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Degrees of freedom live on crystalline lattices 
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Observation of Zero Point disorder in Spin Ice - Dy2Ti2O7 

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

s = 1/2
θW ~ +0.5K

Dy2Ti2O7

S
pi

n 
en

tro
py

 (R
ln

2)

Temperature (K)

Pauling’s zero point disorder	
  

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

s = 1/2
θW ~ +0.5K

Dy2Ti2O7

S
pe

ci
fic

 H
ea

t/T
 (J

/m
ol

eK
2 )

Temperature (K)

A. Ramirez et al, Nature (1999) 



Electrostatics of Spin Ice – Emergence of Monopoles 

Three-Dimensional Kasteleyn Transition: Spin Ice in a [100] Field
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We examine the statistical mechanics of spin-ice materials with a [100] magnetic field. We show that
the approach to saturated magnetization is, in the low-temperature limit, an example of a 3D Kasteleyn
transition, which is topological in the sense that magnetization is changed only by excitations that span the
entire system. We study the transition analytically and using a Monte Carlo cluster algorithm, and
compare our results with recent data from experiments on Dy2Ti2O7.

DOI: 10.1103/PhysRevLett.100.067207 PACS numbers: 75.40.Cx, 75.10.Hk, 75.40.Mg

Topological phases occur in connection with new liquid
states and concurrent exotic transitions out of them. A
central idea is the emergence of degrees of freedom which
cannot be defined or manipulated locally. Their presence
has profound ramifications for the static and dynamic
properties of such phases. They can exhibit algebraic cor-
relations in the absence of criticality [1] and unusually
slow relaxation towards thermal equilibrium [2,3].

A magnetic system whose topological properties have a
particularly simple and transparent origin is known as
spin ice [4,5] (Fig. 1): in its macroscopically degenerate
ground state, a magnetic version of the ice rules apply.
These stipulate that for each tetrahedron of the corner-
sharing pyrochlore lattice, two of the four spins point in,
and two point out of the tetrahedron along the local body
centered diagonal axes. As a result, the lattice divergence
of the spin field vanishes everywhere: ~r ! ~S " 0. As a
consequence of this local constraint, the magnetization of
each (100) plane is the same [6] and is therefore a topo-
logical quantity which can be changed only by making a
simultaneous change throughout the system: the smallest
such magnetic excitation involves a set of spins on a string
spanning the system. An attractive feature of spin-ice
materials is that one can couple directly to this topological
quantity using a uniform magnetic field, which lifts the
macroscopic degeneracy of the zero-field ground states.

In the Letter, we focus on the behavior near saturation,
when the ordered q " 0 state [5,7] is reached by applying a
magnetic field along the [100] direction as illustrated in
Fig. 1. In the saturated state at large fields, the ice rules
prohibit local fluctuations in the limit of low temperature
T. The resulting phase transition as the field is lowered is a
three-dimensional (3D) example of a Kasteleyn transition
[8], first proposed in the context of 2D dimer models [9]. Its
hallmark is an asymmetric character, appearing to be
first order on one side, and continuous on the other. The
Kasteleyn transition has in the past been associated with
soft matter: the trans-gauche disordering transition for

polymers embedded in lipid bilayer system, observed via
density measurements in dipalmitoyl lecithin (DPL) [10].
To our knowledge this is the first example of a three-
dimensional Kasteleyn transition in a magnetic system.

We analyze the transition using a combination of ana-
lytical and numerical tools. By mapping the strings onto
bosonic worldlines, we obtain an analytical expression for
thermodynamic quantities close to the critical point, and
for correlation functions at all values of the magnetic field.
These predictions are confirmed to high precision by nu-
merical simulation using a Monte Carlo algorithm incor-
porating a nonlocal cluster update. In addition, we find that
a calculation on a Bethe lattice provides an excellent
description of the thermodynamics of the magnet away
from the critical point. A crucial characteristic of this
transition is that it is symmetry sustaining, as recognized
in Ref. [11]; the first-order liquid-gas transition reported
there, however, is an artifact of the local dynamics em-
ployed at that time. We compare our results with magne-
tization measurements on the spin-ice compound
Dy2Ti2O7 [12]: they represent well the observed behavior
at large field and temperature, but for lower values the
experimental system falls out of equilibrium.

h

FIG. 1 (color online). Left: Pyrochlore lattice showing q " 0
spin structure (black narrow spins) and a string defect (red or
gray thick spins). Right: Bethe lattice with a central tetrahedron
(red or gray) and first layer of nearest-neighbor tetrahedra (blue
or dark gray).
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building blocks for the understanding of the low-
energy behavior of spin ice. Perhaps the most
intriguing open issue is the precise connection
between these building blocks and the low-
temperature freezing observed in the spin-ice
compounds (14, 20).

Our work constitutes direct evidence of Dirac
strings. It provides compelling evidence for the
dissociation of north and south poles—the
splitting of the dipole—and the identification of
spin ice as the first fractionalized magnet in three
dimensions. The emergence of such striking
states is profoundly important in physics, both
as a manifestation of new and singular properties
of matter and as a route to potential technologies.
Examples of fractionalization are extremely rare
and almost exclusively pertain to one and two
dimensions, and so the 3D pyrochlore lattice
offers a promising direction for future exploration
in both magnets and exotic metals.

Our findings are of relevance not only from a
fundamental physics aspect—we have evidenced
a set of quasiparticles that have no elementary
cousins—but also because they imply a new type
of degree of freedom in magnetism, namely an
object with both local (point-like monopole) and
extended (tensionless Dirac string) properties.
Dy2Ti2O7 is an exceptionally clean material, and
with the full array of powerful experimental
techniques and pulsed fields, equilibrium and non-

equilibrium properties can be comprehensively
addressed, although this will present a substantial
statistical physics and dynamical systems chal-
lenge. The results of such studies may shed light
on other systems where string-like objects can
appear—for instance, in the study of polymers or
nanoclusters—but where freezing of solvents and
inhomogeneities can restrict access to all the
physics. Spin ice promises to open up new and
complementary insights on both the emergence
of fractionalized states and the physics of en-
sembles of strings in and out of equilibrium.
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Fig. 4. Biased random walks in a
tilted field. (A) Neutron diffraction
data from E2, HZB, showing the
(hk0), (hk1), and (0kl) planes taken
at 0.7 K and a field of 4/7hS. The
red spots are Bragg peaks; the peaks
at (2.7,–1.8, 0), (1.3,–2.3, 1), (3.8,
–0.9, 1), and (3.5, 2.5, 1) are from
a smaller second crystallite. (B)
Random-walk string model with bi-
asing 0.8:0.2. (C) Field dependence
of the diffuse scattering and calcu-
lations in the (1,k,l) plane. Spin-ice
scattering collapses into walls of

scattering at higher fields. Further understanding of the Dirac string
and monopole physics may improve our modeling of the data. (D)
Data versus calculation for the (h,2h+l,l) diffuse wall of scattering,
where h is an integer (here h = 0).

16 OCTOBER 2009 VOL 326 SCIENCE www.sciencemag.org414
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Compare Magnetic vs. Structural Transitions 

Generic Magnetic Transition – Order-Disorder 

below Tc           above Tc 

Generic Structural Transition – Displacive 

below Tc           above Tc 
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Soft mode 

e.g. can’t tile 2-space with 
pentagons, so certain soft modes 
would be frustrated 

Frustrated Honeycomb 

When the lattice positions are the degrees of freedom  



Frustrated In Nonmagnetic Systems:  
Negative Thermal Expansion in ZrW2O8 
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Metallic state induced by interactions in 2D 

Can work in Reduced Dimensions 



Molecular Superconductors – The Higgs mechanism in soot! 

A. Hebard et al., Nature (1991) 

A3C60 :  Tc = 30K 

AC8   :  Tc = 0.5K 
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Physics from Zero Dimensions 
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Energy spectrum in CoNb2O6 



The Rise of Topological Insulators 

History:   
1) Quantum Hall Effect and edge states (~1980) 

2) Chern number topology (~1983) 

3) QHE intrinsically (Haldanium) (~1987) 

4) Projecting into 3D (~1990) 

5) Spitting the bands with spin orbit (~2004) 

Dirac spectrum in Bi2Se3 
(analogies to graphene) 
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The Rise of Topological Insulators 



q  Predictions of EB axion term in interior of TIs 

q  Monopoles 

q  Majorana Fermions 

q  Spintronics 
 

Other aspects of Topological Insulators 



Connection between Geometrical Frustration and 
Topological Insulators ! 
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How does a field-effect transistor work? 
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Estimating trap density from Activation Energy 
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Estimating µ0 from GAMEaS 
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