
UNCERTAINTY IN MEASUREMENT:

NOISE AND HOW TO DEAL WITH IT

On a full-grown Coast Live Oak there are, by rough estimate, over a million leaves, in
general all the same, but in detail, all different. Like fingerprints, no one leaf is exactly like
any other. Such variation of pattern is noise.

A mountain stream flows with an identifiable pattern of waves and ripples, but with
no pattern repeating itself exactly, either in space or in time. That too is noise.

Clouds form, which we may classify as cirrus, or cumulus or nimbus, but no one cloud
is exactly like any other. More noise.

Noise, that delightfully random bit of disorder that is present everywhere, is an
essential ingredient of our physical universe, to be understood, appreciated and revered.

One has only to imagine a world without noise: the leaves of a plant without variation
of pattern, a stream without random gurglings, a campfire without random flickerings. It’s
a world without butterflies as we know them, a world with both predictable weather and a
predictable stock market.

It is not a world we would want to achieve.

It’s more fun to ponder the unpredictable. From noise comes spontaneity, creativity
and perhaps even life itself. One’s sense of humor may even be a manifestation of noise—a
kind of noise in the brain, causing the eruption of an unexpected thought or phrase, a joke.

Now this lab course is not designed to show why jokes are humorous—at least not
intentionally. However in the lab there will be lots of opportunity to observe noise and to
understand it—from the point of view of the physicist.

Because of noise, every measurement of any physical quantity is uncertain. For
example, here is a recorder trace of the output voltage from an ohmmeter:

Figure 1 — Noise in a meter reading. The voltage fluctuates because of noise.
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2 – 2 Uncertainty in measurement

In another example, taken directly from the Radioactivity experiment, the intensity
of a radioactive source is monitored with a Geiger counter. The counter is used to count
the number of pulses in each of a sequence of one-second intervals, producing this graph of
counting rate versus time:
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Figure 2 — Noise in a pulse counter.

The number of counts recorded in each interval will fluctuate from one interval to the
next. We use the term noise to describe such fluctuations. It is our aim in the following
paragraphs to understand noise as a source of uncertainty, to describe techniques for
quantifying it, and to give meaning to the concept of precision.

Noise is also called random error, or statistical uncertainty. It is to be distinguished
from systematic error. Systematic error, which is an error in measurement arising from a
defect, such as the mis-calibration of a meter or some physical effect not taken into account
in the measurement, can in principle be checked and corrected for.1 Noise, on the other
hand, is more basic. It arises, as in the first example (Fig. 1), from the thermal motion
of individual atoms, or, as in the second example (Fig. 2), from the quantum-mechanical
uncertainty associated with the radioactive emission of particles.2

In this second example, the question arises: How accurately may we estimate the
“true” intensity of the radioactive source (i.e., the “true” counting rate), when we measure
for only a finite number of time intervals? Such a finite number of measurements, which in
the above example is 100 (in general we’ll call it n) is called a “sample”, or more precisely,
a “random sample”, of the total population of such measurements. In this example, the

1 The event depicted on the cover of John Taylor’s monograph, An Introduction to Error Analysis,
might have arisen from a systematic error in engineering design—or perhaps just a colossal blunder by
the train operator.

2 Noise can also arise from what has more recently been described as deterministic chaos—see,
for example, James Gleick’s book entitled Chaos—Making a New Science (Penguin Books, 1988).
Connections may exist between such deterministic chaos and the thermal fluctuations or quantum
fluctuations on the atomic scale; such connections are the object of recent research.
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total population is infinite.3 If we could make an infinite number of measurements, we
could, in principle, reduce the statistical uncertainty to an infinitesimal value. We cannot
make an infinite number of measurements, so we are stuck with a finite sample of n
measurements, and hence with a finite statistical uncertainty in the determination of the
counting rate.

For any such sample of n measurements, a few key statistical parameters may be
calculated that serve the purpose of describing the measurement sample in the context
of its associated noise. There are three parameters that are particularly useful:

1. The sample mean x:

x ≡ 1

n

n
∑

k=1

xk (1)

Here xk is the kth measurement.

2. The sample variance s2:

s2 ≡ 1

n − 1

n
∑

k=1

(xk − x)2 (2)

The square root of the sample variance is s, and is called the sample standard deviation.

3. The variance of the mean σ2
x :

σ2
x ≈ s2

n
(3)

Note the distinction between the sample variance and the variance of the mean. The
square root of the variance of the mean is σx, and is called the standard deviation of the

mean. The meaning of the approximation sign in Eq. 3 is that the quantity s2/n is an
estimate of the variance of the mean.

An experimental result, i.e., the best estimate we can make of the “true” value of x, is
conveniently expressed in the form

“RESULT” = x ± σx ≈ x ± s√
n

(4)

As we shall see in the discussion contained in the following paragraphs, the meaning
of this statement is that we expect the “true” value of x, taking into account only the
random effects of noise or random error, to have about a 68 per cent chance, or level of

confidence, of lying between x−σx and x+σx.4 These two values of x are the approximate
confidence limits. They delimit a range of x-values called the confidence interval.

3 We make the assumption that our source of radioactive particles is inexhaustible, which of course
cannot be strictly true. This has no bearing on the point of our discussion, however. We’ll just take
“infinite” to mean “very very large”.

4 Equation 4 is not quite correct. See footnote 8 on Page 2–11 regarding further discussion of Eqs. 4
and 7.
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There is one further point that we shall discuss later in more detail. It frequently
happens that we wish to determine the mean, and the variance of the mean, for a quantity
u that is a function f(x, y, . . .) of a number of experimentally measured, independent

quantities x, y, . . .. That is, u = f(x, y, . . .).

The value of u (the mean of u), and the best estimate for σ2
u (the variance of the

mean of u), can be calculated using the following formulas:

u = f(x, y, . . .) (5)

and

σ2
u =

(

∂f

∂x

)2

σ2
x +

(

∂f

∂y

)2

σ2
y + · · · (6)

Each of the variances on the right side of Eq. 6 may be estimated using an expression like
that of Eq. 3. Hence a result for the derived measurement of u should be expressed in the
form

“RESULT” = u ± σu (7)

The process of doing the calculations described by Eqs. 5 and 6 is called the
propagation of uncertainty through functional relationships. These formulas, which are
valid if σx, σy, . . . are not too large, are quite general.

In what follows, we discuss the details of each of these points. Further references are
cited at the end of this chapter.

1. The sample mean x

The sample mean x is simply the average of the n individual measurements:

x =
1

n

n
∑

k=1

xk (8)

Consider our second example shown graphically in Fig. 2. The number of counts in each of
the first 25 one-second intervals is

18, 20, 20, 16, 16, 20, 17, 18, 15, 22, 13, 29, 18, 19, 10, 21, 23, 14, 17, 20, 15, 17, 14, 19, 13

then n = 25 and

x =
1

25
(18 + 20 + 20 + 16 + 16 + 20 + 17 + · · ·) =

444

25
= 17.76

For this particular sample, certain numbers appear more than once. 13, 14, 15, 16 and
19 each appear twice, 17 and 18 appear three times, and 20 appears four times. In general,
the value xk might appear g(xk) times; g(xk) is called the frequency of the value xk. Thus,
an expression equivalent to Eq. 8 may be written as

x =
1

n

∑

xk

xkg(xk) (9)

Note that while the sum in Eq. 8 is over k (the interval number), the sum in Eq. 9 is over
the values of xk.
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For our example, g(18) = 3, g(20) = 4, g(16) = 2, etc., and Eq. 9 looks like this:

x =
1

25
(10 · 1 + 13 · 2 + 14 · 2 + · · · + 20 · 4 + 21 · 1 + 22 · 1 + 23 · 1 + 29 · 1) = 17.76

Now the total number of intervals n is just the sum of the interval frequencies g(xk), that
is, n =

∑

g(xk), so that

x =

∑

xk

xkg(xk)

n
=

∑

xk

xkg(xk)

∑

xk

g(xk)

Furthermore, we expect that as n becomes very large, the quantity g(xk)/n will approach
the probability p(xk) that the value xk will appear. This defines p(xk):

p(xk) ≡ lim
n→∞

g(xk)

n
(10)

The introduction of the probability p(xk) now leads us to a diversion—a brief discussion
about ways of thinking about population distributions, and about the commonly
encountered normal distribution.

Background: Properties of the total population

The probability p(xk) is descriptive of the total (in our case, infinite) population of all
possible measurements. The total population is also called the parent population. In
general, we expect that p(xk) will be normalized :5

∑

xk

p(xk) = 1

Although for infinitely large populations such as the one we are considering, p(xk) is not
accessible to us (we can only estimate it through the measurement of large samples), it is
conceptually well-defined, and with it we can define the mean µ and the variance σ2 of the

5 In the following discussion we assume that x is limited to only the discrete values indicated by xk.
If x is in fact a continuous variable, sums over xk should be replaced by integrals over x. Thus, for
example

∑

xk

p(xk) = 1 becomes

∫

p(x) dx = 1
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total population:6

µ ≡ lim
n→∞

1

n

n
∑

k=1

xk =
∑

xk

xkp(xk) (11)

and

σ2 ≡ lim
n→∞

1

n

n
∑

k=1

(xk − µ)2 =
∑

xk

(xk − µ)2p(xk) (12)

Note that these definitions are similar to Eqs. 1 and 2 defining the mean and variance for a
particular finite sample of measurements; the difference is that we are here considering the
total population.

In general, the mean value, also called the average value, or expectation value of any

function f(xk) is given by

E[f(xk)] = ave[f(xk)] = lim
n→∞

1

n

n
∑

k=1

f(xk) =
∑

xk

f(xk)p(xk) (13)

where E[f ] stands for the expectation value of f .

Note that µ and σ2 are the expectation values, or mean values, of particular functions
of xk. Thus µ = E[xk] and σ2 = E[(xk − µ)2].

The square root of the population variance σ2 is σ, the standard deviation for the
total population. σ is a statistical parameter describing the dispersion of the (infinite)
number of measured values about the population mean µ. It describes how closely the
measured values are clustered about the mean, and thus gives a measure of the width of
the distribution of the values of xk.

The Normal distribution

The interpretation of the parameter σ is easily envisaged if the measured quantities xk are
distributed according to the commonly encountered Normal, or Gaussian distribution. The
probability distribution function for a normally distributed continuous random variable x

is given by7

p(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(14)

Here is a graph of p(x) vs. x:

6 Greek letters are often used to denote parameters that are descriptive of the parent population.

7 See Taylor, Section 5.3.
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Figure 3 — The Normal distribution.

p(x) dx is the probability that any particular value of x falls between x and x+dx, and
∫ x2

x1
p(x) dx is the probability that any particular x falls between x1 and x2. This integral

is represented by the shaded area in Fig. 3.

If x1 = −∞ and x2 = +∞, then it is certain that any particular x falls in this
interval, and

∫ x2

x1
p(x) dx = 1. The normalization factor 1/σ

√
2π ensures that this is the

case. If σ is reduced, p(x) becomes more sharply peaked.

If x1 = µ − σ and x2 = µ + σ, the shaded area is approximately 0.6827. That is, for
a normal distribution, there is approximately a 68 per cent chance that any particular x
falls within one standard deviation of the mean. Furthermore, the chance that an x will
fall within two standard deviations of the mean is approximately 0.9545, and within three
standard deviations, approximately 0.9973. It is striking that for measurements that are

normally distributed about some mean value, almost all of them (over 99 per cent) will lie
within three standard deviations of the mean.

From a random sample of n measurements one may form a frequency distribution that
may be compared with any particular probability distribution function p(x). Here is a bar
graph, or histogram, formed from the data shown in Fig. 2:



2 – 8 Uncertainty in measurement

0 8 16 24 32 40 
0 

10 

20 

counts/second 

oc
cu

rr
en

ce
s/

bi
n

 

Figure 4 — A sample distribution.

Note that it looks qualitatively similar to the Normal distribution shown in Fig. 3.
A quantitative comparison may be made using Pearson’s Chi-square Test, as described in
Chapter 4 of this manual.

Why the Normal distribution is so commonly encountered

We have mentioned that the fluctuations in measured quantities are commonly found to
be approximately described by a Normal distribution. Why? The answer is related to a
powerful theorem, much beloved by physicists, called the Central Limit Theorem.

This theorem states that if we have a number of random variables, say u, v, w, . . . , and
that if we form a new variable z that is the sum of these (z = u + v + w + · · ·), then as the
number of such variables becomes large, z will be distributed normally, i.e., described by a
Normal distribution, regardless of how the individual variables u, v, w, . . . are distributed.

While we won’t prove the Central Limit Theorem here (it’s not an easy proof), we can
present a “physicist’s proof”—an example that is easily tested: Let each of u, v, w, . . . be
real numbers randomly and uniformly distributed between 0 and 1. That is, each is drawn
from a flat distribution—clearly not a Normal distribution. Then let z = u+v+w+ · · · . It
is not hard to show, using a simple computer program, that for even as few as four or five
such terms in the sum, z will be nearly normally distributed. In fact if there are only two
terms, we can already see the peaking near the center, with the result being a triangular

distribution, like this:
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A simpler example involves dice. Throw one die, and the probability that any number
between 1 and 6 shows is 1/6—a uniform distribution. Throw two dice, however, and the
distribution, for x-values between 2 and 12, is triangular. As an exercise, try plotting out
the distribution for three dice. The x-values range between 3 and 18. Does the distribution
look bell-shaped?

Now a typical quantity measured in a physics experiment results from the sum of
a large number of random processes, and so is likely to be distributed normally. For
example, the pressure of a gas results from summing the random motions of a very large
number of molecules, so we expect measured fluctuations in gas pressure to be normally
distributed.

Nevertheless, we must be careful to not put too much faith in the results of the
Central Limit Theorem. One frequently sees measured values that are obviously non-
normal—too far away from the mean—that could arise, say, from some voltage spike or
from some vibration caused by a truck passing by. Not every data point can be expected
to fall within this classic bell curve.

This ends our diversion. We continue now with our discussion of the sample mean, the
sample variance, the variance of the mean, and how uncertainties are propagated through
functional relationships.
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How is x related to µµµ ?

In general, our desire is to determine, from a finite sample of measurements, best estimates
of parameters, such as µ and σ2, that are descriptive of the total population. The simplest
relationship is that between x and µ: x is the best estimate of µ. This is equivalent to
saying that the expectation value of x is µ, or E[x] = µ. While this statement may seem
intuitively obvious, here is a proof:

E [x] = E[
1

n

∑

k

xk] =
1

n

∑

k

E[xk] =
1

n

∑

k

µ =
1

n
· nµ = µ

2. The sample variance s2 and the sample standard deviation s

The sample variance s2 is defined by:

s2 ≡ 1

n − 1

n
∑

k=1

(xk − x)2 (15)

By substituting x ≡ 1
n

∑

xk we obtain

s2 =
n

∑

x2
k − (

∑

xk)
2

n(n − 1)
(16)

which is an expression useful for numerical calculation, in that it involves only
∑

xk,
∑

x2
k

and n, which are easily computed.

For the complete measurement sample shown in Fig. 2,
∑

xk = 1825,
∑

x2
k = 355013,

and n = 100, which yields s2 = 17.240 as the sample variance, and s = (17.240)
1

2 = 4.152
as the sample standard deviation.
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How is s2 related to σσσ 2 ?

The sample variance s2 is the best estimate of the variance σ2 for the total population.
This is equivalent to the statement that the expectation value of s2 is equal to σ2. The
proof of this statement runs as follows. We start by taking expectation values of both sides
of Eq. 15:

E[s2] =
1

n − 1
E

[

∑

(xk − x)2
]

=
1

n − 1
E

[

∑

x2
k − 2x

∑

xk +
∑

x2
]

=
1

n − 1
E

[

∑

x2
k − 2nx2 + nx2

]

=
1

n − 1

{

∑

E[x2
k] − nE[x2]

}

=
n

n − 1

{

E[x2
k] − E[x2]

}

To evaluate E[x2
k], we note from Eq. 12 that

σ2 = E[(xk − µ)2] = E[x2
k] − 2µE[xk] + E[µ2] = E[x2

k] − µ2 (17)

so that
E[x2

k] = µ2 + σ2

To evaluate E[x2], we expand to find

E[x2] = E
[(x1 + x2 + · · · + xn

n

)2]

=
1

n2

{

E
[

∑

x2
k

]

+ E
[

∑

k 6=j

xkxj

]}

where the quantity
∑

k 6=j
xkxj represents all cross-products of two different measurements

of x. Since xk and xj are independent for k 6= j, we have

E[xkxj ] = E[xk]E[xj ] = µ · µ = µ2

Since there are n terms of the form x2
k and n(n − 1) cross-product terms of the form

xkxj , we have

E[x2] =
1

n2
{n(σ2 + µ2) + n(n − 1)µ2} =

σ2

n
+ µ2 (18)

Hence we find (finally!)

E[s2] =
n

n − 1
{(σ2 + µ2) − (

σ2

n
+ µ2)} = σ2

and the assertion is proved.

This proof also provides the justification for dividing by n − 1, rather than n, when
we calculate the sample variance. Qualitatively, when we calculate the sample variance s2

using Eq. 15, the use of x as an estimate of µ in that expression will tend to reduce the
magnitude of

∑

(xk − x)2 somewhat. That is,
∑

(xk − x)2 <
∑

(xk − µ)2

Division by n − 1 rather than n serves to compensate for this slight reduction.
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3. The variance of the sample mean σσσ 2
x and its associated standard deviation σσσ x

For a sample of n measurements xk we have seen that x is the best estimate of the
population mean µ. If the xk are normally distributed, an additional single measurement
will fall within x ± s at approximately the 68 per cent level of confidence. This is the
interpretation of the standard deviation s for the sample of n measurements.

If we take additional samples, of n measurements each, we expect to gather a
collection of sample means that will be clustered about the population mean µ, but with
a distribution that is narrower than the distribution of the individual measurements
xk. That is, we expect the variance of the sample means to be less than the population
variance. For a sample of n measurements, it turns out (see proof below) that the variance
of the mean is just the population variance divided by n:

σ2
x =

σ2

n
(19)

or, since we may estimate the value of σ2 by calculating s2,

σ2
x ≈ s2

n
(20)

The quantity s/
√

n thus provides us with an estimate of the standard deviation of the

mean. An experimental result is conventionally stated in the form shown in Eq. 4, namely8

“RESULT” = x ± s√
n

(21)

As an example, we look once again at the data sample of 100 measurements of the
counting rate shown in Fig. 2. Since for that sample we have x = 18.25 and s = 4.152, we

8 Equations 4, 7 and 21 are not quite correct. Because of the non-normal distribution of the sample
variance, it should be written

“RESULT” = x ± tn−1

s√
n

(21a)

where tn−1 is a constant called the “Student” t-factor. In the general case, tn−1 depends on the level
of confidence chosen and the sample size n. If, as usual, we chose a confidence level of 68.27 per cent,
tn−1 approaches 1.0 for large n, and is not much larger than 1.0 even for small n. A table at the end of
this chapter displays commonly used values of the “Student” t-factor tν . (ν, here n− 1, is the number of
“degrees of freedom”.) In this course, our interest in tν is largely academic, and frequently (as in Eq. 21)
we omit it. With more conservative confidence intervals such as 95 or 99 per cent, its use becomes more
meaningful. Its use also arises in the fitting of data to a mathematical model, where confidence intervals
on the estimates of parameters are desired. The computer programs we use for such data modeling
(see Chapter 5) include “Student” t-factors in the estimation of confidence intervals. For a complete
discussion of the “Student” t (and a little story about who “Student” was), see the book by Bennett and
Franklin.
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may express our measured counting rate in the form

Counting rate = 18.25 ± 4.152√
100

= 18.25 ± 0.42 counts/second

This result implies that if one were to take an additional sample of 100 measurements,
there would be about a 68 per cent chance that this new sample mean would lie between
17.83 and 18.67 counts/second. Note that we rounded off the uncertainty to two significant
figures, since a third significant figure makes no sense. We also did not include any
more significant figures in the value of the result (here “18.25”) than are implied by the
uncertainty. Thus to have stated our result as 18.250 ± 0.42 counts/second would have
been incorrect.

It is meaningless to include more than two significant figures in the
uncertainty. It is also meaningless to include more significant figures in
the result than are implied by the uncertainty.

A result so expressed thus allows us to compare our own experimental result with
those of others. If the result stated in the form of Eq. 21 brackets, or overlaps a similar
result obtained elsewhere, we say that the two experimental results are in agreement. We
have ignored, of course, any systematic errors that may be present in either measurement.

Equation 19 may be easily proved:

σ2
x = E

[

(x − µ)2
]

= E
[

x2 − 2µx + µ2
]

= E
[

x2
]

− E
[

µ2
]

= E
[

x2
]

− µ2

From Eq. 18 we have

E
[

x2
]

=
σ2

n
+ µ2

from which it follows that σ2
x = σ2/n.

Finally, there is one additional point to discuss: Suppose we measure a quantity u

several times, or by several different methods, and for each measurement ui we estimate
its uncertainty σi. The σi are not necessarily equal; some of the measurements will be
better than others, because of larger sample sizes (more repetitions), or because of other
factors—like better apparatus. How do we determine our best estimate of u, and how do
we find the uncertainty in that estimate?
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For example, suppose a length x is measured by one person n1 times and by another
person n2 times, so that the first person finds

u1 ≡ x1 =
1

n1

∑

k

xk with σ2
1 =

1

n1
σ2

while the second person finds

u2 ≡ x2 =
1

n2

∑

j

xj with σ2
2 =

1

n2
σ2

Here σ1 is the uncertainty in u1, σ2 is the uncertainty in u2, and σ2 is the population
variance of the x-values. How should u1 and u2 be combined to yield an overall u, and
what is the uncertainty in this final u? Since n1 = σ2/σ2

1 and n2 = σ2/σ2
2

u =
1

n1 + n2





∑

k

xk +
∑

j

xj



 =
1

n1 + n2
(n1u1 + n2u2) =

1
1
σ2
1

+ 1
σ2
2

(

u1

σ2
1

+
u2

σ2
2

)

with

σ2
u =

σ2

n1 + n2
=

1
1
σ2
1

+ 1
σ2
2

In general, if there are n values of u, here is the generalized result, in a form that
depends only on each uk and its uncertainty σk:

u =

n
∑

k=1

uk/σ
2
k

n
∑

k=1

1/σ2
k

; σ2
x =

1
n
∑

k=1

1/σ2
k

(22)

Note how more measurements, or more accurate measurements, reduce the uncertainty
by increasing its reciprocal. The results expressed in Eq. 22 may also be derived from a
principle of maximum likelihood or a principle of least squares. An explicit example of the
application of the formulas in Eq. 22 appears on page 4–5 of this manual.
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4. The propagation of uncertainty through functional relationships

It frequently occurs that one wishes to determine the uncertainty in a quantity that is a
function of one or more (independent) random variables. As we have seen, if we measure a
counting rate x, we may express our result as x ± σx. Suppose, however, we are interested
in a quantity u that is proportional to the square of x, that is, u = ax2, where a is some
constant. What is the resulting uncertainty in u?

Using the concepts of differential calculus, one expects that if x fluctuates by an
amount dx, then u will fluctuate by an amount du = (∂u/∂x) dx = 2ax dx. In statistical
terms, where the sign of the fluctuation is irrelevant, and if the fluctuations are not too
large, one expects that

σu =

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

σx

and also, for the standard deviation of the mean,

σu =

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

σx

In each case, the derivative should be evaluated at the point x = x. We may
generalize this idea to include situations where u depends on more than one random
variable: Suppose u = f(x, y, . . .), where x, y, . . . are random independent variables. Then

σ2
u =

(

∂f

∂x

)2

σ2
x +

(

∂f

∂y

)2

σ2
y + · · · (23)

and also, for the variance of the mean,

σ2
u =

(

∂f

∂x

)2

σ2
x +

(

∂f

∂y

)2

σ2
y + · · · (24)

Note that we sum the squares of the individual terms; this is appropriate when the
variables x, y, . . . are statistically independent.

We illustrate the idea with an example taken from the Radioactivity experiment—one
of the experiments in the Intermediate lab. In that experiment, a counter dead time τ
may be estimated from a measurement of three counting rates, x, y and z. Here x is
the counting rate from one source, y is the counting rate from a second source, and z is
the counting rate from both sources simultaneously. For this illustration, we use a simple
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(albeit inaccurate) formula for the dead time:

τ ≈ x + y − z

2xy
(25)

From this expression, we can calculate

∂τ

∂x
=

z − y

2x2y
;

∂τ

∂y
=

z − x

2xy2
;

∂τ

∂z
= − 1

2xy
(26)

In a particular experiment, the number of counts in one minute were measured for
each of the three configurations, yielding

x = 55319; σx = 235

y = 54938; σy = 234

z = 86365; σz = 294

where the units of all quantities are counts per minute.

At the point (x, y, z):

∂τ

∂x
= 9.35 × 10−11;

∂τ

∂y
= 9.30 × 10−11;

∂τ

∂z
= −16.5 × 10−11

with the units being mins2/count. Inserting these values into Eq. 23 yields

σ2
τ = (9.35×10−11)2(235)2+(9.3×10−11)2(234)2+(−16.5×10−11)2(294)2 = 3.31×10−15 min2

from which

στ = (3.31 × 10−15)
1

2 = 5.75 × 10−8 minutes = 3.5 microseconds

Using Eq. 25 to evaluate τ at the point (x, y, z) we find

τ =
x + y − z

2xy
= 3.93 × 10−6 minutes = 236 microseconds

Hence we may express the final result of this measurement of the dead time as

τ = 236 ± 3.5 microseconds

It turns out that if we used the more accurate formula for the dead time we would
have obtained 300 microseconds instead of 236. These values may now be compared
with the value obtained by measuring the dead time of the counter directly from the
oscilloscope screen, which in this particular experiment was found to be about 220
microseconds, with an error of several tens of microseconds. The two results are thus found
to be in rough agreement.
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Table of “Student” t-factors tν

Degrees
of Level of Confidence in per cent

Freedom
(ν) 68.269 95.0 95.45 99.0

1 1.8373 12.7062 13.9678 63.6567
2 1.3213 4.3027 4.5266 9.9248
3 1.1969 3.1824 3.3068 5.8409
4 1.1416 2.7764 2.8693 4.6041
5 1.1105 2.5706 2.6487 4.0321
6 1.0906 2.4469 2.5165 3.7074
7 1.0767 2.3646 2.4288 3.4995
8 1.0665 2.3060 2.3664 3.3554
9 1.0587 2.2622 2.3198 3.2498

10 1.0526 2.2281 2.2837 3.1693

11 1.0476 2.2010 2.2549 3.1058
12 1.0434 2.1788 2.2314 3.0545
13 1.0400 2.1604 2.2118 3.0123
14 1.0370 2.1448 2.1953 2.9768
15 1.0345 2.1315 2.1812 2.9467
16 1.0322 2.1199 2.1689 2.9208
17 1.0303 2.1098 2.1583 2.8982
18 1.0286 2.1009 2.1489 2.8784
19 1.0270 2.0930 2.1405 2.8609
20 1.0256 2.0860 2.1330 2.8453

21 1.0244 2.0796 2.1263 2.8314
22 1.0233 2.0739 2.1202 2.8188
23 1.0222 2.0687 2.1147 2.8073
24 1.0213 2.0639 2.1097 2.7969
25 1.0204 2.0595 2.1051 2.7874
26 1.0196 2.0555 2.1009 2.7787
27 1.0189 2.0518 2.0969 2.7707
28 1.0182 2.0484 2.0933 2.7633
29 1.0175 2.0452 2.0900 2.7564
30 1.0169 2.0423 2.0868 2.7500

35 1.0145 2.0301 2.0740 2.7238
40 1.0127 2.0211 2.0645 2.7045
45 1.0112 2.0141 2.0571 2.6896
50 1.0101 2.0086 2.0513 2.6778
55 1.0092 2.0040 2.0465 2.6682
60 1.0084 2.0003 2.0425 2.6603

120 1.0042 1.9799 2.0211 2.6174
∞ 1.0000 1.9600 2.0000 2.5758
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