The Secret Lives of Molecular Clouds Mark Krumholz UC Santa Cruz Astronomy 214 January 14, 2009

Collaborators:

Tom Gardiner (Cray Research) Chris Matzner (U. Toronto) Chris McKee (UC Berkeley) Xavier Prochaska (UCSC)

Jim Stone (Princeton) Jonathan Tan (U. Florida) Todd Thompson (Ohio State) Jason Tumlinson (STScI)

Outline

- Embarrassing observational facts about star formation
- Turning gas into stars
 - Making molecules
 - From molecules to stars
 - Stellar Feedback
- Problems for the future

Observations

Stars Do Not Form in Gas

SINGS + GALEX + THINGS + SONG (animation borrowed from N. Gnedin)

SFR distributions from 24 μm SINGS + GALEX

Stars Form in Molecular Gas

The SFR in a galaxy correlates well with the molecular gas surface density, and only poorly with the HI.

SFR vs. surface densities of HI (blue asterisks) and H_2 (black and green triangles) in M51a (Kennicutt et al. 2007)

Even once H₂ forms, SF is slow... (Zuckerman & Evans 1974; Rownd & Young 1999; Wong & Blitz 2002)

- The MW disk contains ~10⁹ M_☉ of gas in giant molecular clouds
- GMCs have $n_H \sim 100 \text{ cm}^{-3}$, $t_{ff} \sim 4 \text{ Myr}$
- If GMCs were collapsing, the SFR would be ~10⁹ M_{\odot} / 4 Myr = 250 M_{\odot} / yr
- Observed SFR in MW is ~ 3 M_☉ / yr, lower by a factor of ~100
- Numbers similar in nearby galaxies

...even in starbursts...

(Downes & Solomon 1998)

Arp 220 imaged by HST/NICMOS, Thompson et al. 1997

- Example: Arp 220
- ISM mass 2 x 10⁹ M_{\odot} in molecular gas
- ISM density 10⁴ cm⁻³, t_{ff}
 ~ 0.4 Myr
- Suggested SFR ~ 5000
 M_o / yr
- Actual SFR ~ 50 M_{\odot} / yr : too small by factor of 100

...even in dense gas...

Depletion time as a function of Σ_{H2} for 2 local galaxies (left, Wong & Blitz 2002) and as a function of L_{HCN} for a sample of local and z ~ 2 galaxies (below, Gao et al. 2007)

Now the Good News: There is a Universal SFR!

(Tan, Krumholz, & McKee 2006; Krumholz & Tan 2007)

In other words: so far it's turtles all the way down...

Implications of Slow Star Formation

For people who care about galaxies:

- Bad news: you can simulate formation of GMCs with an approximate treatment of H₂ formation, but the SFR in GMCs is set at very small scales. Galaxy-scale simulations are stuck with subgrid models for that.
- Good news: once molecules form, the SFR seems to follow a universal law that ~ 1 5% of the gas goes into stars per t_{ff}, independent of density.

Implications of Slow Star Formation, Part II

- For star formation theorists:
 - Task 1: figure out what determines what fraction of the gas will form molecules, since this controls which gas is "eligible" for form stars

 Task 2: understand what sets the universal few percent per t_{ff} in the molecular gas

From HI to Stars

Step 1: Making Molecules

- Molecules reside in giant molecular clouds (GMCs) that are part of atomicmolecular complexes
- The outer parts are dissociated by interstellar Lyman-Werner photons
- Inner parts are shielded by dust and H₂ self-shielding
- Goal: compute HI and H₂ mass fractions

Dissociation Balance in Atomic-Molecular Complexes

(Krumholz, McKee, & Tumlinson, 2008a, ApJ, in press)

The basic equations for this system are *chemical* equilibrium and radiative transfer.

 $n_{\rm HI} n \mathcal{R} = n_{\rm H_2} \int d\Omega \int d\nu \,\sigma_{\rm H_2} f_{\rm diss} I_{\nu} / (h\nu)$ $\hat{e} \cdot \nabla I_{\nu} = -(n_{\rm H_2} \sigma_{\rm H_2} + n \sigma_{\rm d}) I_{\nu}$

Idealized problem: spherical cloud of radius R, density n, dust opacity O_d , H_2 formation rate coefficier Absorptions by h2rawle or left dust grains photon number density E_0^* , find fraction of mass in HI and H_2 .

Calculating Molecular Fractions

To good approximation, solution only depends on two dimensionless numbers:

Top: analytic solution for location of HI / H₂ transition vs. exact numerical result **Bottom:** H₂ volume fraction vs. ψ , τ_R

Atomic Shielding in Galaxies

(Krumholz, McKee, & Tumlinson, 2008b)

What is $\psi \propto \sigma_{\rm d} E_0^* / n \mathcal{R}$?

- Dust opacity σ_d and H₂ formation rate *R* both ∝ Z, so σ_d / *R* ~ const
- CNM dominates shielding, so n is the CNM density

FGH curves for MW (Wolfire et al. 2003)

• CNM density set by pressure balance with WNM, and $n_{\text{CNM}} \propto E_0^*$, with weak Z dependence.

 $\Rightarrow \psi \propto \sigma_d E_0^* / n \mathcal{R} \sim 1$ in all galaxies!

Predictions for H₂ Content

Compute τ_{R} from column density Σ , metallicity Z, and pressure balance between molecules and CNM. Then use solution for H_2 fraction vs. ψ , τ_R to compute molecular content as a function of Σ , Z

Reality Check...

Compare model to BIMA SONG (Blitz & Rosolowsky 2006) and HERA / THINGS (Leroy et al. 2008) surveys, with galaxies binned by metallicity

Another Application: DLAs

(Krumholz, Ellison, Prochaska, McKee, & Tumlinson, 2009, in preparation)

Step 2: Turning Molecules into Stars (Slowly)

(Krumholz & McKee 2005)

- Most GMC gas is in low density "envelopes", not dense "cores"
- GMCs are very turbulent, *M* ~ 30
- Simulations of turbulence give core-envelope structure

How Turbulence Sets the SFR

KF >> PF

KE ≤ PE

- On large scales, GMCs have $\alpha \approx 1$ (i.e. PE \approx KE)
- Linewidth-size relation: $\sigma_v \approx c_s (\ell / \lambda_s)^{1/2}$
- In average region, M ∝ ℓ³
 ⇒ KE ∝ ℓ⁴, PE ∝ ℓ⁵
 ⇒ KE >> PE
- Hypothesis: SF only occurs in regions where PE ≥ KE and P_{th} ≥ P_{ram}
- Only overdense regions meet these conditions
- Required overdensity is given by $\lambda_J \leq \lambda_s$, where $\lambda_J = c_s [\pi / (G\rho)]^{1/2}$

Calculating the SFR

- Density PDF in turbulent clouds is lognormal; width set by M
- Integrate over region where λ_J ≤ λ_s, to get mass in "cores", then divide by t_{ff} to get SFR

• Result:

 $\mathsf{SFR}_{\mathsf{ff}} \approx 0.073 \; \alpha^{-0.68} \; \mathcal{M}^{-0.32}$

 $SFR_{ff} \sim 1-5\%$ for any turbulent, virialized object

A Remark on GMCs

- SFR is simply ~0.01
 × M_{mol} / t_{ff-mol}
- We can calculate M_{mol}, so we just need t_{ff-mol}!
- In low Σ galaxies, GMCs all have $\Sigma \sim 100 \text{ M}_{\odot} \text{ pc}^{-2}$ (Bolatto et al. 2008)
- In high Σ galaxies, Σ_{GMC} must be $\geq \Sigma_{gal}$ to maintain hydrostatic balance

Luminosity (∝mass) vs. radius for galactic and extragalactic GMCs (Bolatto et al. 2008)

Putting it Together: The Total Gas Star Formation Law

(Krumholz, McKee, & Tumlinson, 2009, in preparation)

Lines: theory

Contours: THINGS, Bigiel et al. 2008

Symbols: literature data compiled by Bigiel et al. 2008

Atomic and Molecular Star Formation Laws

"Other" Kennicutt Laws

(Krumholz & Thompson 2007)

dM / dn

- SFR is a fixed mass fraction per free-fall time, so for density n, SFR ∝ L_{IR} ∝ n^{3/2}
- Line luminosity depends on mass above n_{crit}

• High n_{crit} (e.g. HCN 1-0)

 $\Rightarrow L_{\text{line}} \text{ SFR} \propto L_{\text{line}}^{3/2} \text{ for low } n_{\text{crit}} \\ \text{SFR} \propto L_{\text{line}}^{q}, q < 3/2, \text{ for high } n_{\text{crit}} \\ \text{ or high } n_{\text{crit$

Line Emission Model vs. Data

Calculation w / simple non-LTE radiation code reproduces slope and normalization of observed correlations, predicts new ones (e.g. IR-HCO⁺)

Step 3: Stellar Feedback

(Krumholz, Matzer, & McKee 2007)

30 Doradus HII region, MCELS

- All observed GMCs turbulent, α ≈ 1
- Turbulence decays in ~1 crossing time
- Observed GMC lifetime is
 ~ 30 Myr (Blitz et al. 2007), t_{cr} ~
 7 Myr ⇒ need driving to
 maintain turbulence
- Hypothesis: driver is SF feedback

A Semi-Analytic GMC Model

Follow evolution of: M_{gas}, M_{*}, R, dR/dt, σ

- Model GMC mass, energy, momentum budgets, with feedback and mass loss
- Use 1D model
 - Bad: real GMCs not spheres
 - Good: can solve exact equations: non-equilibrium virial, energy equations

$$\frac{I}{2} = 2(\mathcal{T} - \mathcal{T}_0) + \mathcal{W} + \mathcal{B} - \left(\frac{1}{2}\right) \frac{d}{dt} \int (\rho \mathbf{v} r^2) \cdot d\mathbf{S}$$
$$\dot{E} + \int \rho \left(\frac{v^2}{2} + e + \phi + \frac{P}{\rho}\right) \mathbf{v} \cdot d\mathbf{S} = \Gamma - \Lambda$$

HII Region Feedback

Simulation of HII region in a magnetized cloud, Krumholz & Stone 2008, in preparation

- HII regions dominate feedback (even beat SNe)
- Use modified Spitzer solution to get HII region expansion
- Assume all HII regions blister, lead to mass loss
- Compute energy injection assuming shells break up, merge with turbulence

Model Runs

- Start clouds in equilibrium at observed column density N_H ≈ 10²² cm⁻²
- Draw stars from cluster luminosity function, IMF to get HII region luminosity
- Run until cloud is unbound by HII regions or has N_H too low to remain molecular

Quasi-Equilibrium Clouds

Sample of runs for $M_{cl} = 5 \times 10^6 M_{\odot}$

Milky Way (Quadrant 2) OM 33 △ M 31 10 Mo PE ◇ IC 10 1000 Mo pc²] \times LMC \square SMC s-1 6 Luminosity [K km с С log 10 ,022 Surface Brightness assuming $X_{co} = 4 \times 10^{20} \text{ cm}^{-2} (\text{K km s}^{-1})^{-1}$ 0 log₁₀ Radius [pc]

GMC mass vs. radius in the Local α vs. mass for GMCs. Heyer et al. 2001 Group, Blitz et al. 2007

Feedback keeps GMCs close to equilibrium ($\alpha \sim 1$) at a preferred (column) density

Conclusions

- Star formation is slow because (1) only molecular gas makes stars; (2) even this gas forms stars at only ~2% per t_{ff}
- The molecular fraction is determined by column density and metallicity; low Z galaxies require very high Σ to make H₂
- The SFR in the H₂ is determined by turbulence driven by SF feedback
- Feedback energy balance imposes a column density ~10²² cm⁻² in GMCs