Hydro ART simulations sample
Stellar Merger Trees

Dylan Tweed
dylan.tweed@googlemail.com

Racah Institute of Physics, HUJI, Jerusalem

CANDELS Theory Workshop - UCSC -
August 8th – 10th 2012
Collaborators, Daniel Ceverino, Nir Mandelker, Adi Zolotov, Marcello Cacciato, Loren Hoffman, Avishai Dekel, Joel Primack.

AMR simulation hydro ART, (Kratsov, Klypin), 30 zoom-in simulations of high redshift galaxies, spatial resolution 35-70 kpc.

Main focus, VDI, disc evolution, bulge formation.
Sample

http://www.wikihost.org/w/art_hydrocosmosims

<table>
<thead>
<tr>
<th>Galaxy</th>
<th>Target M_v</th>
<th>R_v</th>
<th>M_v</th>
<th>M_{star}</th>
<th>M_g</th>
<th>a_{fin}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW01</td>
<td>1.53</td>
<td>102</td>
<td>0.81</td>
<td>0.72</td>
<td>0.57</td>
<td>0.42</td>
</tr>
<tr>
<td>MW02</td>
<td>1.21</td>
<td>105</td>
<td>0.89</td>
<td>2.56</td>
<td>1.12</td>
<td>0.34</td>
</tr>
<tr>
<td>MW03</td>
<td>1.93</td>
<td>099</td>
<td>0.73</td>
<td>0.60</td>
<td>0.51</td>
<td>0.42</td>
</tr>
<tr>
<td>MW04</td>
<td>4.01</td>
<td>123</td>
<td>1.42</td>
<td>1.41</td>
<td>0.89</td>
<td>0.42</td>
</tr>
<tr>
<td>MW06</td>
<td>40.9</td>
<td>106</td>
<td>0.92</td>
<td>1.06</td>
<td>0.49</td>
<td>0.50</td>
</tr>
<tr>
<td>MW07</td>
<td>1.70</td>
<td>073</td>
<td>0.30</td>
<td>0.30</td>
<td>0.22</td>
<td>0.50</td>
</tr>
<tr>
<td>MW08</td>
<td>1.41</td>
<td>071</td>
<td>0.28</td>
<td>0.28</td>
<td>0.15</td>
<td>0.50</td>
</tr>
<tr>
<td>MW09</td>
<td>1.10</td>
<td>059</td>
<td>0.16</td>
<td>0.19</td>
<td>0.08</td>
<td>0.50</td>
</tr>
<tr>
<td>MW10</td>
<td>1.53</td>
<td>057</td>
<td>0.82</td>
<td>0.72</td>
<td>0.44</td>
<td>0.50</td>
</tr>
<tr>
<td>MW11</td>
<td>1.42</td>
<td>088</td>
<td>0.53</td>
<td>0.51</td>
<td>0.28</td>
<td>0.40</td>
</tr>
<tr>
<td>MW12</td>
<td>1.69</td>
<td>130</td>
<td>1.70</td>
<td>2.06</td>
<td>1.01</td>
<td>0.48</td>
</tr>
<tr>
<td>VL01</td>
<td>2.00</td>
<td>117</td>
<td>1.23</td>
<td>1.54</td>
<td>0.75</td>
<td>0.37</td>
</tr>
<tr>
<td>VL02</td>
<td>2.00</td>
<td>101</td>
<td>0.81</td>
<td>0.89</td>
<td>0.46</td>
<td>0.50</td>
</tr>
<tr>
<td>VL03</td>
<td>2.04</td>
<td>117</td>
<td>1.22</td>
<td>1.44</td>
<td>0.76</td>
<td>0.33</td>
</tr>
<tr>
<td>VL04</td>
<td>2.06</td>
<td>109</td>
<td>1.01</td>
<td>1.33</td>
<td>0.51</td>
<td>0.50</td>
</tr>
<tr>
<td>VL05</td>
<td>2.00</td>
<td>118</td>
<td>1.28</td>
<td>1.29</td>
<td>0.75</td>
<td>0.41</td>
</tr>
<tr>
<td>VL06</td>
<td>2.01</td>
<td>099</td>
<td>0.75</td>
<td>0.94</td>
<td>0.32</td>
<td>0.50</td>
</tr>
<tr>
<td>VL07</td>
<td>2.61</td>
<td>129</td>
<td>1.66</td>
<td>2.15</td>
<td>0.82</td>
<td>0.35</td>
</tr>
<tr>
<td>VL08</td>
<td>2.66</td>
<td>112</td>
<td>1.09</td>
<td>1.35</td>
<td>0.46</td>
<td>0.50</td>
</tr>
<tr>
<td>VL09</td>
<td>2.59</td>
<td>086</td>
<td>0.49</td>
<td>0.61</td>
<td>0.24</td>
<td>0.34</td>
</tr>
<tr>
<td>VL10</td>
<td>2.50</td>
<td>086</td>
<td>0.49</td>
<td>0.61</td>
<td>0.24</td>
<td>0.34</td>
</tr>
<tr>
<td>VL11</td>
<td>2.64</td>
<td>130</td>
<td>1.73</td>
<td>2.02</td>
<td>0.81</td>
<td>0.50</td>
</tr>
<tr>
<td>VL12</td>
<td>2.61</td>
<td>105</td>
<td>0.90</td>
<td>0.96</td>
<td>0.51</td>
<td>0.50</td>
</tr>
<tr>
<td>SFG1</td>
<td>3.30</td>
<td>129</td>
<td>1.66</td>
<td>2.10</td>
<td>0.87</td>
<td>0.46</td>
</tr>
<tr>
<td>SFG4</td>
<td>3.29</td>
<td>112</td>
<td>1.09</td>
<td>1.16</td>
<td>0.66</td>
<td>0.42</td>
</tr>
<tr>
<td>SFG5</td>
<td>3.33</td>
<td>123</td>
<td>1.38</td>
<td>1.52</td>
<td>0.78</td>
<td>0.50</td>
</tr>
<tr>
<td>SFG8</td>
<td>6.59</td>
<td>121</td>
<td>1.38</td>
<td>1.70</td>
<td>0.72</td>
<td>0.35</td>
</tr>
<tr>
<td>SFG9</td>
<td>5.17</td>
<td>135</td>
<td>1.89</td>
<td>2.44</td>
<td>1.22</td>
<td>0.49</td>
</tr>
</tbody>
</table>
Stellar Merger trees

Introduction
Galaxy and clump detection
Group finder
Decomposition of the density field into a tree structure
Merger history
Clump tracking

Analysis
Co-rotating clumps?
Origin of the stellar population

Conclusion

How can I help

Gas mosaics
Stellar Merger trees

Introduction
Galaxy and clump detection
Group finder
Decomposition of the density field into a tree structure
Merger history
Clump tracking

Analysis
Co-rotating clumps?
Origin of the stellar population

Conclusion
How can I help
Gas mosaics

Stellar Merger trees

Introduction
Galaxy and clump detection
Group finder
Decomposition of the density field into a tree structure
Merger history
Clump tracking

Analysis
Co-rotating clumps?
Origin of the stellar population

Conclusion

How can I help
Gas mosaics

Stellar Merger trees

Introduction

Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis
- Co-rotating clumps?
- Origin of the stellar population

Conclusion

How can I help
Overview

1. Introduction
2. Galaxy and clump detection
 - Group finder
 - Decomposition of the density field into a tree structure
 - Merger history
 - Clump tracking
3. Analysis
 - Co-rotating clumps?
 - Origin of the stellar population
4. Conclusion
5. How can I help
Pipeline

1. Group finding on stellar component: Galaxies, clumps.
2. Merger trees.
3. Analysis: Galaxy evolution, In-situ clump, Ex-situ clump (mergers/interactions)
AdaptaHOP: group-finder algorithm, inspired from SUBFIND and HOP

Written in 2003 by Stéphane Colombi.

 Incorporated to SAM GalICS (Galaxies In Cosmological Simulations) from 2005 as part of the Horizon Project (http://www.projet-horizon.fr/, PI: Romain Teyssier)

Also used to detect clumps in AMR zoom-in simulations Ramses (Devriendt) ART (Tweed).
Basic idea

- Gets a SPH density for each particle n closest neighbors Oct-tree scheme.
- Groups particles around local density maxima.
- Maps those maxima in a structure tree.
- Defines galaxies and clumps from the hierarchy of density peaks.
- Note: Galaxies and clumps are not stripped of unbound particles.
Selection of clumps candidates

- Number of particles: “mass” thresholding.
- Shape selection $\rho_{\text{max}} \alpha > \langle \rho_{\text{node}} \rangle$, size $r > r_\epsilon$.
- Removing Poisson noise,
 $\langle \rho_{\text{node}} \rangle > \rho_t \ast [1 + \text{fudge}/\sqrt{N}]$
- Only topological, no unbinding.
Symbols: filled: local maxima, open: local saddle point
Density distribution = groups of particles around maxima connected by saddle points.
Symbols: filled: local maxima, open: local saddle point
First density thresholding, cut haloes from the background.
\(\rho_t = 80 < \rho_{DM} \) analog to FOF \(b=0.2 \).
Mapping the halo internal structure

Symbols: filled: local maxima, open: local saddle point
Separating local maxima into nodes by increasing density of saddle points
Symbols: filled: local maxima, open: local saddle point
Separating local maxima into nodes by increasing density of saddle points

Stellar Merger trees

Introduction
Galaxy and clump detection
Group finder
Decomposition of the density field into a tree structure
Merger history
Clump tracking

Analysis
Co-rotating clumps?
Origin of the stellar population

Conclusion
How can I help
Mapping the halo internal structure

Symbols: filled: local maxima, open: local saddle point
Some density peak might not be isolated as node (low number of particles, Poisson noise)
Merger trees

- Star particles used as tracer.
- One descendent per galaxy/clump
- In-situ clump: no progenitor detected as the separate galaxy.
- Ex-situ clump: at least one progenitor detected as a separate galaxy.
- Merger fraction.
Clump finding, clump tracking.
Stellar Merger trees

Clump finding, clump tracking.

- Introduction
- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis
- Co-rotating clumps?
- Origin of the stellar population

Conclusion

How can I help

D. P. Tweed Racah Institute
Stellar Merger trees
8/8/2012
Clump finding, clump tracking.

Stellar Merger trees

Introduction
Galaxy and clump detection
Group finder
Decomposition of the density field into a tree structure
Merger history
Clump tracking

Analysis
Co-rotating clumps?
Origin of the stellar population

Conclusion

How can I help
Clump finding, clump tracking.
Stellar Merger trees

Introduction

Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Merger history

Clump tracking

Analysis
- Co-rotating clumps?
- Origin of the stellar population

Conclusion

How can I help

Clump finding, clump tracking.
Clump finding, clump tracking.

Stellar Merger trees

Introduction

Galaxy and clump detection
 Group finder
 Decomposition of the density field into a tree structure
 Merger history
 Clump tracking

Analysis
 Co-rotating clumps?
 Origin of the stellar population

Conclusion

How can I help
Stellar Merger trees

Introduction

Galaxy and clump detection
 Group finder
 Decomposition of the density field into a tree structure
 Merger history
 Clump tracking

Analysis
 Co-rotating clumps?
 Origin of the stellar population

Conclusion

How can I help

Clump finding, clump tracking.
Clump finding, clump tracking.
Clump finding, clump tracking.
Clump finding, clump tracking.
Clumps co-rotating with the disc.

Visualization in the rotation frame of the galaxy

\[j_z = L_{\text{star}} \cdot L_{\text{gal}} \quad \text{and} \quad j_{\text{max}} = |r_{\text{star}}| \cdot |v_{\text{star}}| \]
Clumps co-rotating with the disc.

Visualization in the rotation frame of the galaxy

Smooth component + In-situ clumps

\[j_z = L_{\text{star}} \cdot L_{\text{gal}} \quad \text{and} \quad j_{\text{max}} = |r_{\text{star}}| \cdot |v_{\text{star}}| \]
Clumps co-rotating with the disc.

Visualization in the rotation frame of the galaxy

\[j_z = L_{\text{star}} \cdot L_{\text{gal}} \quad \text{and} \quad j_{\text{max}} = |r_{\text{star}}| \cdot |v_{\text{star}}| \]
3 criteria classification

1. structural decomposition: (Clump finder), smooth, In-situ clumps, Ex-situ clumps
2. kinematic decomposition: stellar halo, stellar bulge, stellar disc.
3. Stellar origin: (merger trees), star is born in the halo, bulge or disc component, born in a In-situ clump, born ex-situ (merger fraction)
3 criteria classification

Classification scheme

<table>
<thead>
<tr>
<th></th>
<th>Smooth</th>
<th>In-situ clumps</th>
<th>Ex-situ clumps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H B D</td>
<td>H B D</td>
<td>H B D</td>
</tr>
<tr>
<td>born in halo</td>
<td>000 010 020</td>
<td>001 011 021</td>
<td>002 012 022</td>
</tr>
<tr>
<td>born in bulge</td>
<td>100 110 120</td>
<td>101 111 121</td>
<td>102 112 122</td>
</tr>
<tr>
<td>born in disc</td>
<td>200 210 220</td>
<td>201 211 221</td>
<td>202 212 222</td>
</tr>
<tr>
<td>born in clump</td>
<td>300 310 320</td>
<td>301 311 321</td>
<td>302 312 322</td>
</tr>
<tr>
<td>1:∞<f<1:30</td>
<td>400 410 420</td>
<td>401 411 421</td>
<td>402 412 422</td>
</tr>
<tr>
<td>1:30<f<1:10</td>
<td>500 510 520</td>
<td>501 511 521</td>
<td>502 512 522</td>
</tr>
<tr>
<td>1:10<f<1:3</td>
<td>600 610 620</td>
<td>601 611 621</td>
<td>602 612 622</td>
</tr>
<tr>
<td>1:3<f</td>
<td>700 710 720</td>
<td>701 711 721</td>
<td>702 712 722</td>
</tr>
</tbody>
</table>
3 criteria classification

Useful fraction for Bulge (j=1) Disc (j=2)

- \(\mu_{\text{IsDisc}}(j) = \sum_{k=0}^{2} m(2jk) / \left(\sum_{i=0}^{7} \sum_{k=0}^{2} m(ijk) \right) \)
- \(\mu_{\text{IsClump}}(j) = \sum_{k=0}^{2} m(3jk) / \left(\sum_{i=0}^{7} \sum_{k=0}^{2} m(ijk) \right) \)
- \(\mu_{\text{Ex-situ}}(j) = \left(\sum_{i=4}^{7} \sum_{k=0}^{2} m(ijk) \right) / \left(\sum_{i=0}^{7} \sum_{k=0}^{2} m(ijk) \right) \)
- \(\mu_{f>10}(j) = \left(\sum_{i=6}^{7} \sum_{k=0}^{2} m(ijk) \right) / \left(\sum_{i=0}^{7} \sum_{k=0}^{2} m(ijk) \right) \)
- \(\mu_{3}(j) = \left(\sum_{k=0}^{2} m(7jk) \right) / \left(\sum_{i=0}^{7} \sum_{k=0}^{2} m(ijk) \right) \)
- \(\mu_{\text{IS}}(j) = \sum_{i=0}^{7} m(ij1) / \left(\sum_{i=0}^{5} \sum_{k=0}^{2} m(ijk) \right) \)
Stellar Merger trees

Introduction
Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis
- Co-rotating clumps?
- Origin of the stellar population

Conclusion

How can I help

Stellar fractions

Bulges + Discs 3 < z < 4

- $f_{Es} < 1:10$
- $1:10 < f_{Es} < 1:3$
- $1:3 < f_{Es}$

MW1 MW2 MW3 MW4 MW5 MW6 MW7 MW8 MW9 MW10 MW11 MW12 SFG1 SFG4 SFG5 SFG9 VLO1 VLO2 VLO3 VLO4 VLO5 VLO6 VLO7 VLO8 VLO9 VLO10 VLO11 VLO12

D. P. Tweed Racah Institute Stellar Merger trees 8/8/2012
Stellar fractions

Stellar Merger trees

Introduction
Galaxy and clump detection
Group finder
Decomposition of the density field into a tree structure
Merger history
Clump tracking

Analysis
Co-rotating clumps?
Origin of the stellar population

Conclusion

How can I help
Stellar Merger trees

Introduction
- Galaxy and clump detection
- Group finder
- Decomposition of the density field into a tree structure
- Merger history
- Clump tracking

Analysis
- Co-rotating clumps?
- Origin of the stellar population

Conclusion

How can I help

Bulges+Discs

<table>
<thead>
<tr>
<th>ls halo</th>
<th>ls bulge</th>
<th>ls disc</th>
<th>ls clump</th>
<th>$f_{E_0} < 1:10$</th>
<th>$1:10 < f_{E_0} < 1:3$</th>
<th>$1:3 < f_{E_0}$</th>
</tr>
</thead>
</table>

Stacked evolution
Conclusion

A sample of 30 high redshift galaxies. (Same cosmology, resolution)
A sample of 30 high redshift galaxies. (Same cosmology, resolution)

Same Postprocessing pipeline
- Group-finding on stars
- Merger-trees.
- In-situ, Ex-situ discrimination from merger tree
Conclusion

A sample of 30 high redshift galaxies. (Same cosmology, resolution)

2 Same Postprocessing pipeline
 - Group-finding on stars
 - Merger-trees.
 - In-situ, Ex-situ discrimination from merger tree

3 Further analysis
 - Extra kinematic decomposition.
 - Detailed stellar tracking according to both structural decomposition and kinematic decomposition.
 - Define global measure and properties.
Conclusion

A sample of 30 high redshift galaxies. (Same cosmology, resolution)

Same Postprocessing pipeline
- Group-finding on stars
- Merger-trees.
- In-situ, Ex-situ discrimination from merger tree

Further analysis
- Extra kinematic decomposition.
- Detailed stellar tracking according to both structural decomposition and kinematic decomposition.
- Define global measure and properties.

What’s to be done.
- DM merger trees
- Gas inflow (wet mergers disc instabilities)
All the simulations, post analysis are on the Jerusalem cluster. The wiki is a guide to find the data there.

Upgrade and advertise the wiki with mosaics.

Share and enjoy

- Make the stellar merger trees available.
- (standard format, what would you need?)
- Provide DM merger trees as well.