As the capacitor shown below is charged with a constant current I, at point P there is a



- 1. constant electric field.
- 2. changing electric field.
- 3. constant magnetic field.
- 4. changing magnetic field.
- 5. changing electric field and a magnetic field.

For a charging capacitor, the total displacement current between the plates is equal to the total conduction current I in the wires. The capacitors in the diagram have circular plates of radius R. In (a), points A and B are each a distance d > R away from the line through the centers of the plates; in this case the magnetic field at A due to the conduction current is the same as that at B due to the displacement current. In (b), points P and Q are each a distance r < R away from the center line. Compared with the magnetic field at P, that at Q is



- 1. bigger.
- smaller.
- the same.
- 4. need more information.