
Physica Scripta. Vol. T115, 202–204, 2005

Improved Self-Absorption Correction for Fluorescence Measurements

of Extended X-Ray Absorption Fine-Structure

C. H. Booth1,* and F. Bridges2

1Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Physics Department, University of California, Santa Cruz, California 95064, USA

Received June 26, 2003; accepted November 4, 2003

pacs number: 61.10.Ht

Abstract

Extended X-ray absorption fine-structure (EXAFS) data collected in the fluores-
cence mode are susceptible to an apparent amplitude reduction due to the self-
absorption of the fluorescing photon by the sample before it reaches a detector.
Previous treatments have made the simplifying assumption that the effect of the
EXAFS on the correction term is negligible, and that the samples are in the thick
limit. We present a nearly exact treatment that can be applied for any sample thick-
ness or concentration, and retains the EXAFS oscillations in the correction term.

Under ideal circumstances, such as a very dilute sample, the
photoelectric part of the X-ray absorption coefficient, �, is
proportional to the number of fluorescence photons escaping the
sample. However, in extended X-ray absorption fine-structure
spectroscopy (EXAFS), the mean absorption depth changes
with the energy of the incident photon, E, which changes the
probability that the fluorescence photon will be reabsorbed by the
sample. This self-absorption causes a reduction in the measured
EXAFS oscillations, �exp, from the true �, and hence needs to be
included in any subsequent analysis.

Previous treatments [1–3] to correct for the self-absorption
effect account for the change in depth due to the absorption
edge and due to the smooth decrease in � that follows, for
instance, a Victoreen formula, and have been shown to be quite
effective in certain limits. These treatments typically make two
important assumptions. First, the so-called “thick limit” is used to
eliminate the dependence on the actual sample thickness, limiting
the applicability to thick, concentrated samples, such as single
crystals. One exception is the work of Tan, Budnick and Heald
[2], which makes a number of other assumptions to estimate the
correction to the amplitude reduction factor, S0

2, and to the Debye-
Waller factors, �2’s, rather than correcting the data in a model-
independent way. A second assumption is that, in order to make
the correction factor analytical, at one point in the calculation,
the true absorption coefficients for the absorbing species and the
whole sample are replaced with their average values; in other
words, the modulating effect of � on the correction factor is taken
as very small. Below, we present a treatment that, with only one
assumption that is nearly exact for all cases we have measured,
corrects fluorescence EXAFS data directly in k-space for any
concentration or thickness. This correction is demonstrated for
a copper foil that is about one absorption-length thick, and is
therefore not in the thick limit.

Figure 1 shows the geometry used in this calculation. The
fluorescence yield at the point of absorption is proportional to
the X-ray intensity I at that point and the fluorescence efficiency.
The intensity I at a depth y is

I = I0e−�(E)y.
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Fig. 1. Geometry used in calculating self-absorption correction in EXAFS.

The fluorescence photon then has to escape. The fluorescence flux
from this point in the sample is then

If = I0e−�(E)ye−�(Ef )zεa(E)�a(E),

where �a(E) is the absorption due to the given core excitation
of the absorbing atom, �(E) is the total absorption, εa(E) is the
fluorescence efficiency per unit solid angle, E is the incident beam
energy, Ef is the energy of the fluorescing photon, and we’re
assuming that all the measured fluorescence is coming from the
desired process (eg. Cu K�, any other counts can be subtracted
off).This equation is only true at a particular y and z, so we must
integrate

dIf = I0εa�ae−(�T y+�f z) dy.

Here the energy dependences are implicit and we have used
�T = �(E) and �f = �(Ef ). The variables z and y are dependent
via y sin � = z sin � = x. Changing variables, we obtain

dIf = I0εa�a

1

sin �
e−( �T

sin � + �f

sin � )x dx,

If = I0εa�a

1

sin �

∫ d

0
e−( �T

sin � + �f

sin � )x dx,

If = I0εa�a

�T + g�f

[
1 − e−( �T

sin � + �f

sin � )d], (1)

where g ≡ sin �/sin �. Eq. (1) describes the fluorescence in the
direction given by �. At this point one should integrate over
the detector’s solid angle. Ignoring this integral can affect the
final obtained correction [4], especially for glancing-emergent
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angle experiments. However, for detector geometries where
� + � = 90◦, we find the maximum error in g is on the order of
∼7% even for �� ≈ 5◦ at � = 10◦. For more severe geometries,
the solid angle should considered, but for the following, we ignore
this correction.

In EXAFS measurements, we want

� = �a − �̄a

�̄a

,

but what we actually obtain experimentally is

�exp = If − Īf

Īf

,

where Īf is the spline function fit to the data to simulate
the “embedded atom” background fluorescence (roughly If

without the EXAFS oscillations). Now make the following
substitutions:

�T = �̄T + ��̄a,

�a = (� + 1)�̄a,

�T − �̄T = �a − �̄a.

These equations and Eq. (1) are then plugged into �exp:

1 + �exp = �a(�̄T + g�f )[1 − e−( �T
sin � + �f

sin � )d]

�̄a(�T + g�f )[1 − e−( �̄T
sin � + �f

sin � )d]
.

Dividing by 1 + � and defining � ≡ �̄T + g�f , we get:

1 + �exp

1 + �
= [1 − e−(�̄T +��̄a+g�f ) d

sin � ]�

(� + ��̄a)[1 − e− �d
sin � ]

.

Now �exp can be written in terms of the actual �:

�exp =
[

1 − e−(�+��̄a) d
sin �

1 − e− �d
sin �

] [
�(� + 1)

� + ��̄a

]
− 1. (2)

At this point in the calculation, the relation between � and �exp

is exact. However, we need � in terms of �exp, and Eq. (2) is for
�exp in terms of �. In order to invert Eq. (2), we make a simple
approximation. Assuming that

��̄ad

sin �
� 1

we can say

1 − e−(�+��̄a) d
sin � ∼ 1 − e− �d

sin �

(
1 − ��̄ad

sin �

)
. (3)

This approximation gets worse with large � and �̄a. It also
has a maximum for both � and d, because of the e−(�d)/(sin �)

term. Plugging in some typical numbers from the Cu K-edge of
YBa2Cu3O7 (� = 10◦, �̄T = 1284 cm−1, �F = 1115 cm−1, �̄a =
462 cm−1 and� = 0.5) the maximum error is∼0.7% at a thickness
of ∼1.9�m. Such a high value of � does not actually occur
in YBCO. Indeed, such a high � is rare. In any case, various
combinations of the above parameters can conspire to produce
errors above 1%, so the approximation should be monitored when
making the corrections outlined below.

With the above approximation, and defining the following
quantities:

� = �̄ad�

sin �
e− �d

sin � , � = 1 − e− �d
sin � ,

Eq. (2) is reduced to a quadratic equation in � and we can finally
write the full correction formula:

� =
−[�(� − �̄a(�exp + 1)) + �] + √

[�(� − �̄a(�exp + 1)) + �]2 + 4����exp

2�
, (4)

where the sign of the square root was determined by taking
the thick or thin limits. In the thick limit (d → ∞), Eq. (4)
gives:

� = �exp

1 − �̄
� �exp − �̄a

�

,

which is the same as that calculated in Ref. [3] without the �exp

term in the denominator. In the thin limit, it can be shown that
Eq. (4) reduces to � = �exp as expected.

We performed an experiment on a copper foil to demonstrate
the correction. Cu K-edge data were collected both in the
transmission mode and in the fluorescence mode using a 32-
element Canberra germanium detector on beam line 11-2 at
the Stanford Synchrotron Radiation Laboratory (SSRL). The
transmission data were checked for pinhole effects (found to
be negligible) and the fluroscence data were corrected for dead
time. The sample thickness was estimated to be 4.6�m from
the absorption step at the edge, and was oriented such that
� = 49.4 ± 0.5◦. The thickness is about 25% of the estimated
thick-limit thickness. The data were reduced to k-space using
the RSXAP analysis program REDUCE [5–7], which incorporate
these corrections. Figure 2 shows the correction factor (�/�exp)
for these data. The error in the approximation in Eq. (3) exceeds
2% only below ∼1.6 Å−1. The total correction in the thick limit is
much larger (about 3 times the displayed correction). As shown in
Fig. 3, the corrected fluorescence data in k-space are remarkably
similar to the transmission data, despite the large magnitude of
the correction.

Although only a copper foil is reported as an example, we
have successfully applied this correction to a wide range of oxides
and intermetallics, including single crystals and thin films [8–12].
The ability to correct for intermediate film thicknesses is, in fact,
crucial for studying films thinner than ∼20�m thick.

In summary, we have provided an improved self-absorption
correction for EXAFS data that operates at any sample thickness

Fig. 2. Correction term �/�exp given by Eq. (4) for Cu K-edge absorption data
from a 4.6�m-thick copper foil at � = 49.4◦.
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Fig. 3. Corrected EXAFS data in k-space for the copper foil data, compared to
transmission data and uncorrected fluorescence data. Note that the corrected data
are difficult to discern on top of the transmission data.

or concentration. Our example of a pure copper foil demonstrates
both the accuracy of the correction and that, for concentrated
samples, the correction can be surprisingly large. Moreover,
for well-ordered materials, � can have a surprisingly large
effect.
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