
II. CLOCKS, CLOCK RATES AND TIME DILATION

The notion of a clock is basic to our discussion of SRT. In its simplest form, we take
it to be a single particle that either undergoes a periodic motion, like a vibrating molecule,
or else goes “on” at one time and “off” at a later time, like a meson that is formed and
later decays.1 We shall assume that such clocks “tick” uniformly, that is, that they neither
slow down nor speed up, that the mean lifetime of a pi meson is the same this year as it
was last year, or that the vibrational frequency of an ammonia molecule is the same now
as it was a thousand years ago. We also assume that clocks tick homogeneously, that is,
that a clock’s ticking rate does not depend on its spatial coordinates. Hence if we bring
any two clocks together their relative rates will not depend upon where or when we bring
them together.

We can use the language of a spacetime diagram and the concept of a clock to
describe the behavior of moving clocks. This description will provide us with an essential
key to the understanding of SRT.

First we imagine the following idealized experiment: Take a number of identical
clocks, say a number of hypothetical mesons, each of which exists for exactly τ seconds.
(We ignore the uncertain nature of the decay process). Suppose they are all born
simultaneously at the origin of a horizontal ruler, or x-axis, and then move along the axis
away from the origin, some to the left and some to the right, at various different constant
velocities. One of the mesons could even remain right at the origin; it would have therefore
zero velocity. In general, a meson moving at velocity v will move a distance x = vt away
from the origin after a time t, where t is the time measured by a clock at the origin of
the x-axis. Now each meson will subsequently die (or decay); the death of each meson
constitutes a distinct event with spacetime coordinates (x/c, t). Here, we have arranged
our experiment so that all the mesons are born at the event whose spacetime coordinates
are (0, 0).

Now we ask a question: How is the spacetime coordinate t for each of the decay events
related to the meson lifetime τ? “Huh?” we say, “What do you mean? Since each meson
lives for τ seconds, t = τ for each decay event.” This is what Newton would have said too:
This is the Newtonian prediction for clock rates. The entire experiment may be illustrated

1 It may seem at first glance that a real particle that is formed and later decays does not constitute an
accurate clock, because of the uncertain nature of the decay process. Given a number of particles, some
will decay at times less than the mean life, some will decay at times greater than the mean life, and in
general it is impossible to predict exactly when any given particle will decay. However, it is possible
to determine the mean lifetime of a number of particles to any desired accuracy simply by observing
a sufficient number of such particles, and in this sense, decaying particles are just as good clocks as
vibrating molecules. Indeed, for a vibrating molecule it is necessary to observe it for a large number
of cycles in order to determine its frequency precisely; this is analogous to observing a large number of
decays in an exponentially decaying system.
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6 Clocks, clock rates and time dilation

on a spacetime diagram, shown in Fig. 6. Here we have drawn the world line for each
clock, and have indicated each supposed decay event by a little black dot on the diagram.
A line drawn through all such events we call the line of “τ -second ticks”.

t = τ

line of τ − second ticks
(Newtonian prediction)
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Figure 6—Newtonian spacetime

The surprising result is that this prediction is wrong. It is approximately true only

for clocks that move at speeds much less than the light velocity. When we examine the
behavior of real clocks moving at speeds comparable with the light velocity, we find
that the line of “τ -second ticks” is not a straight line, but is curved. The form of the
curve, while originally predicted by Einstein, is also based on experiments using high
speed mesons, experiments we discuss in the next section. The result is that the curve
is described by the hyperbola:

t2 −
x2

c2
= τ2

This curve is shown on a spacetime diagram in Fig. 7 on the next page.
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t2 − x2/c2 τ2=

line of τ −second ticks
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Figure 7—Real spacetime

Note that for x/c � t, that is, for v � c, we may neglect the term x2/c2 in the
equation for the hyperbola, and t2 ≈ τ2, or t ≈ τ . This is the region of spacetime where
the Newtonian concept of absolute time is approximately correct.

Exercise

The Newtonian prediction for clock rates is sufficiently accurate if the clock
velocity is small enough. What is the maximum clock velocity allowed such that
clock rates be accurately predicted by Newtonian theory to within 1 per cent?
To within 0.01 percent? (Hint: Make use of the binomial theorem. Answer: .14c,
.014c).

The clocks used in the experiments leading to Fig. 7 are typically mu mesons (muons),
for which τ = 2.2 microseconds. The experiment may also be done with pi mesons (pions),
for which τ = 0.027 microseconds. In both cases, the locus of decay events is given by
the hyperbola. The hyperbola thus represents a description of the experimental data for
real clocks, and is not subject to dispute. On the basis of these experimental data (see the
following section for details), we are led to believe that any clock moving from the origin
of our spacetime diagram to an event with spacetime coordinates (x/c, t) will record a time
interval τ where

τ2 = t2 −
x2

c2

One must distinguish between t and τ . Here t is called the coordinate time, or the
time recorded by a clock at a fixed value of x, say at x = 0. τ , on the other hand, is
the elapsed time recorded by an observer traveling with the clock. It is called the proper
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time. The proper time is characteristic of the clock, and does not depend on how the clock
moves.

Note that the parameter c, the light velocity, enters into the equation for the
hyperbola. This is an indication that the light velocity is a fundamental quantity that
must enter into the theory of high-velocity motion of particles. This also provides us with
the motivation for scaling our axes as we have discussed earlier in connection with Fig. 3.

In actual experiments, not all clocks will pass through the same event. Our
assumptions that all clocks tick uniformly and homogeneously will allow us to compare
clocks ticking at different times and at different places.

We may generalize the above relation: If a clock is carried at constant velocity from
the event (x1/c, t1) to the event (x2/c, t2), it will record a time interval given by ∆τ , where

(∆τ)2 = (t2 − t1)
2
−

1

c2
(x2 − x1)

2
≡ (∆t)2 −

1

c2
(∆x)2

This forms the basic rule for thinking about spacetime geometry, and forms a concrete
basis for SRT. It is an experimental basis, a way of summarizing the description of real
observations. The quantity ∆τ has a name. It is called the metric, or spacetime interval,
separating the spacetime events (x1/c, t1) and (x2/c, t2).

2

This expression for the spacetime interval looks a lot like the Pythagorean theorem,
except for the minus sign. That minus sign is crucial. It is the single feature leading to the
surprising differences between spacetime and ordinary Euclidean geometry.

2 Note that (∆τ)2 can be positive, negative or zero, depending on the relative values of the spacetime
coordinates of the two events. The ramifications of this will become clear in subsequent sections. By ∆τ

we mean (±(∆τ)2)1/2, where the sign is chosen to make ∆τ real.
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Example

Consider a clock, starting from the event E1: x/c = 0, t = 0, that travels at
uniform velocity to the event E2: x/c = 6 sec, t = 10 sec. What is the elapsed
time on the clock? It is given by

τ = [(t2 − t1)
2
−

1

c2
(x2 − x1)

2]1/2 = (102
− 62)1/2 = 8 seconds

Note the obvious: 8 seconds is less than 10 seconds. We can illustrate with a
spacetime diagram:

1/
2

= 
8 

 se
co

nd
s

τ
2

2

= 
{1

0 
   

 6
 }

−

E1

E2

2 4 6 8

2

6

10

12

4

8

t 
(s

ec
on

ds
)

x/c (seconds)

Figure 8—World line of a clock moving at v = 0.6c

If our clock were to travel instead from the origin to the event x/c = 8 sec, t = 10 sec,
the elapsed time on the clock would be even less, only 6 seconds. And if our clock were
somehow able to travel to the spacetime point x/c = 10 sec, t = 10 sec, again at uniform
velocity, it would show no elapsed time at all.

This is strange stuff indeed. It can be made a bit less strange, however, if we realize
two things: First, note that the distances of 6, 8 and 10 light-seconds are extremely
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large—several times as far away as the moon—so that for a clock to travel that far
in only a few seconds it must travel at a very high velocity, much higher than we are
accustomed to, even with the highest speed spaceship we could make. (Note that for the
case illustrated in Fig. 8, our clock must move at v = 0.6c in order to pass through the two
events). So perhaps we shouldn’t be too astonished if we encounter strange results.

Second, although we represent our spacetime by a drawing on a piece of paper, so
that it looks like ordinary Euclidean space, it is not a representation of Euclidean space,
and the rule for measuring distance in Euclidean space (the Pythagorean theorem) does
not apply. We must use the spacetime interval rule instead.

The behavior of moving clocks is called the relativistic time dilation for the following
reason: Consider Fig. 9 (a generalization of Fig. 8), in which a clock moves with constant
velocity from the event (0, 0) to the event (x/c, t).

(0,0)

t (x/c, t)

x/c

Figure 9—World line of a clock moving at v

What will this moving clock read when it passes the second event? That is, what will
be the elapsed time as recorded by this clock? Since the clock moves at speed v, x = vt,
and we may calculate:

τ2 = t2 −
x2

c2
= t2 −

v2

c2
t2 = t2(1 −

v2

c2
)

The coordinate time t, which may be measured by a pair of synchronized stationary
clocks situated at x = 0 and x = x, is therefore related to the proper time interval τ
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recorded by the moving clock:

t =
τ

√

1 − v2/c2

The ratio of the clock readings depends only on the relative velocity v. This particular
function of v appears so often that it is given a special symbol, γ:

γ ≡
1

√

1 − v2/c2

Since v/c is always observed to be less than 1, we see that γ is always greater than 1.
Hence, as measured by the stationary observer’s clock, the time intervals of the moving
clock are lengthened, or dilated, by the quantity γ, hence the expression time dilation.

An additional implication resulting from this behavior of clocks is that moving
unstable particles will travel farther than we might think before decaying. Newtonian
theory would predict that a moving particle whose lifetime was τ would move a distance
of vτ before decaying. The SRT rule for clocks says that the moving clock appears to run
slowly, and so the particle can actually cover a distance γvτ before decaying. This effect
may also be illustrated with a spacetime diagram as shown in Fig. 10.
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t
d/c

d/v τ

Figure 10—Distance traveled by a moving clock

Again, suppose that the particle decays after a time interval τ during which time it
travels a distance d. We have

τ2 =
d2

v2
−

d2

c2
=

d2

v2
(1 −

v2

c2
), or d = γvτ

This result plays an important role in the experiments on real clocks, discussed in the
following section.
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So far, we have considered only clocks moving at constant speeds relative to each
other. How do we treat a clock that is moving on a curved world line, that is, a clock that
is undergoing acceleration? Contrary to the opinions of some effervescent mythologists,
General Relativity need not be invoked. SRT gives the complete description. We merely
consider an infinitesimal interval of elapsed time along the world line of the clock:

dτ = (dt2 −
1

c2
dx2)1/2

To calculate a total elapsed time for any given clock between any two specified events,
we simply add up all the infinitesimal spacetime intervals, that is, we perform a line
integral along the world line:

τ =

∫ E2

E1

dτ =

∫ E2

E1

(

dt2 −
1

c2
dx2

)1/2
=

∫ t2

t1

[

1 −
1

c2
(
dx

dt
)2

]1/2
dt

Of course, to perform this integral, we need to know the equation of the world line,
that is, we must know how x depends on t, so that we can determine how dx/dt depends
on t and do the integral. The result we get for τ depends not only upon the spacetime
coordinates of E1 and E2, but also upon the equation of the world line connecting E1

with E2.

Now for a surprise: The greatest elapsed time recorded by a clock carried between any
two events E1 and E2 occurs when the world line connecting the two events is straight.
All other world lines yield shorter elapsed times. Contrast this with Euclidean geometry,
where the shortest distance between two points is along the straight line connecting the
points. We compare the two geometries in Fig. 11.
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Figure 11(a)
Spacetime: τA > τB

Figure 11(b)
Euclidean space: dA < dB
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Problem

For this exercise, assume that the light velocity is 5 miles per hour. Dave starts
from home at 6 am and walks down a long straight road at 1 mile per hour. His
friend Erin starts (from the same home) 9 hours later (at 3 pm) and follows Dave,
walking at 2 miles per hour.

Draw their world lines (to scale) on a suitable spacetime diagram, and
determine graphically the coordinates of the event E: Dave and Erin meet. Their
dog Fido leaves home just when Erin does, pursuing Dave at 4 miles per hour,
meets Dave, reverses direction and returns to Erin (also at 4 miles per hour),
reverses to Dave, etc., until the event E. How far does Fido walk? Now Dave,
Erin and Fido each carry ordinary clocks, all of which have been synchronized
at 6 am, the moment when Dave leaves. What are the readings of each of the
3 clocks at the event E, when they are all back together again? (Partial answer:
Erin’s clock reads 11:15 pm)
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