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Both Saturn’s rings and planetesimal disks are made up of
particles in Keplerian orbits. Inelastic collisions between these
particles regulate their dynamical evolution and possible aggrega-
tion. We present an experiment to simulate glancing collisions in
Saturn’s rings and in planctesimal disks and thus measure contri-
butions to the energy loss for both normal and tangential velocity
components. In this experiment, a spherical iceball niounted on
a long-period, two dimensional pendulum is made to impact a flat
ice surface in a low-temperature environment. This paper describes
the experimental apparatus in detail and presents results for
smooth unfrosted surfaces. The energy loss for tangential motion
is surprisingly low, indicating that very little friction is present at
low impact speeds for relatively smooth ice surfaces and tempera-
tures near 100 K. We have also investigated room-temperature
collisions of a rubber ball on & rough surface to understand the
energy loss in situations where the tangential friction force is not
small, In this analogous case, the energy loss is maximum for
impact angles in the range 45°—60°. © 1995 Academic Press, Inc.

1. INTRODUCTION

Planetary rings and planetesimal disks are composed
of particles which revolve around the central body on
nearly circular Keplerian orbits. The collisional properties
of such particles are critical in determining their dynami-
cal properties (Goldreich and Tremaine 1982). For exam-
ple, the velocity dispersion in a planetary ring is regulated
by a balance between energy transfer from the systematic
shearing motion to random dispersive motion and the
energy dissipated during inelastic collisions (Goldreich
and Tremaine 1978, Stewart ef af. 1984, Shu and Stewart
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1985). The equilibrium configuration constrains the thick-
ness and stability of planetary rings (Brahic 1977, Lin and
Bodenheimer 1981, Ward 1981, Lukkari 1981, Hameen-
Antilla 1982, Araki and Tremaine 1986). In planetesimal
disks, collisions not only control the dynamical properties
of the disk particles but also determine the rate of coagula-
tion among planetesimals (Palmer et al. 1993, Aarseth
et al. 1993) under the assumption of a nonzero sticking
probability.

Quantitatively, the amount of energy dissipated during
each collision can be expressed in terms of the coefficient
of restitution, ¢, which is defined as the ratio of postcolli-
sion relative speed to precollision relative speed: & = v,/
v,,. Thus, the quantity (1 — £?) is a measure of the energy
lost in the collision; & = 1.0 represents a totally elastic
collision, while £ = 0.0 represents a totally inelastic colli-
sion (i.c., the two particles stick together).

Bridges et al. (1984) and Hatzes et al. (1988) designed
and built an apparatus to determine the coefficient of
restitution of water ice particles in normal (radial} colli-
sions in order to understand the dynamical processes oc-
curring in the rings of Saturn. The apparatus, a disk pendu-
lum stmilar to that pictured in Fig. 1, was designed to
impact a spherical iceball in the direction normal to a
stationary flat ice surface (an ice brick); it was not possible
to investigate glancing collisions with this apparatus.
However, glancing collisions commonly occur and can
have important effects on the kinematic spin properties
of the particles (Araki 1988) and the nonlinear dissipation
of density waves excited by satellites (Shu et al. 1985).
In planetesimal disks, they also determine the balance
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FIG. 1. Side view of the disk pendulum used by Bridges et af. (1984)
and Hatzes et al. (1988) to investigate the behavior of £ as a function
of normal impact velocity. The ice brick is secured to a lead brick for
stability. The pendulum oscillates freely on the agate knife edges, moving
the iceball up and down in the direction normal to the ice brick surface,
allowing the iceball to collide with the brick.

between the spin energy and orbital energy of the plane-
tesimals (Lin ef al. 1993).

In this paper we present results for the coefficient of
restitution in glancing incidence collisions for relative
speeds in the range 0.02 to 1 cm sec™'. This experiment
is carried out with some modifications of our originai
apparatus such that the motion of the iceball now occurs
in two dimensions. The motion of the iceball is still re-
stricted, however, in the sense that no transfer of energy
into spin degrees of freedom is permitted. A brief descrip-
tion of the apparatus is given in Section I1.

We carry out our experiments with iceballs (spheres of
frozen distilled water, 2.5 cm in radius) at temperatures
near 100 K because centimeter- to meter-sized ice parti-
cles are the main constituent bodies in Saturn’s rings, and
the estimated ring temperatures are ~=100 K (Cuzzi ef al.
1984). In the context of planetary formation, the tempera-
ture in the outer regions of the solar nebula is expected
to have been below the ice condensation temperature (Lin
and Papaloizou 1980, 1985); therefore, it is likely that
particles in these regions had a surface coating of ice.
Centimeter-sized particles with a density of 1 g cm™? in
the outer nebula {at a radius of =30 AU} would have
estimated relative velocities of a few cm sec™! (Vilk et
al. 1980, Mizuno et al. 1988). Consequently, values of s
for the highest velocities we attain with our apparatus are
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also applicable to centimeter-sized particles in models of
the outer solar nebula. The experimental data are summa-
rized in Section 111.

It has been suggested that the presence of surface frost
may be needed for planetesimal coagulation (Bridges et
al. 1994). In the present experiments with frost-free sur-
faces, we have observed no sticking contacts in severai
hundred collisions (sticking force <1 dyne). These results
strengthen our conjecture that smooth, frost-free surfaces
do not adhere and that particles with frost-free surfaces
will not form stable aggregates. Thus, experimental inves-
tigations of iceball collisions provide useful information
about particle aggregation and dynamics in both planetary
rings and planetesimal disks. The implications of our re-
sults are summarized in Section IV.

II. THE APPARATUS

The apparatus is a two-dimensional pendulum, shown
in side view in Fig. 2, which allows an icebalil to impact
a stationary ice brick at various angles and velocities. The
double pendulum consists of a disk pendulum (Fig. 1),
oscillating on agate knife edges, supported inside a torsion
pendulum which oscillates by twisting about a wire sus-
pended from a point at the top of a cryostat. These two
types of support were chosen because the resulting energy
loss in rotational motion is extremely low, The kinetic
energy in these experiments is very small (1072 to 10°
ergs); thus, the total frictional forces must be very small
so that the pendulum oscillates freely over a time of =20
sec (one period is typically 10 sec} with minimal energy
loss. For the lower speeds, the friction force must be
much less than 1 dyne. The support system must also be
rigid against shear motion at the instant of contact; the
agate bearings are particularly good in this regard, be-
cause the reaction impulse force is vertical. For the tor-
sion pendulum, we had to add shear bearings above and
below the suspended cage (which holds the disk pendu-
lum) to eliminate lateral motions. These bearings provide
no support and supply only momentary horizontal thrust
for the short time of the collision. We found that tiny
bearings, formed by a 1-mm rod through a thin piece of
brass, provided the required sideways thrust, with little
reduction in the quality factor (@) when the bearings were
carefully aligned. The bearings had to be adjustable, be-
cause slight distortions of the cryostat, caused by thermal
contraction during cool-down, can cause misalignment.
The requirement of rigid, very low friction bearings capa-
ble of supporting 100 to 1000 g, operating at low tempera-
tures, has precluded mounting the iceball on bearings.

In an experimental run, the cryostat is cooled to approx-
imately 100 K using liquid nitrogen; the ambient atmo-
sphere is nitrogen gas at atmospheric pressure to achieve
thermal contact between the pendulum, ice particles, and
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FIG. 2. Side view of the modified pendulum apparatus used in this

current work. The disk pendulum operates as in Fig. 1; the additional
degree of freedom to allow for glancing collisions is provided by a torsion
pendulum, suspended from a wire, within which the disk pendulum is
mounted. The torsion pendulum oscillates freely about the suspension
wire, allowing the iceball to move left and right in the direction parallel
to the ice brick surface at the same time as the disk pendulum oscillates.

the cold section of the cryostat. Earlier experiments
showed that there was no significant change in & for dif-
ferent pressures ranging from one atmosphere down to
1073 torr (Hatzes et al. 1988).

The position of the iceball is measured with capacitive
displacement devices (CaDDs). One CaDD, depicted in
Fig. 2, detects the position of the iceball in the direction
normal to the ice brick surface; an analogous CaDD (not
pictured in Fig. 2) detects the position of the iceball in
the direction parallel to the ice brick surface. Hatzes et
al. (1988) provide a detailed description of the operation
of the CaDD system.

The apparatus is computer-controlled; the iceball is
lifted to a given position above the ice brick, held in
place, and then released to impact the brick. Both the
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disk pendulum and the torsion pendulum are moved mag-
netically by controlling the current in a coil surrounding
a cylindrical magnet. This mechanism is shown in Fig. 2
for the disk pendulum (an analogous ¢oil and magnet, not
shown in Fig. 2, control the torsion pendulum). As the
iceball impacts the ice brick, the time-varying voltage
output from the CaDDs is recorded by a computer and
converted into position coordinates using voltage vs posi-
tion calibration factors which are determined at the begin-
ning of each experimental run. In this manner, a position
vs time track is established for a given collision, the pre-
collision and postcollision velocities are measured from
the slope of this track (over a time within 0.5 s of the
collision), and ¢ and the impact angle ¢ are calculated.
The total impact velocity v as well as the components
normal and tangential to the ice brick surface can be
determined. In this work, 8 is defined from the horizontal;
thus, a 90° collision is a normal (radial) collision, while a
0° collision is a tangential collision. Uncertainties in v and
£ can range up to a few percent, resulting in ervor bars
Just slightly larger than the symbols in Figs. 3-5 and 7-10
at high speeds (v > 0.2 cm sec™) and up to =5% at
the lowest speeds. Data can be taken with different time
resolutions; the data presented in this paper have a time
resolution of approximately 1-2 msec.

We have measured ¢ at a given impact speed and angle
for both possible directions of tangential impact (the tor-
sion pendulum can move the iceball either to the left or
to the right of its equilibrium point). From these measure-
ments, we have determined that there is no systematic
difference in ¢ for the two impact directions; the apparatus
is *‘symmetric’’ in this sense.

There is, inevitably, a small degree of coupling between
the two penduli (the disk pendulum and the torsion pendu-
lum). However, the coupling is extremely small, and is
not enough to affect the results when the two periods are
not equal. (Typically, the periods differ by ~10%.) We
measured this transfer of energy by starting with both
penduli stationary, then displacing one pendulum a fixed
distance and releasing it. The second pendulum responded
with a tiny oscillation. The periods of the disk and torsion
penduli were 10.65 and 11.25 sec, respectively. The ki-
netic energy of oscillation of one pendulum is E =
M.{wx)*/2, where M, is the effective mass of the pendu-
lum for a given moment of inertia, w is the frequency of
oscillation, and x is the displacement of the pendulum.
Coupling of energy from the disk pendulum radial motion
(E.) to torsion pendulum tangential motion (E,) ranged
from =107 to 107°% (i.e., less than 0.001% of the initial
kinetic energy of the disk pendulom is transferred into
motion of an initially stationary free torsion pendulum).
Coupling from the torsion pendulum motion to disk pen-
dulum motion (E,/E,} was consistently =1073%. The dif-
ference in the magnitude of the coupling is due to the
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different effective masses of the two penduli; M, is
approximately 1/3 M4 ,.

Because the effective masses of the two penduli are
different, we calculate & weighted by the masses of the
penduli according to the formula

— b 2 2 2
€= (Meff.nvout,n + Mcff,rvout,t)/(Meff,nUin.n + Mcﬁ'.svin,t)' (1)

This new definition of & has the largest effect at intermedi-
ate impact angles, where v, = v,. At extreme angles, & is
dominated by either its radial (for near-normal collisions)
or tangential (for near-grazing collisions) component, and
the weighting has little effect.

During a coilision, there can be a transfer of energy
from horizontal to vertical motion (or vice versa) if one
or both of the following situations obtains: (1) the contact
point is not directly below the center of the iceball and/
or {2) the flat ice brick surface is not level. We have
investigated these types of energy transfer at room tem-
perature, using a rubber ball in place of the iceball and
an aluminum brick in place of the ice brick, and we have
shown that they are easy to eliminate for a smooth contact
surface. The molded iceball is very well centered on the
support structure, so the first possibility is not important.
One can verify that the flat surface is level by performing
a few radial collisions with the horizontal pendulum free
to oscillate but initially stationary. If the surface is not
level, the horizontal pendulum will move consistently
upon collision in a direction determined by the slope of
the flat surface. In forming the ice brick, a thin layer of
water is allowed to freeze on the surface of the solid ice
brick after the brick is positioned correctly in the appara-
tus at a temperature just below 0°C; thus, the surface of
the brick must be macroscopically level. If the ice surfaces
are locally rough, there can be some random energy trans-
fer between the two motions. This will be discussed in
more detail below.

Small amounts of energy can also be transferred upon
impact to a higher-frequency (~2 Hz) “‘rocking’” mode
of oscillation of the entire pendulum apparatus about an
axis roughly parallel to the axis of the disk pendulum.
The pendulum cage tilts forward and backward, in the
direction of the oscillation of the disk pendulum. This
motion is visible as a rapid, low-amplitude oscillation in
the vertical position of the ice particle. We can damp this
mode quite effectively, using the shear bearings described
previously, so that those rapid oscillations are no longer
observed.

Another effect which contributes to uncertainties in the
measurement of ¢ is the positioning of the ice brick. The
ambieni temperature in the dewar slowly increases with
time (~10 K/hr at our low operating temperatures), and
liguid nitrogen must be periodically added to keep the
temperature low. Because of these temperature changes,
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FIG. 3. Radial collisions, smooth ice surfaces. Two sets of data
are presented; each symbol represents a single collision. Open circles
correspond to radial impacts with the torsion pendulum fixed and unable
to oscillate. Solid circles correspond to radial impacts with the torsion
pendulum free to osciliate. The solid (dotted) line is a least-squares fit
to the data for the case of a fixed {free) torsion pendulum.

the vertical position of the brick must be periodically
adjusted over the course of a run as the apparatus expands
and contracts slightly in response to changes in tempera-
ture. These adjustments are typically performed after
5-10 consecutive collisions, depending upon the actual
temperature increase over the time of those collisions;
the brick is moved ~-100 pum at each adjustment, At the
lower impact speeds (<0.2 ¢m sec™'), small errors in the
positioning of the brick (ideally, the brick is to be placed
exactly at the equilibrinm position of the disk pendulum)
can result in small shifts in g, for a given v,. We have
noticed this effect in radial iceball collisions as well as
in radial rubber ball collisions. For the case of iceball
collisions, however, uncertainties in £ due to errors in
brick positioning are much smaller than the scatter due
to collisions with an uncompacted ice brick surface.

IIl. DATA

A. Radial Collisions

In order to provide a direct comparison to previously
published (purely radial) data {Bridges er al. 1984, Hatzes
et al. 1988), we performed a series of iceball runs in which
all collisions were normal. The results are shown in Fig. 3.
The two different sets of data correspond to two different
configurations of the double pendulum, one in which the
torsion pendulum is fixed and unable to oscillate and one
in which the torsion pendulum is suspended and able to
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oscillate freely. At the lower speeds, significant scatter
is evident in the data; this scatter is dominated by effects
due to the roughness of the ice surfaces. At high speeds,
the two sets of data are consistent, within the scatter. At
speeds approaching 1 cm sec™!, g, approaches 0.5. A
least-squares fit to the data in Fig. 3 yields the following
power laws for the cases of a fixed and free torsion pendu-
lum, respectively:

£, = (0.51 £ 0.01)p; 019001 @)
£y = (0.52 £ 0.01)o®14=001 3)

Equation (2) for the fixed torsion pendulum is very close
to that obtained by Hatzes et al. for compacted frost
(g, = 0.4807%%) at temperatures near 120 K. Most of the
new data were taken at =100 K. The data for the free
torsion penduium (Eq. {3)) have a weaker velocity depen-
dence; the major effect is a smaller value of g, at low
velocities.

In the ice particle collisions, scatter due to the contact
surfaces themselves s larger than scatter due to errors
in brick positioning, as long as those errors are kept within
reasonable bounds (<100 um). The brick surface is not
completely smooth, and after collisions a white area on
the initially clear ice surface shows the area of contact.
This indicates that some fracturing has occurred, leaving
a number of fine ice particles (chips) on the surface which
are similar to frost. In a collision, energy is lost in fractur-
ing the main ice surfaces, fracturing the small ice chips
formed in earlier collisions, and moving the ice chips.
Hatzes er al. (1988) found that it takes several (5-10)
successive collisions at the same point of contact to com-
pact two ice surfaces which initially were finely fractured
or were covered with frost particles. For the case of a
free torsion pendulum, the contact region is continually
changing; we hypothesize that the surface never reaches
the compacted form obtained when the horizontal motion
is suppressed, and as a result, &, is lower and shows
significant scatter.

At lower impact speeds (v, < 0.2 cm sec™ ), the scatter
in g, is larger, and we often observe significant motion of
the torsion pendulum when the iceball impacts the ice
brick when the torsion pendulum is free to oscillate. Dur-
ing the test runs with the smooth rubber ball described
below, we observed no such horizontal motion of the ball
following a radial impact even at these low impact speeds.
We attribute the horizontal motion for this range of speeds
to irregularities in the ice surfaces themselves; the surface
is not locally level either as a result of the roughness in
the original surface or due to ice chips made in higher
speed collisions. An iceball impacting the brick at a very
low speed may not have enough energy to dislodge or
break off small protrusions nor enough energy to fracture
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the larger ice chips. Kinetic energy of vertical motion can
thus be transferred into horizontal motion, resulting in a
reduced ¢, for some of the lower-speed normal collisions.
The scatter in ¢, vs v, is even larger for the glancing
collisions discussed in subsection B below, since the tor-
sion pendulum can then sample an even greater area of
the ice brick surface.

We have carried out the same experiment using a hard
rubber ball in place of the iceball and a flat aluminum
surface in place of the ice brick. g, is =3% lower at the
higher speeds when the torsion pendulum is free to oscil-
late (see Fig. 4). (At the lower speeds, the scatter in the
data is dominated by small errors in brick positioning.)
This 3% energy loss, if it were to go into horizontal oscilla-
tion of the torsion pendulum, would result in oscillations
of amplitude ~0.1 cm for the higher speeds, which would
be easily observable; however, this magnitude of horizon-
tal motion was not observed. Gur measurements of the
amount of coupling between the two penduli, discussed
above, showed that <0,0019 of the initial vertical kinetic
energy would be transferred into horizontal motion—a
negligible effect. Therefore, the energy must be lost
through some other channel.

The extra energy loss, over and above coupling effects,
is most likely due to small motions of the pendulum appa-
ratus which cannot be completely damped out. We can
damp the ‘“‘rocking” mode of oscillation quite well, as
discussed in the previous section, but residual small mo-
tions remain. This small systematic decrease in g, cer-
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FIG. 4. Radial collisions. These data were taken with a rubber ball
in place of the iceball and a flat smooth aluminum surface in place of
the ice brick. Two sets of data are presented; each symbol represents
a single collision. Open circles correspond to radial impacts with the
torsion pendulum fixed and unable to osciltate. Solid circles correspond
to radial impacts with the torsion pendulum free to oscillate.
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FIG.5. Glancing collisions, smooth ice surfaces. Each symbol repre-
sents a single collision; the three different symbols correspond to three
different runs with different sets of ice surfaces. The top graph shows
the dependence of the normal component of ¢, e, , on the normal impact
velocity, v, . The solid curve is a least-squares fit to the data. The bottom
graph shows the dependence of the tangential component of g, &, on
the tangential impact velocity, v,.

tainly contributes to the uncertainty in the iceball results
reported in this paper. However, the effect of these un-
damped motions is much smaller than the effect of the
small-scale roughness of the ice surfaces themselves; the
scatter in the data reported in Fig. 5, for example, is much
larger than 3%.

B. Glancing Collisions

Measurements of the components of £ as a function of
impact velocity for glancing collisions are shown in Fig.
5. The three different symbols in the figure correspond
to three different experimental runs, each with different
ice surfaces. There is a large amount of scatter in g, the
vertical component of g, especially at the lower speeds
(Fig. 5a}. The value of g, decreases with increasing (nor-
mal) impact velocity over the range investigated, attaining
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a value of =0.5 at the higher speeds. A least-squares fit
to all the data yields the following power law:

&, = (0.50 = 0.009)y,; 00060008 (4)

The velocity dependence of £, for these glancing collisions
is even weaker than that for radial collisions with a free
torsion pendulum. To emphasize this decreased depen-
dence on v,, we compare the fits for the data obtained in
Figs. 3 and 5 in Fig. 6. For velocities ranging from =0.05
to 0.5 cm sec™!, g, is depressed when the collistons occur
randomly on different parts of the ice brick surface. For
the glancing collisions, the horizontal motion is much
larger than for the radial collisions. This suggests that for
surfaces that are continually changing, s, may be nearly
constant except at very low speeds. If one disregards the
lower-speed (v, < 0.1 cm sec™!) collisions (i.¢., those for
which the results are most significantly affected by the
local roughness of the surfaces), a linear least-squares fit
results in the following equation:

g, = (0.59 = 0.009) + (—0.11 = 0.02)v,,. (35)

The value of g, does decrease slowly with v, at the higher
speeds. The angle at which the collision occurs seems to
have no significant effect on the value of ¢, although the
range of angles that can be investigated at a given normal
impact velocity is restricted. We cannot, for example,
perform collisions with even moderately high normal im-

0 2 4 6 8 1
v, (cm/s)

FIG. 6. Least-squares fits from Figs. 3 and 5, showing the effect of
ice surface conditions on &.{v,) (see text). The solid line represents radial
collisions with a fixed torsion pendulum. The dotted line represents
radial collisions with a free torsion pendulum. The dashed line represents
glancing collisions.



194

pact velocity (e.g., 0.3 cm/sec) and small impact angle
{e.z., 10°), since this would require a large horizontal
impact velocity (1.7 cm/sec), larger than we can attain
with our apparatus.

The horizontal component, &, shows some scatter as
well, with g attaining a constant value of =0.9 for the
highest speeds (Fig. 5b). The value of &, in contrast to
g,, appears lo increase with increasing v,; however, if
one again disregards the lower-speed (v, < 0.1 ¢m sec™!)
collisions, g, behaves as follows:

g, = (0.88 = 0.008) + (—0.0038 + 0.024)p, . (6)

For impacts at speeds high enough to compact the ice
surfaces, g is constant within the scatter in the data.
We were not able to investigate near-normal collisions
at moderately high tangential impact velocities, because
such collisions would require excessively high normal
impact velocities.

The value of & is consistently high, between 0.7 and
1.0 for horizontal impact speeds between 0.1 and 1.0 cm/
sec, which indicates that the coefficient of friction is small.
At the higher speeds appropriate to the relative motion
of particles in the early outer solar nebula, ¢, approaches
a constant value of =0.9, as discussed above. The value
of g, is always lower, roughly 0.5 at higher normal impact
speeds. Inall cases there is considerable scatter that must
arise predominantly from variations in the structure of
the ice surfaces. For the glancing collisions, the point of
contact (with an impact area <102 cm?) on the ice brick
varies over a region ~1 cm? because of the slightly differ-
ent periods and different starting positions of the two
penduli. Thus, after many collisions, the contact surface
remains only partially compacted. As discussed above for
the normal collisions, the irregularities have the largest
effect at the lowest speeds.

Figure 7 shows the dependence of the mass-weighted
£ on impact angle @ for the data in Fig. 5. The value of &
clearly decreases with 8, from =0.95 for 8 < 10° to =0.55
for 8 > 80°. A linear least-squares fit to the data vields
the following equation:

== {1.04 = 0.006) + (—0.0055 = 0.0001)0. 0
For these smooth ice surfaces, the more glancing the
collision, the smaller the energy loss. The three different
symbols in the figure represent the three different runs
with three different sets of ice surfaces. The datasets
are consistent with one another, thus demonstrating the
reproducibility of our results. The data in Fig. 7 represent
the entire velocity range that we investigated; at a given
angle, the total impact velocity can range from ~0.01 to
1.0 cm sec™ .
Figure 8 shows the dependence of e on total impact
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FIG.7. The same data presented in Fig. 5, showing the dependence
of the total mass-weighted coefficient of restitution, &, on the impact
angle, 8. Each symbol represents a single collision; the three different
symbols correspond to three different runs with different sets of ice
surfaces. The solid line is a least-squares fit to the data, The data dis-
played are a compilation of impacts at several different total impact

speeds, ranging from 0.03 to 1.3 cm sec™'.

speed and impact angle for a subset of the complete data-
set in Fig. 7. The complete dataset shows a continuous
increase in £ as @ decreases at all impact speeds. The
three ranges of 8 displayed in Fig. 8 emphasize this strong
dependence. These data clearly show that, for smooth
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FIG. 8. The same data presented in Fig. 5, showing the dependence
of the total mass-weighted coefficient of restitution, £, on impact angle
0 and total impact velocity v. Each symbol represents a single collision:
the three different symbols correspond to three different ranges of impact
angle, as noted in the figure.
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centimeter-sized ice particles, the energy loss is signifi-
cantly greater in near-normal collisions than in near-graz-
ing collisions. For near-normal collisions (§ = 80°-90°),
e decreases slowly with v

e =(0.60 = 0.02) + (—0.096 = 0.06)v. (8)

This equation is very similar to that calculated for g, vs
v, for the higher-speed collisions discussed previously
(Eq. (5)). In contrast to Fig. 3, these near-normal colli-
sions do not result in high values of g, at low values of
v, . (Also note that the high values of ¢, (>0.8) for v, <
0.05 cm sec™ ! in Fig. 5 were collisions in which 6 < 60°.)
The low-speed near-normal collisions were performed
concurrently with high-speed collisions at glancing angles,
which likely produced many small ice chips and fractured
the brick surface over an area of ~1 cm?. As discussed
previously, the iceball does not have encugh energy to
compact chips on the brick surface in low-speed colli-
sions; therefore, the resuiting value of ¢, is expected to
be low. The data in Fig. 8§ are probably more indicative
of the true nature of low-speed near-normal collisions
between centimeter-sized solid icy particles in planetary
rings or planetesimal disks, since those particles undoubt-
edly have rough, uneven surtaces. For near-grazing colli-
sions (# = 0°-10%), ¢ is constant within the scatter at 0.95;
there is very little energy lost in near-grazing collisions.
For intermediate @, e is again constant at 0.80, within the
scatter. Since the iceball is not permitted to rotate upon
collision, these values of £ can be regarded as upper limits.

The data in Fig. 9 were obtained at room temperature
with & rubber ball in place of the iceball and a flat, sandpa-
per-covered aluminum surface in place of the ice brick.
In contrast to Fig. 7 (the analogous iceball data), the
rubber ball data show a clear minimum in the mass-
weighted value of £ for 45° < 8 < 60°. This minimuimn
occurs because there is significant friction between the
rubber ball and sandpaper surfaces upon collision; ¢, falls
between 0.6 and 1.0 for the majority of collisions (Fig.
10b) and decreases with increasing impact angie. Notice
also the high value of ¢, for the rubber ball collisions (Fig.
10a}; g, never dips below 0.8. By performing linear least-
squares fits to these data, we have determined that the
value of g, is constant for a given range of #, and indeed
is constant at 0.93 over all 8 and v, , within the scatter in
the data. In contrast, g, shows a clear dependence on 8.
At a given v,, the normal compressive force is larger at
high impact angles than at smaller impact angles. The
frictional force between the two surfaces will therefore
be larger for high impact angles, and e, will be correspond-
ingly lower, as shown in Fig. 10b. The iceball data for &,
in Fig. 5b, when binned with respect to impact angle,
show this same behavior, although the trend is not nearly
as well-defined, since g is consistently high for those
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FIG. 9. Glancing collisions. These data were taken with a rubber
ball in place of the icebail and a flat, sandpaper-covered aluminum
surface in place of the ice brick. Each symbeol represents a single colli-
sion. Note the minimum in & as a function of impact angle 8. The value
of &£ has been weighted according to the effective masses of the two
penduli. The data displayed are a compilation of impacts at several
different total impact speeds, ranging from 0.05 to 0.7 cm sec™\.

collisions (the ice surfaces were relatively smooth). For
the rubber ball collisions, the combination of consistently
high &, and decreasing £, with increasing @ results in the
minimum in & vs § shown in Fig. 9.

Johnson (1983) performed rubber ball experiments simi-
lar to those reported in this paper. However, in contrast
to our experiment, in which the ball is attached to a pendu-
lum apparatus and is constrained from rotating, Johnson
launched a ball freely through the air with a certain degree
of backspin, The ball then impacted a hard flat surface
and bounced backwards (i.e., the direction of tangential
impact velocity was reversed in the collision). His data
compare reasonably well with the elastic theory of Maw
et al. (1976).

Stronge (1994} has developed a theoretical model for
the oblique impact of rough compliant bodies upon a hard
planar surface. For the case of a spherical body with
material characteristics similar to those of a rubber ball,
he finds that, for near-normal to intermediate angles of
incidence, the tangential component of the incident veloc-
ity should reverse direction upon impact due to the effects
of tangential compliance, even if the ball is not initially
rotating. A crucial element of Stronge’s theory is that the
ball sticks to the surface briefly during both near-normal
and intermediate-angle collisions. OQur experimental appa-
ratus appears to be well-suited to test this theory, as the
rubber ball is unable to rotate. However, at the low speeds
in our experiment, plastic deformation is not significant,
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FIG. 10. The same data presented in Fig. 9, showing the dependence
of the normal component of e, £,, on the normal impact velocity, v,,
and the dependence of the tangential component of ¢, &, on the tangen-
tial impact velocity, v,. Each symbol represents a single collision; the
three different symbols represent three different ranges of impact angle,
as noted in the figure.

while in the theory, it plays a major role. We do not
observe tangential velocity reversals, even at near-normal
impact angles (up to =89°). (Above 89°, the results become
sensitive to the tilt of the aluminum brick, as discussed
in Section I1.) Since the magnitude of tangential displace-
ment during the collision is very small (typically <50 um,
less than the size of the grains in the sandpaper on the
aluminum brick), the ball most likely does not stick upon
impact, as assumed in Stronge’s theory. Qur results indi-
cate that, at these low speeds, tangential compliance alone
will not cause a rubber ball to bounce backwards; as
Johnson's work suggests, it appears that some degree of
backspin is necessary. However, the moment of inertia
of our torsion pendulum is a few times that of the disk
pendulum, and this will make it even more difficult to
achieve stick at very low tangential velocities and thus
more difficult to achieve tangential velocity reversal. For
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the case of iceball collisions, we would not expect (and
do not abserve) such reversals at any impact angle, be-
cause: (1) the ball is unable to rotate, (2) the coefficient of
friction is very low, (3) tangential compliance is negligible,
and (4) the energy of impact is more likely to be absorbed
in breaking oft protrusions on the ice surfaces than in
actual deformation of the ice masses themselves.

Significant friction is not present in collisions between
two smooth ice surfaces, as evidenced by the consistently
high value of g, for iceball collisions (0.8 to 1.0 for the
vast majority of collisions; see Fig. 5b). We expect that
collisions between two roughened (not frosted) ice sur-
faces will show a minimum in & vs @ similar to that of
Fig. 9, due to the increased friction. We also expect that
such collisions will result in a constant (but small) g,(v,)
and a clear dependence of & on 6, as demonstrated for
the rubber ball collisions in Fig. 10. The fact that the
surfaces are rough will complicate the experiment, how-
ever; as discussed previously, when the two surfaces are
not smooth, transfer of energy can easily take place be-
tween the disk and torsion penduli upon collision, espe-
cially at low impact speeds. We now have a measure of
this energy transfer for the case of (nearly) smooth ice
surfaces, and we will be able to apply this knowledge to
our future investigation of the properties of rough ice
surfaces.

IV. DISCUSSION

A. Interpretation of the Data

The structure of the two ice surfaces is critical in deter-
mining the value of s. Surface irregularities include frost
chips on one or both surfaces and small-scale (<<100 wm)
ridges, protrusions, or troughs on the ice brick. Typically,
in our experiments, the iceball surface is initially com-
pletely smooth at the 10-pm level since the iceballs are
made in a mold with a smooth aluminum interior. The ice
brick, however, is made by simply freezing water in an
open container, so it is more difficult to control the charac-
teristics of that surface; on a 200-um scale the “flat”’ ice
surface is clearly uneven. This microscopic roughness
causes a randomness in the collisions, both in the direction
the particles separate and in the amount of energy lost in
a particular collision. The effect of the randomness is
largest at the lower speeds; we atiribute this to the fact
that there may not be sufficient impact force to fracture
the contacting surfaces,

Surprisingly, there is very little frictional loss for tan-
gential motion. Since the iceball cannot rotate, our mea-
surements give the largest amount of loss possible for
the horizontal component. The very low frictional loss
observed indicates that in low-speed collisions of rela-
tively smooth ice particles, there may be very little trans-
fer of translational kinetic energy into rotational motion.
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This result is in contrast to some collisional models and
the experimental collisions of small dust aggregates at
much higher speeds (Blum and Miinch 1993). At some
speed the impulse must become large enough that the
surfaces of the two particles become locked together (no
sliding) for the duration of the collision. Our measure-
ments suggest that at the very low relative speeds ex-
pected in Saturn’s rings and in some phases of the early
solar nebula, relatively smooth icy surfaces will not inter-
lock. Surface frost provides a mechanism for increased
energy loss in normal collisions of icy particles (Hatzes
et al. 1991); it is likely that frost will increase the energy
loss for transverse motion as well.

B. Applications to Planetesimal Formation

Ultimately, one would like to formulate analytic expres-
sions for g,(uv,) and g{v,) for ice particles so that the dy-
namics of such particles in the outer solar nebula could
be modeled accurately. In the most general sense, one
would like to know whether € increases or decreases with
impact velocity. From Figs. 7 and 8, it is clear that the
impact angle is of greater importance in determining the
energy loss in collisions than the total impact velocity, at
least for the case of homogeneous, smooth ice particles.
Previous work (Bridges et al. 1984; Hatzes er al. 1988)
has shown that, in radial collisions, g, decreases with
increasing impact velocity v, over the range 0-2 cm/sec,
and we have confirmed this behavior with our current
apparatus over the range 0—1 cm/sec (Fig. 3). A decreas-
ing =(v) would tend to stabitize a system of orbiting parti-
cles, keeping their relative velogities from becoming too
large by dissipating more energy in deformation of the
particles when relative velocities increase. Our results
suggest (Fig. 8) that e is nearly constant with v, except
in the case of near-normal collisions {# = 80°~90°), for
which e decreases slowly with v (Eq. (8)). This behavior
is a direct consequence of the absence of significant tan-
gential friction in collisions between particles with smooth
ice surfaces. The presence of chips and/or frost on one
or both ice surfaces introduces a large amount of scatter
into our results, especially at low speeds (<0.1 ¢m/sec).
In fact this randomness probably must be an ingredient
of any collisional model for particle dynamics, since real
surfaces are expected to be irregular. At higher speeds
{=1.0 ¢cm/sec) more relevant to particles in the solar neb-
ula, however, ¢, and g, both appear to approach constant
values (roughly 0.5 and 0.9, respectively). These parame-
ter values mean that there is a large variation in the total
energy loss for different angles of incidence (Fig. 7). In the
opaque regions of planetary rings, differential Keplerian
rotation is the main contributor to the velocity dispersion,
so glancing collisions are more likely to occur. In this
case, the total energy loss may be less than originally
estimated.
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Shu et al. (1985} discussed the viscous damping of non-
linear spiral density waves in Saturn’s rings, in particular
the density waves in the A ring created ina 5 : 3 resonance
with Mimas. They determined that the observational data
were fit well by postulating that the ring was made up of
smooth crystalline ice particles like those used in our
experiment. Shu et al. used the result of Bridges et af.
(1984) for £,(v,) (g, = 0.32v;%%) and assumed that g = 1
(i.e., no tangential friction) in their models, Our new data
indicate that there is indeed little tangential friction in
collisions between two smooth ice particles. We have
also confirmed the result of Bridges ef al. for the general
dependence of &, on v, for purely radial collisions; how-
ever, our new data also indicate that, for surfaces which
are continually changing, ¢, is nearly constant at higher
impact speeds.

Araki (1988) examined the effect of spin degrees of
freedom on the dynamics of a dense particle disk. He
assumed that e, and g, were independent of relative impact
velocity. This assumption is consistent with our results
for g, if one considers all but the lowest impact speeds
{(<0.1 cm sec'); however, g, does appear to decrease
(slowly) with relative impact velocity. He found thatif g, =
1, the translational random kinetic energy of the particles
completely dominates the spin kinetic energy, while if
e, = —1, there is equipartition between translational and
spin energies. We have never observed ¢ < 0 in our
experiments; in fact, g is quite high, averaging =0.9 for
most collisions we performed. For a disk composed of
these smooth ice particles, then, the spin kinetic energies
of the particles could be very low.

The problem of particle aggregation in Saturn’s rings
has been examined recently by Salo (1992) and Richard-
son (1994). Numerical modeling of ring particle dynamics
shows that gravitational wakes form in both the A and B
rings; such wakes may explain observed local variations
in the particle distribution in the rings. Both authors use
the experimental resuits of Bridges et al. (1984) for £,(v,)
and adopt varying degrees of surface friction (i.c., various
values of &). Our new data would not likely affect the
general result of wake formation, as these structures ap-
pear to form under a variety of reasonable assumptions
about the elastic properties of ice particles.

Hinninen and Salo (1992) have investigated the effects
of a perturbing satellite on the collisional dynamics of ring
particles in Lindblad resonances. They do not consider
the self-gravity of the ring particles, but concentrate on
their collisional properties. The particles are identical,
spherical, and frictiontess, and energy loss in collisions
occurs only in the direction normal to the tangent plane
of the impact. The coefficient of restitution is assumed to
be constant with impact velocity (g, = 0.1 for most of the
simulations). Again, the assumption of zero tangential
friction (g, = 1) approximates the behavior of our smooth,
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spherical iceballs. The value g, = 0.1, however, is likely
too low. In simulations with higher ¢, = 0.5, Hinninen
and Salo find a damping of satellite-generated ring particle
orbital eccentricities due to the increased velocity disper-
sion of the ring particles; this case is probably more realis-
tic, at least for smooth icy ring particles.

Ohtsuki (1993) has examined the effect of the coefficient
of restitution on the capture probability of colliding bodies
orbiting a central mass. In the case of collisions between
equal-mass (10 g) planetesimals for which self-gravity is
a determining factor (note that for the centimeter-sized
particles used in our work, self-gravity is not relevant),
Ohtsuki estimates that as long as £ < g,y (g5 = 0.8,
depending on the exact conditions involved), most colli-
sions will lead to accretion. The capture probability falls
off quite fast with increasing = above g.;. The value of
e for these planetesimals is clearly very important in deter-
mining their dynamics; if € > ¢_;, most collisions will
not lead to capture, due to the lack of kinetic energy
dissipation in collisions, and timescales for aggregation
will be long. If & < g, then timescales will be corre-
spondingly shorter. Near the critical value of 0.8, a small
change in e can cause a large change in the overall dynam-
ics of the orbiting particle disk.

V. CONCLUSIONS

We have measured £ for a range of glancing angle colli-
sions and shown that the energy loss for tangential motion
is much lower than for normal impacts. OQur measure-
ments indicate that for relatively smooth ice surfaces the
frictional forces during contact are surprisingly small;
consequently, at very low normal impact speeds there
may be little transfer of translational Kinetic energy into
rotational motion.

These results for glancing collisions of ice particles sug-
gest that the average value of ¢ in collisions may be some-
what higher than the values determined earlier in purely
radial collisions, due to the high value of ¢,. In addition,
the velocity dependence of ¢ is much weaker for the glanc-
ing collisions.

The surface characteristics of iceball and ice brick are
very important to the analysis of data from this experi-
ment. Care must be taken to account for such effects as
those described above when extracting meaningful results
from the measurements. Our results clearly show that
tiny surface irregularities produce a large randomness in
the subsequent motion of the ice particles. Such irregulari-
ties also reduce the dependence of ¢, on v ; g, is nearly
constant at normal impact speeds approaching 1.0 ¢m
sec L. It is of course very likely that icy planetary ring
particles or particles in the solar nebula will have surfaces
which are not completely smooth; in that case, our data
could be applicable to centimeter-sized icy particles in
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such environments, Our future experiments with macro-
scopically roughened ice particles will provide even more
insight into the dynamics of such particles. It has been
suggested (e.g., Donn and Meakin 1989, Weidenschilling
and Cuzzi 1993) that centimeter-sized nebular particles
were low-density aggregates of smaller particles rather
than solid, unit-density bodies like the spherical iceballs
we have used in our experiments. Qur results for solid
particles could then be useful as an upper limit to the
value of € in collisions between more porous centimeter-
sized aggregates.
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