Tesla Jeltema

Assistant Professor, Department of Physics

Observational Cosmology and Astroparticle Physics

Research Program

Research theme: using the evolution of large-scale structure to reveal the fundamental nature of the universe

Topics including:

- Cosmology
- Indirect Dark Matter Detection
- Galaxy Evolution

Cosmology with Galaxy Clusters

Clusters of Galaxies

Clusters represent the high-density tail of initial perturbations and have only recently collapsed

> Masses around 10^{15} M_o, of which ~ 2% in stars, ~ 13% in hot gas, ~ 85% in dark matter

Image credit D. Nagai

Springel et al. 2004

Cosmology with Clusters

Clusters offer two methods to constrain cosmology:

1. A growth of structure test

The evolution in cluster number density with redshift constrains the amplitude of density fluctuations and the dark matter and dark energy densities.

2. A geometric test

The fraction of cluster mass in baryons is constant with redshift, giving a standard ruler which constrains the dark matter and dark energy densities.

Example of Current Constraints

Vikhlinin et al. 2009

A Bright Future: Large Surveys

Sunyaev-Zeldovich Effect: SPT, ACT, Planck

- inverse Compton scattering of CMB off hot ICM
- roughly redshift independent

X-ray: eROSITA (all sky), IXO/ATHENA

- thermal bremsstrahlung from hot gas

Optical: DES, LSST

(plus spectroscopic like BigBOSS)

- distribution of galaxies
- weak lensing

A Bright Future

Multiwavelength follow-up and cosmological simulations

good control of systematics, selection

e.g. Enzo simulations, joint Chandra and CHFT weak lensing, X-ray and Keck follow-up of DES

The Dark Energy Survey

> Multiband (grizY) optical imaging survey of 5000 deg² of the southern sky using the Blanco 4-m at CTIO.

> DES will detect ~170,000 clusters to $z \sim 1.5$.

First light 2012!

Cosmology with the Dark Energy Survey

Four ways to constrain cosmology:

- Clusters of Galaxies
- Gravitational Lensing
- Baryon Acoustic Oscillations
- > Supernovae

Will give a factor of 5 improvement in the Dark Energy Task Force figure of merit.

Cosmology with DES Clusters

Constraints on dark energy:

The number of clusters which form depends on the balance between gravity and dark energy (also effects volume).

$$\frac{d^2 N(z)}{dz d\Omega} = \frac{c}{H(z)} D_A^2 (1+z)^2 \int_0^\infty f(M,z) \frac{dn(z)}{dM} dM$$

hard part: understanding the relationship between observables and cluster mass

DES Cluster Mass Calibration

Calibrate optical richness (DES observable) with:

Simulations, self-calibration, and weak lensing from DES alone

Overlapping surveys: SPT (SZ) and eROSITA (X-ray)

Dedicated follow-up of relatively small sub-samples (100-1000 clusters) with current telescopes

- X-ray follow-up with Chandra and XMM
- spectroscopic follow-up with Keck

Multiwavelength Cluster Observations

Relatively small follow-up programs giving a low scatter observable can give a factor of ~ 2 improvement in DETF FoM from DES alone.

scatter in richness-mass relation

~ 30%

scatter for X-ray, SZ observables ~ 7-10%

Wu, Rozo, & Wechsler 2010

Indirect Detection of Dark Matter

Observing Dark Matter

Dark matter can annihilate or decay to Standard Model particles potentially giving observables signatures.

Dark matter annihilation/decay can lead to a broad spectrum of emission.

Gamma-ray observations are placing strong constraints on particle physics models

Example spectrum of DM annihilation in the Coma cluster (Colafrancesco et al. 2006)

Gamma Rays from Dark Matter Annihilation

Secondary gamma rays from π_0 decays

Gamma Rays from Dark Matter Annihilation

bremsstrahlung (final state radiation)

Lepton pair production

("leptophilic", not typical for neutralino annihilation, but popular as an explanation of the PAMELA positron excess)

Dark Matter Searches with Fermi

Dwarf spheroidal galaxies give strong constraints on dark matter annihilation.

Clusters of galaxies constrain:

- dark matter decay
- leptophilic dark matter when IC emission dominate (models fitting the PAMELA positron excess)

Strong constraints also from Fermi observations of the Milky Way halo and the extragalactic gamma-ray background.

Wolf et al. 2009

Dark Matter Annihilation Dwarf Spheroidal Galaxies

Abdo et al. 2010

Ackermann et al. 2011

Constraining Dark Matter with Clusters of Galaxies

Constraining Dark Matter with Clusters of Galaxies

Current Work on Dark Matter Detection

Stacking of Fermi observations of clusters. (with student E. Storm and other collaboration members)

Dark matter detection with hard X-ray (Jeltema & Profumo 2012) and radio observations of clusters

Bayesian analysis of dark matter annihilation at the Galactic Center with Fermi-LAT (with R. Trotta, P. Scott, and collaboration members)

Cosmic Rays in Clusters

Accelerated in accretion/merger shocks, AGN, and SNe

Radio synchrotron emission from CR electrons in the cluster magnetic field observed on Mpc scales!

Gamma ray emission

- CR proton collisions with ICM
- IC scattering by CR electrons

Constrain the CR density and origin of the radio emission using gamma-ray observations (Jeltema & Profumo 2011) and simulations (Hallman & Jeltema 2011).

