International Journal of Modern Physics B Vol. 17, Nos. 18, 19 & 20 (2003) 3726–3728 © World Scientific Publishing Company



# EVIDENCE FOR A UNIVERSAL RELATIONSHIP BETWEEN MAGNETIZATION AND CHANGES IN THE LOCAL STRUCTURE

L. DOWNWARD\*, F. BRIDGES<sup> $\dagger$ </sup>, D. CAO<sup> $\ddagger$ </sup>

Department of Physics, University of California, Santa Cruz, CA 95064, USA \*lmd@physics.ucsc.edu <sup>†</sup>bridges@frosty.ucsc.edu <sup>‡</sup>dcao@lanl.gov

#### J. NEUMEIER

Department of Physics, Montana State University, Bozeman, MT 59717, USA neumeier@physics.montana.edu

#### L. ZHOU

Stanford Synchrotron Radiation Laboratory, Menlo Park, CA 94025, USA b\_lzhou@ssrl.slac.stanford.edu

> Received 16 January 2003 Revised 11 February 2003

X-ray Absorption Fine Structure (XAFS) measurements of the colossal magnetoresistance (CMR) sample  $La_{0.79}Ca_{0.21}MnO_3$  at high fields indicate a decrease in the width parameter of the pair distribution function,  $\sigma$ , as the applied magnetic field is increased for T near  $T_c$ . The change in  $\sigma^2$  from the disordered polaron state varies approximately exponentially with magnetization irrespective of whether the sample magnetization was achieved through a change in temperature or the application of an external magnetic field. This suggests a more universal relationship between local structure and the sample magnetization than was previously indicated.

Keywords: XAFS; La<sub>0.79</sub>Ca<sub>0.21</sub>MnO<sub>3</sub>; CMR; polaron distortion.

## 1. Introduction

In previous studies, we have shown that as the temperature (T) is lowered below  $T_c$ ,  $\sigma^2$  decreases rapidly for CMR samples. This is attributed to a decrease in the amount of polaron-induced disorder. Others have also observed this in many XAFS and neutron pair distribution function analysis (NPDF) studies.<sup>1-7</sup> In addition, the change in  $\sigma^2$  ( $\Delta\sigma^2$ ) below  $T_c$  depends exponentially on the magnetization, M.<sup>1,2</sup> However, each point in plots of  $\Delta\sigma^2$  versus M is at a different temperature.

In this study, we show that  $\sigma^2$  also decreases as the applied *B*-field is increased at constant temperature. XAFS results indicate that  $\Delta \sigma^2$  remains an exponential function of magnetization regardless of whether the sample magnetization was achieved through lowering the temperature or by applying a field.

### 2. Experimental Details

Mn K-edge data were collected on La<sub>0.79</sub>Ca<sub>0.21</sub>MnO<sub>3</sub> as a function of temperature and magnetic field at the Stanford Synchrotron Radiation Laboratory (SSRL) using beamline 7-2. The data were reduced using standard procedures and Fourier transformed to r-space. The r-space Mn–O peak was then fit using the RSFIT program, using standards calculated from FEFF6.<sup>8</sup> The number of neighbors was constrained to 6, and only the r-space peak position and the width parameter of the pair distribution function,  $\sigma$ , were allowed to vary.

#### 3. Results

Our preliminary results show that there is a large temperature dependent change in the broadening parameter of the pair distribution function,  $\sigma$ , when polarons form near and above  $T_c$  (about 190 K for this sample) [see Fig. 1(a)]. At low temperatures the sample is ordered and  $\sigma^2$  is small while at high temperatures there is a large amount of polaron-induced disorder. Furthermore, there is also a small field dependent change in  $\sigma^2$ . Near  $T_c$ ,  $\sigma^2$  decreases as the applied field is increased indicating that the application of a magnetic field removes polaron

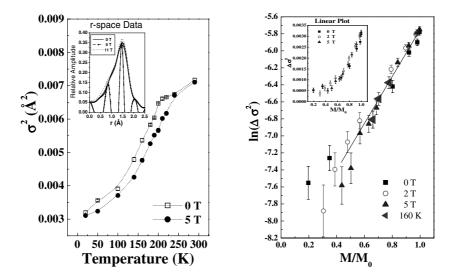



Fig. 1. (a)  $\sigma^2$  versus T for the Mn-O peak for the 21% Ca sample. The dotted lines are guides to the eye. The insert shows the corresponding changes in the Mn–O peak at  $T_c$  (190 K) — the amplitude increases ( $\sigma^2$  decreases) with increasing field. (b)  $\ln(\Delta\sigma^2)$  versus relative magnetization for various fields.  $\Delta\sigma^2$  is the decrease in  $\sigma^2$  as T is lowered below  $T_c$  that is attributed to the loss of polaronic distortion. The insert shows a linear plot of  $\Delta\sigma^2$  versus M/M<sub>0</sub>.

disorder from the sample [see Fig. 1(a)]. The change in  $\sigma^2$  is defined as

$$\Delta \sigma^2 = \sigma_{\rm T}^2 + \sigma_{\rm FP}^2 + \sigma_{\rm static}^2 - \sigma_{\rm Mn-O}^2 \,, \tag{1}$$

where  $\sigma_{\rm T}^2$  is the thermal contribution calculated from<sup>9</sup> CaMnO<sub>3</sub> and  $\sigma_{\rm Mn-O}^2$  is the data plotted in Fig. 1(a). The difference between  $\sigma_{\rm T}^2 + \sigma_{\rm static}^2$  and  $\sigma_{\rm Mn-O}^2$  at high temperatures is called the full polaronic distortion,  $\sigma_{\rm FP}^2$  in Eq. (1) above.<sup>1,2</sup>  $\sigma_{\rm static}^2$  is the excess (above  $\sigma_{\rm T}^2$ ) contribution at low temperatures.

In Fig. 1(b),  $\ln(\Delta\sigma^2)$  vs  $M/M_0$  is plotted for several fields ( $M_0$  is the saturation magnetization at low temperature). There is a linear relationship between  $\ln(\Delta\sigma^2)$ and  $M/M_0$  for a relative magnetization above 0.5. However, each of these points is at a different temperature. For comparison, three points at the same temperature (160 K) are also shown to lie along the same line [see Fig. 1(b)]. Thus, we have extended our previous results<sup>1,2</sup> to show that the relationship between  $\sigma^2$  and magnetization, given by  $\ln(\Delta\sigma^2) = A (M/M_0) + B$ , where A and B are constants, is more general. The relatively slow change in  $\Delta\sigma^2$  at low M suggests that the low-distortion sites become magnetized first, possibly in pairs — an undistorted "Mn<sup>+4</sup>" site and a distorted "Mn<sup>+3</sup>" site. Further analysis needs to be done to investigate the nature of this relationship.

#### Acknowledgments

The experiments were performed at SSRL, which is operated by the U.S. DOE, Division of Chemical Sciences, and by the NIH, Biomedical Resource Technology Program, Division of Research Resources.

### References

- C. H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius and J. J. Neumeier, *Phys. Rev. Lett.* 80, 853 (1998).
- C. H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius and J. J. Neumeier, *Phys. Rev.* B57, 10440 (1998).
- S. J. L. Billinge, R. G. DiFrancesco, G. H. Kwei, J. J. Neumeier and J. D. Thompson, Phys. Rev. Lett. 77, 715 (1996).
- D. Cao, F. Bridges, D. C. Worledge, C. H. Booth and T. Geballe, *Phys. Rev.* B61, 11373 (2000).
- 5. D. Cao, F. Bridges, C. H. Booth and J. J. Neumeier, Phys. Rev. B62, 8954 (2000).
- 6. G. Subias, J. Garcia, M. G. Proietti and J. Blasco, *Phys. Rev.* B56, 8183 (1997).
- T. A. Tyson, J. Mustre de Leon, S. D. Conradson, A. R. Bishop, J. J. Neumeier, H. Röder and J. Zang, *Phys. Rev.* B53, 13985 (1996).
- S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers and M. J. Eller, *Phys. Rev.* B52, 2995 (1995).
- D. Cao, F. Bridges, M. Anderson, A. P. Ramirez, M. Olapinski, M. A. Subramanian, C. H. Booth and G. Kwei, *Phys. Rev.* B64, 184409 (2001).