Early-type Galaxies: Dark Matter and Dynamics

Aaron J. Romanowsky Univ. California Observatories

Inventory of DM in galaxies

Detailed observational constraints:
Test ∧CDM paradigm
Constrain nature of DM
Probe galaxy formation

Unique properties of CDM halos: • dN/dM_{vir} • central density cusp: $\rho(r) \sim r^{-\alpha}$, $\alpha \sim 1-1.5$ • mass-density relation reflecting $z_{collapse}$

(Navarro et al. 1997, 2004) *Via Lactea 2" simulation* (Diemand et al. 2008)

Disk/halo degeneracy

L^{*} spirals HI rotation curve: $v_c(r) \equiv \sqrt{GM/r}$ constant at large *r* (Persic et al. 1996)

But shape of inner halo profile dependent on disk M/L

DM probes in early-type galaxies

- kinematics
 - resolved stars (TMT!)
 - integrated stellar light
 - planetary nebulae (PNe)
 - globular clusters (GCs)
- X-ray emission
- gas disks & rings (HI & Hlpha)
- strong gravitational lensing
- weak gravitational lensing
- satellite dynamics

ideal probes

selection effects

statistical

only

DM in early-types: weak+strong lensing 22 bright E/S0s at $z \sim 0.2$ (SLACS: Gavazzi et al. 2007) 10000 stars deVauc. Total (with rms) ŝ pc 1000 slope M_{\odot} [h SDSS J0252+0039 100 $\Delta \Sigma$ 100.001 0.100 1.000 0.010 Radius [Mpc/h] SDSS J0029-0055 halo concentration, inner slope not constrained

• $\sigma_{\rm c}$ < 200 km/s (fast rotators) not well constrained

Kinematical tracers in early-type galaxies
field stars (integrated light)
planetary nebulae
globular clusters

GC

Theory testing

 Data \Rightarrow fit (parametrized) models \Rightarrow mass, orbit profiles \Rightarrow compare to theory

E.g. kinematics \Rightarrow compare \land CDM

Questions about model assumptions: geometry, equilibrium, uniqueness, oversimplification...

E.g. simulated galaxies Theory \Rightarrow "observe" (parametrized) \Rightarrow luminosity, velocity profiles \Rightarrow compare to data \Rightarrow compare to data

Need large data sample + suitable parameters incl. correlations.

Kinematics \rightarrow Dynamics \rightarrow Mass **Distribution Function** (6-D position-velocity phase space) $d^{3}\mathbf{x}d^{3}\mathbf{v}f(\mathbf{x},\mathbf{v},t) = 1$ separate for subpopulations (metallicity, age...) $\nu(\mathbf{x}) \equiv \int d^3 \mathbf{v} f(\mathbf{x}, \mathbf{v})$ spatial density $\frac{df}{dt} = 0$ incompressible fluid (collisionless) j(R,z) $\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} - \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$ Boltzmann equation: connect to grav. potential f_(E, Lz) **Jeans theorem:** DF described by "integrals of motion" I_i : conserved quantities along orbit (spherical: energy, angular momentum) $\frac{a}{dt}I[\mathbf{x}(t),\mathbf{v}(t)] = 0$ LOSVD (FOS) + 21 model Emsellem)

Dynamical modeling approaches

Projected mass estimators

small # discrete velocities; based on Virial Theorem W = -2K
Jeans equations

moments of DF; assume equilibrium

Direct DF construction

 numerical superposition of DF basis functions
 Orbit models ("Schwarzschild's method") numerical superposition of stationary orbits
 Particle models ("made-to-measure") numerical superposition of evolving orbits

Halo

Disk

Bulge

Dynamical modeling challenges

Unbiased tracers of DF for space + velocity Information loss in projection:

- konus (luminosity) degeneracy
 - (Rybicki 1987; Gerhard & Binney 1996; Kochanek & Rybicki 1996; Romanowsky & Kochanek 1997)
- mass-anisotropy degeneracy

 In spherical system, complete info on projected DF f(R_p, v_p) in known Φ(r) determines true DF

 Constraining Φ + DF unclear

(Dejonghe & Merritt 1992)

Mass-anisotropy degeneracy

Radial orbits

- at large R, most of the motion in plane of sky
- lowered velocity dispersion
- peaked velocity distributions

Tangential orbits

- at large R, much of the motion in line of sight
- higher velocity dispersion
- flat velocity distributions

Jeans equations

 $\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} - \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{v}} = 0 \text{ take moments of Boltzmann eqn}$ (Jeans 1919)

$$v_c^2 = \frac{GM(r)}{r} = -\sigma_r^2 \left(\frac{d\ln\nu}{d\ln r} + \frac{d\ln\sigma_r^2}{d\ln r} + 2\beta \right) \quad \begin{array}{l} \text{spherical non-rotating} \\ \text{Jeans eqn} \end{array}$$

v : tracer density σ_r : radial velocity dispersion $\beta(r) \equiv 1 - \sigma_{\theta}^2 / \sigma_r^2$: velocity dispersion anisotropy $\beta > 0$: radial physical DF not guaranteed $\beta = 0$: isotropic • ν , σ , β often parameterized < 0: tangential higher-order moments tricky $\int_{r'}^{\infty} dr'
u \frac{d\Phi}{dr'} \int_{r'}^{\infty} 2 \frac{\beta(r')}{r''}$ solve for known $\beta(r)$ $\frac{\nu \sigma_r^2 r}{\sqrt{r}}$ projection to observables

Breaking the mass-anisotropy degeneracy

 h_4 , κ_p measure shape of line-of-sight velocity distribution (LOSVD)

 h_4 , $\kappa_p = 0$: Gaussian; *isotropic orbits* h_4 , $\kappa_p > 0$: "peaked"; *radial orbits* h_4 , $\kappa_p < 0$: "flat-topped"; *tangential orbits*

 $h_l \equiv \frac{\sqrt{2\gamma_0}}{\hat{\gamma}_{\rm p}} \int_{-\infty}^{\infty} \frac{dL}{dv_{\rm p}} (v_{\rm p}) e^{-\hat{w}^2/2} H_l(\hat{w}) dv_{\rm p}$ Gauss-Hermite moments $\hat{w} = (v_{
m p} - \hat{v}_{
m p})/\hat{\sigma}_{
m p}$.b radial orbits circular $\mathcal{L}_{0}(v)$ orbits .2 2 Ο 2 van der Marel & Franx (1993) v

Higher-order Jeans equations

Assume $f(E,L)=f_0(E)L^{-2\beta}$ $\rightarrow \beta$ constant

(Lokas 2002; Napolitano et al. 2009a)

 $\kappa_{\rm p}$ =

$$\frac{d}{dr}\left(\nu\left\langle v_{r}^{4}\right\rangle\right) + \frac{2\beta}{r}\nu\left\langle v_{r}^{4}\right\rangle + 3\nu\sigma_{r}^{2}\frac{d\Phi}{dr} = 0$$

$$\nu\left\langle v_{r}^{4}\right\rangle = 3r^{-2\beta}\int_{r}^{\infty}r'^{2\beta}\nu\sigma_{r}^{2}\frac{d\Phi}{dr'}dr' \quad \text{solution}$$

$$\left\langle v_{p}^{4}\right\rangle(R) = \frac{2}{I(R)}\int_{R}^{\infty}\left[1 - 2\beta\frac{R^{2}}{r^{2}} + \frac{\beta(1+\beta)}{2}\frac{R^{4}}{r^{4}}\right]\frac{\nu\left\langle v_{r}^{4}\right\rangle r}{\sqrt{r^{2} - R^{2}}}dr'$$

projection

If $\sigma(r)$ const (isothermal), simple expression relating kurtosis, anisotropy, luminosity:

Integral field spectroscopy

False colour: mean velocity *Contours:* surface brightness

currently viable to ~ 1 R_{eff}

(de Zeeuw et al. 2002)

Case study: Jeans eqns + stellar kinematics

335 nearby early-type galaxies observed by Prugniel & Simien (1996) Observables: surface brightness profile I(R), aperture velocity dispersion $\sigma_{Ap}(R)$ Assume mass profile $\rho(r) \sim r^{-2}$, solve Jeans equations to solve for dynamical mass < R_{eff}

Model spectral energy distribution *UBVRI* using stellar populations model (Bruzual & Charlot 2003) with star formation history $e^{-t/\tau}$ Adopt Kroupa IMF, calculate stellar mass

Subtract stellar mass from dynamical mass to get dark mass...

 $M/L_{dyn} \sim L^{0.21}$, $M/L_* \sim L^{0.06}$ \rightarrow most of Fundamental Plane "tilt" driven by DM!

Central dark matter fractions (cont'd) MB -20 -21 - 19 -22 $f_{\rm DM} \equiv 1 - \Upsilon_* / \Upsilon_{\rm dyn}$ 0.8 3 2 0.6 $f_{\rm DM}$ increases with luminosity, no clear dependence on galaxy sub-type 0.4 fow (Reff) (cf. Cappellari et al. 2006) 0.5 0.25 0.2 T+09 "data" 0 0 8.5 (Tortora et al. 2009) 8 9.8 10 10.2 10.4 10.6 10.8 11 log Ls [Lo] ر (2R_{eff}) central DM density roughly follows ACDM expectations, modulo uncertain concentrations and virial masses ΛCDM toy 6.5 models, $\varepsilon_{\rm SF}(M_{\star})$ 6 10.5 11 11.5 12 log M. [Ma

Linking dark matter and star formation

(Tortora et al. $2008 \rightarrow Napolitano et al. 2009b)$

*f*_{DM} in early-types decreases with stellar age
 Mass assembly histories would predict *opposite* trend (more DM than stars accreted at later times)

 $\rightarrow \varepsilon_{SF}$ decreases with time \rightarrow "DM upsizing"

Orbit models (spherical, axisymmetric-31, triaxial)

(Schwarzschild 1979; Richstone & Tremaine 1984; Rix et al. 1997; van der Marel et al. 1998; Romanowsky & Kochanek 1999, 2001; Cretton & van den Bosch 1999; Gebhardt et al. 2000; Cappellari et al. 2002, 2006; Verolme et al. 2002; Copin et al. 2004; Valluri et al. 2004; Krajnović et al. 2005; Thomas et al. 2005; van de Ven et al. 2006; Chanamé et al. 2008; van den Bosch et al. 2008; etc.)

Model fits to data Minimize goodness-of-fit: 1 pe 10 pe 100 pc 1 kpc 10 kpc 15 M87 stellar data $-y_i^{\mathbf{d}}$ $\mu_{\rm B}(R)$ (arcsec⁻²) 20 (Romanowsky & Kochanek 2001) 25 $\mu(R)$ 68% one-parameter 30 confidence interval: 400 $\hat{\partial}_{p}(R) \ \, (\rm km \ \, s^{-1}) \ \, (\rm km \ \, s^{-1}) \ \, (\rm p \ \, s^{-1}) \ \ (\rm p \ \ \, s^{-1}) \$ THE FEFT FETTER FOR $\sigma_{\rm p}(R)$ λ increasing \rightarrow (Rix et al. 1997) 8 0

0.2

0.1

10

 r_c / R_{eff}

100

0.1

r

10

/ R_{eff}

1.00

L/ 0.4

0.2

0.1

10

r_c / R_{eff}

100

 $\chi^2 =$

 $\Delta \chi^2 =$

Traditional long-slit spectroscopy lacks efficiency and homogeneity \rightarrow need new generation of wide-field IFU or new techniques

Globular clusters in NGC 1399

D=19 Mpc, *M_B*=-21.1 Fornax central E1

VLT+FORS2/MXU, Gemini-S+GMOS: 656 velocities to 80 kpc (largest data set in any galaxy) $\Delta v = 20-100$ km/s

(Richtler et al. 2004, 2008; Schuberth et al. 2009)

SAGES Legacy Unifying Globulars and Galaxies Survey

- NSF funded (2008-2010)
- 25 representative early-type galaxies:
 - spread of luminosities, environments,
 - photometric and kinematical properties
- Global properties, with focus on halo tracers:
 - field stars, planetary nebulae, globular clusters
 - photometry, kinematics, metallicities

imaging + spectroscopy)

SLUGGS

(high-quality, deep wide-field

- Subaru/Suprime-Cam, Keck/DEIMOS

Extragalactic GC spectra for kinematics

Typical wavelength range 4800-5400 Å (Keck/LRIS, VLT/FORS2, Gemini/GMOS, etc.)

NIR Ca II triplet: highly efficient with Keck/DEIMOS

GC dynamics in NGC 1407

E1, M_B = -21.0, Group central galaxy (GCG), D = 21 Mpc

172 GC velocities from LRIS, DEIMOS to 60 kpc (10 R_{eff})

(Cenarro et al. 2007; Romanowsky et al. 2009) + ~150 new velocities to be analyzed...

Fairly flat dispersions out to very large radii imply increasing circular velocities and group-scale DM halos (Romanowsky & Kochanek 2001; Côté et al. 2003; Schuberth et al. 2006; Bergond et al. 2006; Woodley et al. 2007; Richtler et al. 2008; Hwang et al. 2008; Romanowsky et al. 2009) Modeling discrete velocities Binning (in R,v) loses information

Likelihood fcn

 $\chi^2 = -2 \ln \mathcal{L}$

~1000 velocities needed to break mass-anisotropy degeneracy in axisymmetric

const-M/L system

 Bright GCs show flat-tops / double-peaks in almost all cases! (significant in ~3 cases)
> DF changes with luminosity: v(r) from faint GCs may not be valid (Romanowsky et al., in prep.)

Cross-check: X-rays & dynamics in M87

X-ray masses of galaxies/groups

Chandra study implies extensive DM halos (Humphrey et al. 2006)

"shoulders" seen in mass profiles (e.g. Zhang et al. 2007) → lack of hydrostatic equilibrium?

ACDM halo fits to X-ray data require:

- low stellar M/L and
- high halo concentrations (indirect inconsistency)

A few dynamics cross-checks:² X-ray mass too low in centers non-thermal pressure support?

X-rays not useful for mass profiles until gas physics understood? Extragalactic planetary nebulae dying stars casting off outer layers of ionized gas 10% of the energy comes out at 500.7 nm "forbidden" O⁺⁺ line ("nebulium": Huggins & Miller 1864; 3P-1D transition)

positions & velocities in one go!

Planetary Nebula Spectrograph (PN.S) • Cassegrain mount at 4.2m WHT (Douglas et al. 2002) Instrument efficiency = 72% \Rightarrow total system efficiency = 33% (~2x general purpose!) • Field of view = 11.4' x 10.3' (50 x 50 kpc in Virgo Cluster) Built by Prime Optics, RSAA, ASTRON [O III] filte (tunable)

Sb , *M_B* = -21.2 *D* = 0.8 Mpc

WHT+PN.S, WYFFOS: Oct 2002, 2003 9 nights :

2615 PN velocities over 7 deg²

(Halliday et al. 2006; Merrett et al. 2006)

PN-based rotation curves in spirals

(Ciardullo et al. 2004)

PN circular velocity curves agree with HI, CO (modulo asymmetric drift)

Rules out magnetic field explanation for flat curves (Battaner & Florido 2005)

AAT, CTIO

(Peng et al. 2004)

Best-studied early-type galaxy: E2/S0 merger remnant D = 4 Mpc $M_{B} = -20.7$

ADec (arcmin) 780 PN velocities with

20 0 20 -20 Ö ∆RA (aremin)

PNe in NGC 3379

E1, M_B = -19.9 (~ L^*) D = 10 Mpc Leo I central *"ordinary" elliptical, fast rotator*

WHT+PN.S: 186 PN velocities to 8 R_{eff} , $\Delta v = 20$ km/s

Douglas et al. (2007)

Extended stellar/PN dispersion profiles

Bimodality of flat / declining dispersion profiles in ordinary early-type galaxies?

in large galaxy sample...

Probes of halo kinematics

Planetary nebulae:

- feasible to 25 Mpc
- more reliable velocities
- well-known spatial distribution
- not affected by dust
- contiguous constraints with central stellar kinematics
- less contamination problem
- more abundant in fainter galaxies
- detection & spectra in one go

Globular clusters:

- feasible to 40 Mpc
- Iarger radius
- disk less likely
- not affected by dust (Baes & Dejonghe 2001)

Lost & Found: Gemini Finds "Lost" Dark Matter in NGC 3379

Gemini, 16 Feb 2006

Follows: Romanowsky et al. 2003, Science, 301, 1696 Dekel et al. 2005, Nature, 437, 707

NGC 3379 : GCS dispersion profile

Weakly declining dispersion:

 $\sigma_{\rm p}(R) \propto R^{\gamma}$, $\gamma = -0.13 \pm 0.12$

Due largely to different N(R) , β(r)

(*Puzia et al. 2004; Pierce et al. 2006; Bergond et al. 2006*)

NGC 3379: HI gas ring

Mass measurement N3379 + N3384: M/L_B (100 kpc) = 27 ± 5 (Schneider 1985)

Not consistent with group-mass halo

5 cases with fairly similar dispersions, 2 discrepant

Independent mass results in NGC 4697

Crude spherical model gives same results as sophisticated flattened model!

GCs more sensitive than PNe to halo mass because more radially extended

Lower-mass DM halo from NMAGIC solutions preferred

Matching observations to simulations

Mass profile decompositions

Simulations including baryon physics (Dekel et al. 2005; Naab et al. 2007; Oñorbe et al. 2007)

Systematic central dark matter difference between simulations and observations (modeled including radial anisotropy)

partial stellar *M/L* degeneracy as in spirals

Bimodality of early-type galaxies

Fast rotators = E/S0s ?

- optically faint
- low velocity dispersion
- disky isophotes
- rapid rotators
- cuspy cores
- Iow X-ray luminosity
- weak radio sources

Slow rotators = true Es ?

- optically luminous
- high velocity dispersion
- boxy isophotes
- slow rotators
- flat cores
- high X-ray luminosity
- strong radio sources

(Kormendy & Bender 1996; (Emsellem et al. 2007) Faber et al. 1997)

Slow rotator (NGC 4458)

Early-type circular velocity profiles

Slow rotators: *flat/rising* v_c Fast rotators: *declining* v_c

Romanowsky et al. (2003); Douglas et al. (2007); De Lorenzi et al. (2008, 2009); Napolitano et al. (2009)

GC cross-checks support PN results in most cases

Dark matter bimodality

Fast/slow rotator dichotomy not explainable via:

- smooth scalings with luminosity
- biasing with formation redshift
- biasing with angular momentum
- anti-hierarchical/downsizing DM (WDM, etc.?)
- dyamical modeling systematics (geometry/orbit structure)
- selection effects
- alternative gravitational dynamics (MOND, etc.)
- stellar populations modeling systematics

Could be due to:

baryonic physics (cooling, feedback, merger dynamics, etc.)
environment (all slow rotators are group central?)

Further clues from halo rotation, orbits, GC properties

Baryonic effects on halo concentration

baryonic dissipation produces adiabatic contraction of halo \rightarrow increases central ρ_{DM} (Blumenthal et al. 1986; Gnedin et al. 2004) \rightarrow slow rotators?

baryonic feedback $_{100}$ expands halo ?? (Mo & Mao 2004) \rightarrow spirals, fast rotators?

DM bimodality from coupled merger histories + baryonic physics? Fast rotators from *z* < 1 quenching and wet mergers

(Faber et al. 2007) with substantial feedback to lower $\rho_{\rm DM}$ – *lenticulars included, or 3rd family?*

Slow rotators from z > 1 quasi-monolithic collapse in high-overdensity regions with dissipation to raise ρ_{DM} (later dry merging also helps): Blumenthal et al. (1984); Burkert et al. (2008); but see Kang et al. (2007) - did all slow rotators form in group-mass halos? \rightarrow Why two distinct episodes for early-type galaxy

formation

- Data are improving...
- Models are improving...
- Theory is improving...
- Stay tuned for stronger constraints on clark matter!

