HMF
J + L(4J∆2 + J ′∆′2), (8)

where L is the number of unit cells. In order to write H̃t and HMF
J conveniently, we

introduce a notation. Let us define the Nambu operators, ΨC↑(k) and ΨR↓(−k) in
the following way.

ΨC↑(k) =




c0↑(k)
c1↑(k)
c2↑(k)
c3↑(k)


 , (9)

ΨR↓(−k) = [c0↓(−k) c1↓(−k) c2↓(−k) c3↓(−k)] . (10)



12 B. S. Shastry and B. Kumar

The subscripts, C and R, indicate that ΨC↑(k) is a column vector and ΨR↓(−k) is a
row vector. In this notation, H̃t can be written as :

H̃t =
∑
k

{
tr
{

T̃ (−k)
}
+
[
Ψ †

C↑(k) ΨR↓(−k)
] [ T̃ (k) 0

0 −T̃ (k)

][
ΨC↑(k)
Ψ †

R↓(−k)

]}
.

(11)
Here, T̃ (k) is essentially same as the dispersion matrix, T (k), except that the chem-
ical potential forms its diagonal elements, and all the off-diagonal entries have a
factor of hole doping, δ, in order to account for the projection.

T̃ (k) = −t




µ 2δ cos(kxa0) 2δ cos(kya0) δα ei(kx−ky)a0

2δ cos(kxa0) µ δα ei(kx+ky)a0 2δ cos(kya0)
2δ cos(kya0) δα e−i(kx+ky)a0 µ 2δ cos(kxa0)
δα e−i(kx−ky)a0 2δ cos(kya0) 2δ cos(kxa0) µ


 .

(12)
With the same notation, HMF

J can be written as :

HMF
J =

[
Ψ †

C↑(k) ΨR↓(−k)
] [ 0 D(k)

D†(k) 0

][
ΨC↑(k)
Ψ †

R↓(−k)

]
, (13)

where D(k) is a non-hermitian 4× 4 matrix as given below.

D(k) = −



0 J∆eiθxcos(kxa0)
J∆eiθxcos(kxa0) 0
J∆eiθycos(kya0) J ′∆′

2 eiθx+ye−i(kx+ky)a0

J ′∆′
2 eiθx−ye−i(kx−ky)a0 J∆eiθycos(kya0)

J∆eiθycos(kya0) J ′∆′
2 eiθx−yei(kx−ky)a0

J ′∆′
2 eiθx+yei(kx+ky)a0 J∆eiθycos(kya0)
0 J∆eiθxcos(kxa0)
J∆eiθxcos(kxa0) 0


 . (14)

Here, J ′ = α2J as mentioned earlier. Finally, we write the H̃MF as :

H̃MF =
∑
k

[
Ψ †

C↑(k) ΨR↓(−k)
] [ T̃ (k) D(k)

D†(k) −T̃ (k)

][
ΨC↑(k)
Ψ †

R↓(−k)

]

+L
(
4J∆2 + J ′∆′2 − 4tµ

)
. (15)

Let us denote the matrix
[

T̃ (k) D(k)
D†(k) −T̃ (k)

]
by A(k). It is an 8 × 8 symplec-

tic, hermitian matrix whose eigenvalues are real and occur in pairs. That is, an
eigenvalue’s negative is also an eigenvalue.
The mean field free energy and the self-consistent equations The grand
canonical free energy, Φ, at a given temperature T , for the mean field Hamiltonian
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described above is,

Φ = 4L

(
J∆2 +

J ′∆′2

4
− tµ

)
−
∑
k

4∑
j=1

{
E+

j (k) +
2
β
log

(
1 + e−βE+

j (k)
)}

. (16)

Here, β = 1/kBT , and
{
E+

j (k), j = 1, 4
}
are the positive eigenvalues of A(k). Let

us put t = 1. Now, all the energies (or parameters with units of energy) are in the
units of t. We find the self-consistent equations for ∆ and ∆′ by minimizing Φ with
respect to ∆ and ∆′. These are as follows.

∆ =
1
2J

1
4L

∑
k

4∑
j=1

∂E+
j (k)
∂∆

tanh

(
βE+

j (k)
2

)
, (17)

∆′ =
2
J ′
1
4L

∑
k

4∑
j=1

∂E+
j (k)
∂∆′ tanh

(
βE+

j (k)
2

)
. (18)

Since ∂Φ/∂µ = −N , where N is the total number of electrons, we get the following
equation for the chemical potential.

δ = − 1
4L

∑
k

4∑
j=1

∂E+
j (k)
∂µ

tanh

(
βE+

j (k)
2

)
. (19)

The hole doping, δ = 1 − N/4L. Solving these sets of equations self-consistently
gives us ∆, ∆′ and µ as a function of δ, for given values of α, J , β and the phase
angles θx, etc.
The results of the mean field theory We solve Eqs. (17), (18) and (19) self-
consistently for different values of δ. We are interested in both the hole as well as
electron doping for a given α. It is clear from the band structure that the hole doping
for α is same as the electron doping for −α. Therefore, we have considered only the
hole doping for both positive as well as negative α. In all our computations, we use
t = 1, J = 0.3 and |α| = 1.25. The value of J for SrCu2(BO3)2 is roughly 70 K.
The ratio of J to t is tentative, and taken to be roughly same as that for the high-Tc

superconductors. Though we have four phases, θx, θy, θx+y and θx−y, only three
relative phases are relevant. Therefore, we keep θx = 0. We have to find out those
values of θy etc. for which the free energy is minimized, and see how things evolve
as a function of δ.

Let us discuss the zero temperature (β → ∞) case first. Figure 6 shows the
variation of ∆ and ∆′ with respect to δ, for α = −1.25 and 1.25 at zero temperature.
For α = −1.25, the minimum of free energy occurs for θx+y − θx−y = π regardless
of the values of θx and θy, and ∆ is identically zero. For α = 1.25, the minimum
of free energy corresponds to θx = 0, θy = π, θx+y = 0 and θx−y = π. It is a weak
minimum as many other choices of the phases have similar values of the free energy.
Nevertheless, this choice of phases appears to be the minimum. It is interesting to
note that for δ = 0, the diagonal bond order parameter, ∆′, is one and ∆ is zero
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Fig. 6. The variation of ∆ and ∆′ with doping, δ, in the ground state. For α = −1.25, ∆ is not

shown, since it is identically zero.

(and is independent of the phases θx, θy, θx+y and θx−y). Thus, the RVB mean
field theory at half filling exactly reproduces the known dimer ground state of the SS
model.

To consider superconductivity in our mean field theory, we define a physical order
parameter, ∆SC = FB∆MF. Here, ∆MF is the mean-field order parameter (∆ or ∆′

whichever is larger for a given doping), and FB is a bosonic mean field. Such an order
parameter can be understood in the framework of the slave boson approach, 27) where
the off-diagonal order parameter of the physical electrons is described as 〈bibjf †iσf †jσ′〉.
Here the b are the slave boson fields, and the f are the fermionic objects. In a mean
field decoupled theory, this is like 〈bibj〉〈f †iσf †jσ′〉 ≡ FB∆MF. The bosonic order
parameter, FB, is a function of temperature and doping, and goes roughly like δ.
The superconducting transition temperature, TSC, is the temperature where either
∆MF or FB vanishes first while increasing the temperature. For low doping, ∆MF

is large, therefore, the TSC is same as the bose condensation temperature, TBC, for
the bosonic field. Some estimates of TBC have been made earlier while studying
t-J model in the context of the high-Tc superconductivity. 27) We roughly estimate
it by considering an approximate dispersion of the form, k2

x + k2
y +

1
γk

2
z , with the

z-axis anisotropy γ ∼ 30. We get TBC ≈ 4πρ∗δ(1 − δ)/[2+log(4γ/π)]. Here, ρ∗ is
the density of states at the energy where two middle bands touch, from the side
where dispersion is quadratic, and is a measure of the curvature of the band. For
|α| = 1.25, ρ∗ ≈ 0.1, thus TBC ≈ 0.22δ(1− δ).

One comment should be made regarding the interpretation of the result ∆ = 0
and ∆′ �= 0 (for α < 0). While at half filling this implied the dimerized insulating
state, away from half filling it must be interpreted as superconductivity. The BCS
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Fig. 7. The phase diagram for the negative as well positive values of α. The lines of the estimated

Bose condensation temperature, TBC, and the computed mean field temperature, TMF, divide

the T -δ plane into four physically distinct regions. Each of these is appropriately labeled.

type wavefunction implies the fermion pairing in real space,

〈
c†i↑c

†
j↓
〉
∼
∑
k

eik·(ri−rj)
∆k√

∆2
k
+ (εk − µ)2

,

and it extends over a range of lattice constants (due to the non-trivial k dependence of
εk away from δ = 0), despite the mean field Hamiltonian having n.n. pairing only. A
similar remark holds for the four fermi operator that determines the superconducting
ODLRO of Yang, namely

〈
c†i↑c

†
j↓cj′↓ci′↑

〉
�= 0 for |ri − rj | � 1.

Figure 7 shows the phase diagram in the T -δ plane, as estimated from our RVB
mean field theory. The temperature, TMF, is where ∆MF vanishes. The estimated
TBC, and the computed TMF are plotted as a function of δ. The common region
under these two curves is the superconducting phase bounded by critical lines. As
usual all the remining lines should be viewed as crossover lines rather than critical
lines. Among the remaining three regions of T -δ phase diagram, the low doping
region below TMF and above TBC is the spin gap phase with a suppressed density of
states manifested in the susceptibility as well as the optical conductivity. Similarly,
the high doping region is the normal fermi liquid. There is a region which is usually
referred to as the strange metal phase, as shown in the Fig. 7 with linear resistivity.
Also, the phase diagram is similar for both positive as well negative values of α. From
this phase diagram, we estimate the optimal value of the superconducting transition
temperature, TC ∼ 10K.

In conclusion, the system considered here has a rather rich history. It may also
have an important future since under doping it might be the much sought after low
Tc RVB superconductor, with linear resistivity down to 10K and other such exotic
properties, rather than a conventional phononic BCS superconductor.
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