
RECENT PROGRESS ON LARGE-SCALE STRUCTURE 

DM halo properties vs. density paper in press; halo stripping and halo radial profile papers being 
drafted (with Christoph Lee, Doug Hellinger).

AAS Poster by Tze Goh showing halo properties like concentration, accretion history, and spin are mainly 
determined by environmental density rather than by location within the cosmic web.  The poster compared 
properties vs. environmental density in cosmic walls and all web locations, and found few differences.  (with 
Tze Goh, Christoph Lee, Peter Behroozi, Doug Hellinger, Miguel Aragon Calvo)

Galaxy Reff predicted by (spin parameter)(halo radius) paper led by Rachel Somerville in nearly final 
form at https://www.dropbox.com/s/theqlr7ql22kfio/rgrh.pdf?dl=0 

Galaxy Stochastic Order Redshift Technique (SORT): a simple, efficient, and robust method to 
improve cosmological photometric redshift measurements, by Nicholas Tejos, Aldo Rodriguez-Puebla, 
and Joel (submitted to MNRAS)

Constraining the Galaxy Halo Connection: Star Formation Histories, Galaxy Mergers, and Structural 
Properties, by Aldo Rodriguez-Puebla, Joel, and others (in nearly final form)

Abundance Matching is Independent of Cosmic Environment Density, based on Radu Dragomir’s 
UCSC senior thesis, advised by Aldo and Joel (we’re drafting this now)

Two UCSC astrophysics students working with us received Koret Undergraduate Research 
Scholarships: Elliot Eckhard, who is help visualize large scale structure, and Sean Larkin, who is working 
on the Deep Learning project
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AAS Poster by Tze Goh 
showing halo properties 
like concentration, 
accretion history, and 
spin are mainly 
determined by 
environmental density 
rather than by location 
within the cosmic web.
Download the poster at
http://
spineoftheweb.blogspot.
com/ 
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paper led by Rachel Somerville in nearly final form at 
https://www.dropbox.com/s/theqlr7ql22kfio/rgrh.pdf?dl=0  
on which Rachel requested comments by Jan 3
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Figure 9. Time evolution of the ratio between median r∗,3D and λRh for two different stellar mass bins: 109.75 M⊙ < m∗ < 1010.25 M⊙

(left; filled) and 1010.75 M⊙ < m∗ < 1011.25 M⊙ (right; filled). Top row: Peebles spin; Bottom row: Bullock spin. The result for the
z = 0.1 GAMA sample is nearly identical for both mass bins, and is shown by the large symbol. The ratio of the mean quantities is
shown by the open symbols — using means instead of medians results in slightly different values of SRHRλ, but does not change any of
the trends. The time dependence of SRHRλ for the lower stellar mass bins (when using the Peebbles spin) is fairly well fit by a declining
exponential with a timescale of 15 Gyr (shown by the dashed line in both of the left panels). The value of SRHRλ for massive galaxies
remains nearly constant, or increases slightly, with cosmic time within the CANDELS sample. The CANDELS values, however, seem
systematically higher than those derived for GAMA.

be sensitive to the local background used in the fitting, and
to the seeing or point spread function (PSF) of the image.

We adopted the GAMA sample because the methods
used to estimate stellar masses and sizes were as similar
to those used for CANDELS as any low-redshift sample
of which we are aware. In both GAMA and CANDELS,
sizes are estimated using the same code (GALFIT) and sin-
gle component Sérsic fitting. However, our results seem to
strongly suggest that there is a systematic offset between the
GAMA and CANDELS derived size-mass relations. This off-
set appears to be larger for massive galaxies. The origin of
this offset is not clear to us, and it is beyond the scope of

this paper to investigate it further, but it is important to be
aware of in assessing size evolution, or when comparing the
predictions of theoretical models with observations.

Another important note is that some studies (e.g.
Shen et al. 2003; Shibuya et al. 2015) have used circularized

radii (re,circ ≡ q1/2 re,major where q is the projected axis ra-
tio), rather than semi-major axis radii. Because galaxy axial
ratios can depend on stellar mass and redshift, this could
lead to different conclusions.

Further uncertainties come from the conversion from
observed, projected (2D) radii to physical 3D radii, which
depends on the shape of the galaxy (flat versus spheroidal).
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ABSTRACT
We explore statistical constraints on the relationship between the radial
size of galaxies and the radius of their host dark matter halos from z ∼ 0.1–
3 using the GAMA and CANDELS surveys. We map dark matter halo
mass to galaxy stellar mass using empirical relationships from abundance
matching, applied to the Bolshoi-Planck dissipationless N-body simulation.
We define SRHR≡ re/Rh as the average ratio of galaxy radius to halo virial
radius, and SRHRλ ≡ re/(λRh) as the ratio of galaxy radius to halo spin
parameter times halo radius. At z ∼ 0.1, we find SRHRλ ≃ 0.45 with very
little dependence on stellar mass. We find that the values of SRHRλ de-
rived from all five fields of CANDELS at z ∼ 0.4–3 are a factor of two
or more higher than those derived from local surveys. Within the CAN-
DELS survey, SRHR and SRHRλ show a mild decrease over cosmic time.
Assuming that SRHRλ has negligible galaxy-to-galaxy scatter appears re-
markably consistent with the distributions of sizes in stellar mass bins over
z ∼ 0.1–3, for both the GAMA and CANDELS samples. We find hints that
at high redshift (z ∼ 2–3), SRHRλ is lower for more massive galaxies, while
it shows no significant dependence on stellar mass at z <

∼ 0.5. We discuss
the physical interpretation and implications of these results.

Key words: galaxies: evolution - galaxies: structure - galaxies: high redshift

1 INTRODUCTION

Our standard modern paradigm of galaxy formation posits
that galaxies form within dark matter halos, and much re-
cent work has focussed on empirically relating the observ-
able properties of galaxies with those of their host halos.
While there are many ways to approach this problem, a

commonly used approach to constrain the relationship be-
tween the stellar mass (or luminosity) of galaxies and the
mass of their host dark matter halos (the SMHM relation) is
(sub-)halo abundance matching (SHAM; Conroy et al. 2006;
Guo et al. 2010; Behroozi et al. 2010; Moster et al. 2010;
Behroozi et al. 2013a; Moster et al. 2013). The ansatz of
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1 INTRODUCTION

Our standard modern paradigm of galaxy formation posits
that galaxies form within dark matter halos, and much re-
cent work has focussed on empirically relating the observ-
able properties of galaxies with those of their host halos.
While there are many ways to approach this problem, a

commonly used approach to constrain the relationship be-
tween the stellar mass (or luminosity) of galaxies and the
mass of their host dark matter halos (the SMHM relation) is
(sub-)halo abundance matching (SHAM; Conroy et al. 2006;
Guo et al. 2010; Behroozi et al. 2010; Moster et al. 2010;
Behroozi et al. 2013a; Moster et al. 2013). The ansatz of
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Figure 5. Median radius divided by the median value of the spin
parameter times the halo virial radius, in bins of stellar mass, at
z ∼ 0.1. Open circles are based on the GAMA DR2 catalogs and
are for the observed (projected) r-band half-light radius re. The
dashed vertical line shows the 97.7% stellar mass com-
pleteness limit for the GAMA sample. Gray star symbols
show the same quantity for the estimated 3D half-stellar mass ra-
dius (r∗,3D). It is striking that the ratio between galaxy size and
halo size remains so nearly constant over a wide range in stellar
mass.

5 DISCUSSION

In this section we discuss the main caveats and uncertain-
ties in our analysis, possible physical interpretations of our
results, and compare our results and conclusions with those
of previous studies.

5.1 Main Caveats and Uncertainties

Our analysis makes use of, on the one hand, observational
estimates of galaxy stellar mass, redshift, and radial size
(and, secondarily, morphological type), and on the other,
predictions of the mass, radius, and spin parameters of dark
matter halos from a cosmological simulation.

5.1.1 Halo properties and SMHM relation

There are several important caveats to note regarding the
halo properties and SMHM relation. First, the halo masses,
virial radii, and spin parameters are taken from dissipation-
less N-body simulations, which do not include the effect of
baryons on halo properties. Studies that do include baryons
and the associated feedback effects have shown that bary-
onic processes can modify the virial mass and spin parame-
ter of dark matter halos by up to 30% (Munshi et al. 2013;
Teklu et al. 2015) and the magnitude of these effects may
depend on halo mass. Therefore the actual ratio of galaxy
size to halo size and spin parameter may differ from the
values quoted here.

Second, specific properties of dark matter halos such as
mass, radius, and spin parameter depend on the definition
used. It has become customary to define dark matter halos
as spherical overdensities within which the average overden-
sity exceeds a threshold value. However, different values of
this overdensity parameter are used in the literature. The
most common conventions are to assume a fixed overdensity
of 200 or to assume a redshift dependent overdensity ∆vir

as given in Bryan & Norman (1998). To make matters even
more confusing, some studies apply the overdensity thresh-
old relative to the critical density of the Universe while oth-
ers use the background density. This results in different val-
ues of Rh for a given Mh, different values of halo number
density (or abundance) at a given Mh, and different redshift
evolution for all quantities. It also results in different values
for the total angular momentum of the halo, Jh, and
spin parameter λ.

In Fig. 10, we show the virial radius as a function of
redshift for a halo with a mass of 1012M⊙. We also show
the virial radius as a function of redshift at fixed mass, nor-
malized to the value at z = 0. One can see from this figure
that the halo radius at a given mass differs at z = 0 by
as much as a factor of two in different definitions, while all
definitions produce nearly the same value above z ∼ 3. As a
result, conclusions about the evolution of halo radius across
cosmic time can also differ by a similar factor. The “200
crit” definition produces the least evolution, while the “vir
background” definition produces the most.

How would our results change had we adopted a dif-
ferent halo definition? The halo definition impacts sev-
eral aspects of our calculation. Halos with a fixed value of
M200,crit are less abundant (have a lower volume density)
than halos with the same numerical value of Mvir,crit. Sim-
ilarly, halos with a fixed value of Mvir,crit are less abun-
dant than halos with the same numerical value of M200,b.
This means that galaxies with a given stellar mass (and ob-
served number density) will be assigned larger and larger
halo masses depending on the halo definition used, from
M200,crit → Mvir,crit → M200,b → Mvir,b. Moreover, the
virial radius for a given halo mass increases as we go from
M200,crit → Mvir,crit → M200,b → Mvir,b. Since re for a
given m∗ is fixed by the observed relation, all of this implies
that re/Rh would be largest for the M200,crit definition and
smallest for the Mvir,b definition. Our favored definition is
in the middle. Furthermore, we expect λ to increase slightly
as we go from M200,crit → Mvir,crit → M200,b → Mvir,b. This
means the difference in re/(λRh) will be even a bit larger
from one halo definition to another. To accurately fully es-
timate the effects of changing the halo definition, we would
need to redo the abundance matching and remeasure λ con-
sistently for each definition, which is beyond the scope of
this paper. However, a crucial point is that we have been
very careful to use a consistent halo mass definition in all

aspects of our study.
The choice of halo definition is in some sense arbitrary.

Yet, one can ask which definition is the most physically
relevant for tracking quantities that are relevant to galaxy
formation, such as the accretion rate of gas into the halo.
Some recent works that examined structure formation in
dark-matter only simulations have pointed out that defining
the halo relative to an evolving background density leads
to apparent growth of the halo mass even as the physi-
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SHRHλ ≡ Reff/(ℷ Rhalo)

https://www.dropbox.com/s/theqlr7ql22kfio/rgrh.pdf?dl=0


RECENT PROGRESS ON GALAXY FORMATION

Progress generating mock images and IFU data cubes from our Sunrise pipeline (Greg Snyder, 
Raymond Simons)  Email 1/8 from Greg: I am pleased to report that I have finished creating Sunrise images 
on the entire suite of VELA Generation 3 simulations.  There were 34 simulations that had enough snapshots 
to consider. I have copied them all to Pleiades and applied Raymond's speedy yt->Sunrise extraction 
algorithm and our Sunrise imaging pipeline.  I am finished with Candelizing 75% of the sample and I expect 
to reach 100% by later this week, at which point I will copy out these files. One new improvement is that I 
have added filters for JWST's MIRI instrument in addition to NIRCAM and HST for the set of candelized 
images.  MIRI (5-25 microns) will only make sense for the higher redshifts because we didn't do dust 
emission, but could help characterize shapes in the very early universe.

I have not yet done a thorough investigation to make sure each snapshot looks OK.  In particular, our choice 
of image field of view may have to be adjusted bigger or smaller on a case by case basis as we start looking 
at them.  Everything is fully automated and debugged so it wouldn't take long to redo any needing this 
adjustment.

Analyzing these images for clumps (Yicheng Guo); measuring GALFIT statistics a, b, axis ratio b/a, Sersic 
index of CANDELized images (Yicheng and Vivian Tang) compared with high resolution images (Liz 
McGrath).  Reff for SDSS galaxies as a function of density (Christoph, Graham Vanbenthuysen).

Preparing information for deep learning (DL) about the simulations using yt analysis of the saved timesteps 
(Sean Larkin, Fernando Caro, Christoph Lee) and using other methods (Nir Mandelker, Santi Roca-Fabrega) 
to see whether giving the deep learning code this information in addition to mock images will allow 
the code to determine some of these phenomena from the images at least in the best cases of 
inclination, resolution, and signal/noise (Marc Huertas-Company and team).  What data about the 
simulations should we give DL?  Can we make sufficient progress by HST Cycle 24 deadline April 8?
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ABSTRACT

We present a simple, efficient and robust approach to improve cosmological redshift mea-
surements. The method is based on the presence of a reference sample for which a precise red-
shift number distribution (dN/dz) can be obtained for different pencil-beam-like sub-volumes
within the original survey. For each sub-volume we then impose: (i) that the redshift number
distribution of the uncertain redshift measurements matches the reference dN/dz corrected by
their selection functions; and (ii) the rank order in redshift of the original ensemble of uncer-
tain measurements is preserved. The latter step is motivated by the fact that random variables
drawn from Gaussian probability density functions (PDFs) of different means and arbitrarily
large standard deviations satisfy stochastic ordering. We then repeat this simple algorithm for
multiple arbitrary pencil-beam-like overlapping sub-volumes; in this manner, each uncertain
measurement has multiple (non-independent) “recovered” redshifts which can be used to esti-
mate a new redshift PDF. We refer to this method as the Stochastic Order Redshift Technique
(SORT). We have used a state-of-the art N -body simulation to test the performance of SORT

under simple assumptions and found that it can improve the quality of cosmological redshifts
in an robust and efficient manner. Particularly, SORT redshifts (zsort) are able to recover the
distinctive features of the so-called ‘cosmic web’ and can provide unbiased measurement of
the two-point correlation function on scales ! 4h−1Mpc. Given its simplicity, we envision
that a method like SORT can be incorporated into more sophisticated algorithms aimed to
exploit the full potential of large extragalactic photometric surveys.

Key words: methods: data analysis—methods: statistical—cosmology: large-scale structure
of the Universe—techniques: photometric—techniques: spectroscopic

1 INTRODUCTION

Observational constraints of the galaxy distribution are of funda-

mental importance for cosmology and astrophysics. As tracers of

the underlying matter distribution, the actual three-dimensional po-

sitions of galaxies contain relevant information regarding the ini-

tial conditions of the Universe, cosmological parameters, and the

nature of dark matter and dark energy (e.g. Plionis & Basilakos

2002; Cole et al. 2005; Li 2011; Bos et al. 2012; Gillet et al. 2015;

Cai et al. 2015). This so-called ‘cosmic web’ also affects the phys-

ical condition of the bulk of baryonic matter residing in the inter-

galactic medium (e.g. Cen & Ostriker 1999; Davé et al. 2001; Shull

et al. 2012), which in turn could also shape the evolution of galax-

⋆ E-mail: ntejos@gmail.com

ies themselves (e.g. Mo et al. 2005; Peng et al. 2010; Lu et al. 2015;

Peng et al. 2015; Aragon-Calvo et al. 2016).

Of particular interest is to resolve the cosmic web on scales

" 1 − 10h−1Mpc, where the clustering power of matter is larger.

At these scales, galaxies form an intricate network of filaments,

sheets and nodes, while also leaving vast volumes virtually devoid

of luminous matter (i.e. galaxy voids).1 In order to access the rich

information provided by these complex patterns, one must survey

galaxies with redshift precision comparable or smaller than such

scales.

State-of-the-art photometric redshifts can achieve redshift pre-

cisions of σph
z ≈ 0.02 (e.g. for SDSS at z < 0.6, Beck et al.

2016, and references therein), which correspond to scales of ∼

1 But note that such galaxy voids can still contain baryonic matter in the

form of highly ionized hydrogen (e.g. Penton et al. 2002; Tejos et al. 2012).
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where Rph and Rsp are the redshift uncertainties of the photomet-

ric and spectroscopic samples, respectively. The redshift resolution

of these estimations are therefore limited by the redshift uncertain-

ties of the galaxies in their respective samples (see panel B of Fig-

ure 1 for an illustration); one can consider Pph be a noisier version

of Psp.

Assuming that the subsample of Nsp galaxies with spectro-

scopic redshifts is ‘statistically relevant’—i.e. that they accurately

trace the underlying cosmic structures such as clusters, filaments,

walls and voids present in the volume V — this naturally suggests

that the spectroscopic subsample can be used to improve the qual-

ity of the redshift distribution of the photometric sample. In other

words, we can assume that the probability redshift distribution of

the photometric sample, Pph, is the probability redshift distribu-

tion of the spectroscopic sample, Psp, convolved with an unknown

kernel G,

Pph(zph) =

∫
G(zph − zsp)Psp(zsp)dzsp (5)

Therefore, the problem of improving photometric redshift estima-

tions may reduce to constrain all the moments of G, particularly

its mean relation (i.e. zph − zsp) and the dispersion around the

mean. The general approach has been then to constrain G and use

Equation (5) to improve the redshift estimations of the photometric

sample.

In this paper we propose a complementary approach, in which

we do not constrain G itself to obtain the underlying P (z), but use

the overall relation between their cumulative distributions instead.

Let us consider the simple case when the correlation between zsp
and zph is a one-to-one monotonic relation with zero scatter, i.e.

G(zph − zsp) becomes the Dirac delta function. Then Equation (5)

can be written as:

dNph

dzph
(zph) =

Nph

Nsp

Sph

Ssp

dNsp

dzsp
(zsp(zph))

dzsp
dzph

, (6)

where we use the definitions of Equations (1) and (2). The above

Equation can be written in terms of the following integrals:∫ ∞

zph

dNph

dz′ph
dz′ph =

Nph

Nsp

∫ ∞

zsp

Sph

Ssp

dNsp

dz′sp
dz′sp. (7)

An easy way to solve Equation (7) is just rank ordering spec-

troscopic galaxies by their redshift and assigning them to photomet-

ric galaxies also ranked by redshift (see bottom panel of Figure 1

and Equation (8) below). Obviously, in the presence of scatter in

the relation G this solution is not strictly valid but just an approxi-

mation. In this paper, we explore how good such an approximation

is, and show that it is indeed suitable for improving photometric

redshifts.

2.2 Stochastic Order Redshift Technique (SORT)

We solve Equation (7) by sorting the Nph observed photometric

redshifts such that zobs1 ! zobs2 ! . . . ! zobsNph
, and assign them

Nph sorted recovered redshifts, randomly sampled from,

Nph

Nsp

Sph

Ssp

dNsp

dz
(z) → {zrec1 , zrec2 , . . . , zrecNph

} (8)

such that zrec1 ! zrec2 ! . . . ! zrecNph
. This provides a straight-

forward one-to-one mapping between the observed and recov-

ered photometric redshift distributions as zobsi ↔ zreci , for i ∈

{1, 2, . . . , Nph} (see bottom panel of Figure 1). This is a simplis-

tic but powerful approach, particularly because photometric sam-

ples are expected to satisfy stochastic ordering.

We define stochastic order as follows. Consider two random

variables, Xi and Xj , being drawn from two arbitrary probability

density functions (PDFs), Pi and Pj in the domain x. Then, we say

that Xj is stochastically greater than or equal to Xi if and only if

their PDFs satisfy,

Pi(Xi > x) ! Pj(Xj > x) ∀x , (9)

(e.g. Shaked & Shanthikumar 2007). This is equivalent to saying

that,∫ ∞

x

Pi(x
′) dx′ !

∫ ∞

x

Pj(x
′) dx′ ∀x . (10)

Let us now consider the case of individual redshift estima-

tions, zi and zj , whose PDFs are given by Gaussians having the

same (arbitrarily large) standard deviations, centred at zi and zj ,

respectively, and satisfying zi < zj . If we treat these redshift mea-

surements as random variables, it is straightforward to show that

stochastic order is satisfied (Equation (9) or Equation (10)). Hence,

even though their PDFs may overlap in redshift, the most likely

outcome is having ztruei ! ztruej , where ztrue{i,j} are their true under-

lying redshifts, respectively.

Stochastic order ensures transitivity, meaning that indepen-

dently of the individual photometric redshift uncertainties, their ob-

served rank order within the sample most likely matches that of the

underlying true values. Thus, by solving Equation (7) using Equa-

tion (8) this information is also preserved.

Although there may be cases where Equation (9) does not

apply (e.g. complex PDFs with asymmetries or multiple local

maxima), we can expect that state-of-the-art photometric redshift

estimations provide well behaved PDFs, where stochastic order

is satisfied for a significant fraction of the photometric sample.

Under this assumption, we thus refer to this matching scheme as

the Stochastic Order Redshift Technique (SORT).

We emphasize that SORT is a statistical method and should be

only applied to ensembles rather than individual measurements. We

also note that this simplistic version of SORT could eventually lead

to catastrophic redshifts, i.e. zreci that are not statistically consistent

with the zobsi individual PDFs. Indeed, this is the case because in its

current implementation we are not using the information provided

by the individual photometric uncertainties. We chose this approach

so we can explore the advantages/disadvantages of the method in

its simplest form (but see Section 5.1 for how to easily prevent

catastrophic redshift assignments).

In the following we test SORT using a mock galaxy sur-

vey drawn from a state-of-the-art N -body cosmological simulation

aimed at reproducing the low-z (z " 0.3) SDSS. We emphasize

that even though we will mainly refer to a galaxy survey, in prac-

tice we can apply this method to any kind of luminous extragalactic

object.

3 SIMULATION

In order to test the performance of SORT we create a magnitude-

limited mock galaxy survey on the N -body MultiDark-Planck sim-

ulation (Klypin et al. 2016). The MultiDark-Planck simulation is

a very high resolution simulation based on a ΛCDM cosmology
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where Rph and Rsp are the redshift uncertainties of the photomet-

ric and spectroscopic samples, respectively. The redshift resolution

of these estimations are therefore limited by the redshift uncertain-

ties of the galaxies in their respective samples (see panel B of Fig-

ure 1 for an illustration); one can consider Pph be a noisier version

of Psp.

Assuming that the subsample of Nsp galaxies with spectro-

scopic redshifts is ‘statistically relevant’—i.e. that they accurately

trace the underlying cosmic structures such as clusters, filaments,

walls and voids present in the volume V — this naturally suggests

that the spectroscopic subsample can be used to improve the qual-

ity of the redshift distribution of the photometric sample. In other

words, we can assume that the probability redshift distribution of

the photometric sample, Pph, is the probability redshift distribu-

tion of the spectroscopic sample, Psp, convolved with an unknown

kernel G,

Pph(zph) =

∫
G(zph − zsp)Psp(zsp)dzsp (5)

Therefore, the problem of improving photometric redshift estima-

tions may reduce to constrain all the moments of G, particularly

its mean relation (i.e. zph − zsp) and the dispersion around the

mean. The general approach has been then to constrain G and use

Equation (5) to improve the redshift estimations of the photometric

sample.

In this paper we propose a complementary approach, in which

we do not constrain G itself to obtain the underlying P (z), but use

the overall relation between their cumulative distributions instead.

Let us consider the simple case when the correlation between zsp
and zph is a one-to-one monotonic relation with zero scatter, i.e.

G(zph − zsp) becomes the Dirac delta function. Then Equation (5)

can be written as:

dNph

dzph
(zph) =

Nph

Nsp

Sph

Ssp

dNsp

dzsp
(zsp(zph))

dzsp
dzph

, (6)

where we use the definitions of Equations (1) and (2). The above

Equation can be written in terms of the following integrals:∫ ∞

zph

dNph

dz′ph
dz′ph =

Nph

Nsp

∫ ∞

zsp

Sph

Ssp

dNsp

dz′sp
dz′sp. (7)

An easy way to solve Equation (7) is just rank ordering spec-

troscopic galaxies by their redshift and assigning them to photomet-

ric galaxies also ranked by redshift (see bottom panel of Figure 1

and Equation (8) below). Obviously, in the presence of scatter in

the relation G this solution is not strictly valid but just an approxi-

mation. In this paper, we explore how good such an approximation

is, and show that it is indeed suitable for improving photometric

redshifts.

2.2 Stochastic Order Redshift Technique (SORT)

We solve Equation (7) by sorting the Nph observed photometric

redshifts such that zobs1 ! zobs2 ! . . . ! zobsNph
, and assign them

Nph sorted recovered redshifts, randomly sampled from,

Nph

Nsp

Sph

Ssp

dNsp

dz
(z) → {zrec1 , zrec2 , . . . , zrecNph

} (8)

such that zrec1 ! zrec2 ! . . . ! zrecNph
. This provides a straight-

forward one-to-one mapping between the observed and recov-

ered photometric redshift distributions as zobsi ↔ zreci , for i ∈

{1, 2, . . . , Nph} (see bottom panel of Figure 1). This is a simplis-

tic but powerful approach, particularly because photometric sam-

ples are expected to satisfy stochastic ordering.

We define stochastic order as follows. Consider two random

variables, Xi and Xj , being drawn from two arbitrary probability

density functions (PDFs), Pi and Pj in the domain x. Then, we say

that Xj is stochastically greater than or equal to Xi if and only if

their PDFs satisfy,

Pi(Xi > x) ! Pj(Xj > x) ∀x , (9)

(e.g. Shaked & Shanthikumar 2007). This is equivalent to saying

that,∫ ∞

x

Pi(x
′) dx′ !

∫ ∞

x

Pj(x
′) dx′ ∀x . (10)

Let us now consider the case of individual redshift estima-

tions, zi and zj , whose PDFs are given by Gaussians having the

same (arbitrarily large) standard deviations, centred at zi and zj ,

respectively, and satisfying zi < zj . If we treat these redshift mea-

surements as random variables, it is straightforward to show that

stochastic order is satisfied (Equation (9) or Equation (10)). Hence,

even though their PDFs may overlap in redshift, the most likely

outcome is having ztruei ! ztruej , where ztrue{i,j} are their true under-

lying redshifts, respectively.

Stochastic order ensures transitivity, meaning that indepen-

dently of the individual photometric redshift uncertainties, their ob-

served rank order within the sample most likely matches that of the

underlying true values. Thus, by solving Equation (7) using Equa-

tion (8) this information is also preserved.

Although there may be cases where Equation (9) does not

apply (e.g. complex PDFs with asymmetries or multiple local

maxima), we can expect that state-of-the-art photometric redshift

estimations provide well behaved PDFs, where stochastic order

is satisfied for a significant fraction of the photometric sample.

Under this assumption, we thus refer to this matching scheme as

the Stochastic Order Redshift Technique (SORT).

We emphasize that SORT is a statistical method and should be

only applied to ensembles rather than individual measurements. We

also note that this simplistic version of SORT could eventually lead

to catastrophic redshifts, i.e. zreci that are not statistically consistent

with the zobsi individual PDFs. Indeed, this is the case because in its

current implementation we are not using the information provided

by the individual photometric uncertainties. We chose this approach

so we can explore the advantages/disadvantages of the method in

its simplest form (but see Section 5.1 for how to easily prevent

catastrophic redshift assignments).

In the following we test SORT using a mock galaxy sur-

vey drawn from a state-of-the-art N -body cosmological simulation

aimed at reproducing the low-z (z " 0.3) SDSS. We emphasize

that even though we will mainly refer to a galaxy survey, in prac-

tice we can apply this method to any kind of luminous extragalactic

object.

3 SIMULATION

In order to test the performance of SORT we create a magnitude-

limited mock galaxy survey on the N -body MultiDark-Planck sim-

ulation (Klypin et al. 2016). The MultiDark-Planck simulation is

a very high resolution simulation based on a ΛCDM cosmology
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Galaxy Stochastic Order Redshift Technique (SORT): a simple, efficient, and robust method to improve 
cosmological photometric redshift measurements                      METHOD DETAILS



Galaxy Stochastic Order Redshift Technique (SORT): a simple, efficient, and robust method to improve 
cosmological photometric redshift measurements, by Nicholas Tejos, Aldo Rodriguez-Puebla, and Joel 
(submitted to MNRAS)

To test the method we created a sample of dark matter halos in redshift space from the MultiDark-Planck 
simulation using 

and then added noise to simulate observed redshifts, with σph = 0.02 (70%) and σspect = 0.0001 (30%)
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Our sample consisted of 127993 dark matter halos, which we think of as being from SDSS at z ~ 0.15, but we
also experimented with much larger σph and smaller spectroscopic fractions.  Results for this first test:
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SORT allows recovery of the 2-point
correlation function for s > 4 Mpc/h
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SORT works pretty well with much smaller fractions of spectroscopic redshifts (left panel) 
and much larger photometric redshift uncertainties (right panel)
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by a Schechter function and thus the resulting GSMF at low
redshifts that it is better described by a double Schechter
function.

4.2 Star Formation rates

In this paper, we use a compilation of 19 studies from the
literature for the observed SFRs as a function stellar mass
at different redshifts. Table 2 lists the references that we
utilize.

Similarly to the GSMFs, in order to directly compare
the different SFR sample we applied some calibrations. To
do so, we follow Speagle et al. (2014) who used a compila-
tion to study star formation from z ∼ 0 to z ∼ 6 by cor-
recting for different assumptions regarding the IMF, SFR
indicators, SPS models, dust extinction, emission lines and
cosmology. The reader is referred to that paper for details on
their calibrations. In Table 2 we indicate the specific calibra-
tions applied to the data. Note that in order to constrain our
model we use observations of the SFRs for all galaxies. Com-
plete samples, however, for all galaxies are only available at
z < 3. Therefore, here we decided to include SFRs samples
from star forming galaxies, specially at high z > 3. Using
star forming galaxies at high redshift is not a big source of
uncertainty since most of the galaxies at z > 3 are actually
star forming, see e.g., Figure 1. Table 2 indicates the type
of the data, namely, if the sample is for all galaxies or for
star forming galaxies and the redshift range.

In addition to the compiled sample for z > 3, here we
calculate average SFRs using again the UV LFs described in
Appendix D. We begin by correcting the UV rest-frame ab-
solute magnitudes for extinction using the Meurer, Heckman
& Calzetti (1999) average relation

⟨AUV⟩ = 4.43 + 1.99⟨β⟩, (42)

where ⟨β⟩ is the average slope of the observed UV con-
tinuum. We use the following relationship independent of
redshift: ⟨β⟩ = −0.11 × (MUV + 19.5) − 2, which is consis-
tent with previous determination of the β slope (see e.g.,
Bouwens et al. 2014). Then we calculate UV SFRs using the
Kennicutt (1998) relationship

SFR
M⊙ yr−1

(LUV) =
LUV/erg s

−1 Hz−1

13.9 × 1027
. (43)

We subtract -0.24 dex to be consistent to a Chabrier (2003)
IMF. Finally, we calculate the average SFR as a function of
stellar mass as:

⟨log SFR (M∗, z)⟩ =
∫

P (M∗|MUV, z) log SFR(MUV)×

φUV(MUV, z)dMUV. (44)

The probability distribution function P (M∗|MUV, z) is de-
scribed in detail in Appendix D. We use the following inter-
vals of integration: MUV ∈ [−17,−22.6] at z = 4; MUV ∈
[−16.4,−23] at z = 5; MUV ∈ [−16.75,−22.5] at z = 6;
MUV ∈ [−17,−22.75] at z = 7 and MUV ∈ [−17.25,−22] at
z = 8.

4.3 Cosmic Star Formation Rate

We use the CSFR data compilation from Madau & Dickin-
son (2014). This data was derived from FUV and IR rest

Figure 1. Transition stellar mass at which the fraction of blue
star forming and red quenched galaxies is 50%. The open square
with error bars shows the transition mass for local galaxies as
derived in Bell et al. (2003) based on the SDSS DR2 while the
filled triangles shows the same but derived in Bundy et al. (2006)
based on the DEEP2 survey. Drory & Alvarez (2008) based on
the FORS Deep Field survey is indicated with the long dashed
line, observations from Pozzetti et al. (2010) based on the COS-
MOS survey are indicated with the skeletal symbols, observations
from Baldry et al. (2012) based on the GAMA survey are shown
with filled square and Muzzin et al. (2013) (filled circles, based
on the COSMOS survey). The empirical results based on abun-
dance matching by Firmani & Avila-Reese (2010) are shown with
the short dashed lines. The solid black line shows the relation
log(Mchar(z)/M⊙) = 10.2+0.6z, employed in this paper and that
is consistent with most of the above studies. The gray solid lines
show the results when shifting log(Mchar(z)/M⊙) 1 dex above
and below.

frame luminosities by deriving empirical dust corrections to
the FUV data in order to estimate robust CSFRs. We ad-
justed their data to a Chabrier (2003) IMF by subtracting
0.24 dex to their CSFRs. Finally, for z > 3 we calculate
the CSFR using again the UV dust-corrected LFs and SFRs
described above and using the same integration limit as in
Madau & Dickinson (2014). We find that our CSFR is consis-
tent with the compilation by derived in Madau & Dickinson
(2014) over the same redshift range.

4.4 The Fraction of Star-Forming and Quiescent
Galaxies

In this paper we interchangeably refer star-forming as blue
galaxies and quiescent as red galaxies. We utilize the fraction
of blue/star-forming and red/quenched galaxies as a refer-
ence to compare with our model and thus gain more insights
on how galaxies evolve from active to passive as well as on
their structural evolution (to be discuss in Section 7). For
the fraction of quiescent galaxies fQ we use the following
relation:

fQ(M∗, z) =
1

1 + (M∗/Mchar(z))α
, (45)
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Table 2. Observational data on the star formation rates

Author Redshifta SFR Estimator Corrections Type

Chen et al. (2009) z ∼ 0.1 Hα/Hβ S All
Salim et al. (2007) z ∼ 0.1 UV SED S All
Noeske et al. (2007) 0.2 < z < 1.1 UV+IR S All
Karim et al. (2011) 0.2 < z < 3 1.4 GHz I+S+E All
Dunne et al. (2009) 0.45 < z < 2 1.4 GHz I+S+E All
Kajisawa et al. (2010) 0.5 < z < 3.5 UV+IR I All
Whitaker et al. (2014) 0.5 < z < 3 UV+IR I+S All
Sobral et al. (2014) z ∼ 2.23 Hα I+S+SP SF
Reddy et al. (2012) 2.3 < z < 3.7 UV+IR I+S+SP SF
Magdis et al. (2010) z ∼ 3 FUV I+S+SP SF
Lee et al. (2011) 3.3 < z < 4.3 FUV I+SP SF
Lee et al. (2012) 3.9 < z < 5 FUV I+SP SF
González et al. (2012) 4 < z < 6 UV+IR I+NE SF
Salmon et al. (2015) 4 < z < 6 UV SED I+NE+E SF
Bouwens et al. (2011) 4 < z < 7.2 FUV I+S SF
Duncan et al. (2014) 4 < z < 7 UV SED I+NE SF
Shim et al. (2011) z ∼ 4.4 Hα I+S+SP SF
Steinhardt et al. (2014) z ∼ 5 UV SED I+S SF
González et al. (2010) z = 7.2 UV+IR I+NE SF
This paper 4 < z < 8 FUV I+E+NE SF

Notes aIndicates the redshift used in this paper. I=IMF; S=Star formation calibration; E=Extinction; NE= Nebular Emissions;
SP=SPS Model

where Mchar is the transition stellar mass at which the frac-
tion of blue star forming and red quenched galaxies is 50%.
Figure 1 shows Mchar as a function of redshift from observa-
tions and previous constraints. The open square with error
bars show when the observed fraction of star forming galax-
ies is 50% for local galaxies as derived in Bell et al. (2003)
based on the SDSS DR2 while the filled triangles shows
the same but derived in Bundy et al. (2006) based on the
DEEP2 survey. Additionally, we include data from Drory &
Alvarez (2008) (long dashed line, based on the FORS Deep
Field survey) and Pozzetti et al. (2010) (skeletal symbols,
based on the COSMOS), Baldry et al. (2012) (filled square,
from the GAMA survey) and Muzzin et al. (2013) (filled cir-
cles, based on the COSMOS survey). The empirical results
based on abundance matching by Firmani & Avila-Reese
(2010) are shown with the short dashed lines. The solid
black line shows the relation log(Mchar(z)/M⊙) = 10.2+0.6z
that we will employ in this paper and that is consistent
with most of the above studies. The gray solid lines show
the results when shifting log(Mchar(z)/M⊙) by 1 dex above
and below. We will use this shift as our uncertainty in the
definition for log(Mchar(z)/M⊙). Finally, we will assume
that α = −1.3. The transition stellar mass is such that
at z = 0 is log(Mchar(z)/M⊙) = 10.2 and at z = 2 is
log(Mchar(z)/M⊙) = 11.4.

5 CONSTRAINING THE MODEL

The galaxy population in our model is described by four
properties: halo mass Mvir, halo mass accretion rates, stel-
lar mass M∗ and star formation rate SFR. In order to con-
strain the model we combine several observational data sets,
including the GSMFs, the SFRs and the CSFR for all galax-
ies. In this Section we describe our adopted methodology as
well as the best resulting fit parameters in our model.

Figure 2. Redshift evolution from z ∼ 0.1 to z ∼ 10 of the
galaxy stellar mass function (GSMF) derived by using 22 ob-
servational samples from the literature and represented with the
filled circles with error bars. The various GSMFs have been cor-
rected for potential systematics that could affect our results, see
the text for details. Solid lines are the best fit model from a set of
5×105 MCMC models. These fits take into account uncertainties
affecting the GSMF as discussed in the text. Note that at lower
redshifts (z <

∼ 3) galaxies tend to pile up at M∗ ∼ 3 × 1010M⊙

due to the increase of massive quench galaxies at lower redshifts.

In order to sample the best-fit parameters that max-

imize the likelihood function L ∝ e−χ2/2 we use the
MCMC approach and described in detail in Rodŕıguez-
Puebla, Avila-Reese & Drory (2013).

We compute the total χ2 as,

χ2 = χ2
GSMF + χ2

SFR + χ2
CSFR (46)

where for the GSMFs we define,

c⃝ 20?? RAS, MNRAS 000, 1–??

The Galaxy-Halo Connection Over The Last 13.3 Gyrs 11

Figure 3. Star formation rates as a function of redshift z in five stellar mass bins. Black solid lines shows the resulting best fit model
to the SFRs implied by our model. The filled circles with error bars show the observed data as described in the text, see Section 2.

Figure 4. Cosmic star formation rate, CSFR. The solid black
line shows the resulting best fit model to the CSFR as described
in Section 2.4. The light grey shaded area shows the systematic
in SFR assumed to be of 0.25 dex. Filled red and violet circles
show a set of compiled observations by Madau & Dickinson (2014)
from FUV+IR rest frame luminosities. UV luminosities are dust-
corrected. Black solid circles show the results from the UV dust-
corrected luminosity functions described in Appendix D.

χ2
GSMF =

∑
j,i

χ2
φj,i

, (47)

for the SFRs,

χ2
SFR =

∑
j,i

χ2
SFRj,i

, (48)

and the CSFRs,

χ2
CSFR =

∑
i

χ2
ρ̇i
. (49)

In all the equations the sum over j refers to different stellar
mass bins while i refers to summation over different red-
shifts. The fittings are made to the data points with their
error bars of each GSMF, SFR and CSFR.

In total our galaxy model consist of eighteen pa-
rameters. Thirteen are to model the redshift evolu-
tion of the SHMR, Equations (28)–(32): p⃗SHMR =
{ϵ0, ϵ1, ϵ2, ϵ3,MC0,MC1,MC2,α,α1,α2, δ0, δ1, δ2, γ0, γ1};
and four more to model the fraction of stel-
lar mass growth due to in-situ star formation:
p⃗in situ = {Min situ,Min situ,0,Min situ,1, β}. To sample
the best fit parameters in our model we run a set of 3× 105

MCMC models.
Figure 2 shows the best-fit model GSMFs from z ∼ 0.1

to z ∼ 10 with the solid lines as indicated by the labels. This
figure shows the evolution for the observed GSMF based in
our compiled data described in Section 4.1.

Figure 3 shows the star formation rates as a function of
redshift z in five stellar mass bins. The observed SFRs from
the literature are plotted with filled circles with error bars
while the best fit model is plotted with the solid black lines.
In general, our models fits describe well the observations at
all mass bins and all redshift.

We present the best-fit model to the CSFR in Figure 4.
The observed CSFRs employed for constraining the model
are shown with the solid circles and error bars. Note that in
Appendix A we discuss the impact of the different assump-
tion employed in the modelling.

The best fitting parameters to our model are:

log(ϵ(z)) = −1.837 ± 0.013+
P(0.081 ± 0.115,−0.086± 0.017, z)×Q(z)+
P(−0.047 ± 0.018, 0, z),

(50)

log(MC(z)) = 11.379 ± 0.013+
P(−2.568 ± 0.193,−0.310 ± 0.038, z)×Q(z),

(51)

α(z) = 1.346 ± 0.032, (52)

c⃝ 20?? RAS, MNRAS 000, 1–??

12

Figure 5. Upper panel: Evolution of the stellar-to-halo mass
relations from z = 0.1 to z = 10 as indicated in the legends.
In our model we assume that these relations are valid both for
central and satellite galaxies. Bottom panel: Evolution of the
stellar -to -halo mass ratios, M∗/Mvir for the same redshifts as
above. The dotted line shows the the limits when assuming the
universal baryon fraction ΩB/ΩM ≈ 0.16.

δ(z) = 4.622 ± 0.079+
P(2.342 ± 0.612,−0.159 ± 0.059, z)×Q(z),

(53)

γ(z) = 0.358 ± 0.010 + P(0.198 ± 0.143, 0, z)×Q(z), (54)

log(Min situ(z)) = 12 + P(7.316± 1.297, 0, z), (55)

β(z) = 0.748 ± 0.100. (56)

For our best fitting model we find that χ2 = 454 from
a number of Nd = 433 observational data points. Since our
model consist of Np = 15 free parameters the resulting re-
duced χ2 is χ2/d.o.f. = 1.09.

6 THE GALAXY-HALO CONNECTION

6.1 The Stellar-to-Halo mass relation from z ∼ 0.1
to z ∼ 10

The upper panel of Figure 5 shows the constrained evolution
of the SHMR while the lower panel shows the stellar-to-
halo mass ratio from z ∼ 0.1 to z ∼ 10 . Recall that in

the case of central galaxies we refer to Mvir as the virial
mass of the host halo while for satellites Mpeak refers to the
maximum mass reached along the main progenitor assembly
mass. Consistent with previous results the SHMR appears
to evolve only very slowly below z ∼ 1. This situation is
quite different between z ∼ 1 and z ∼ 7, at a fixed halo
mass the mean stellar mass is lower at higher redshifts.

The maximum of the stellar-to-halo mass ratio is
aroundMvir ∼ 1012M⊙ at z ∼ 0.1 with a value of ∼ 0.03 and
moves to higher mass halos at high redshifts, consistent with
previous studies (see e.g., Conroy & Wechsler 2009; Firmani
& Avila-Reese 2010; Behroozi, Conroy & Wechsler 2010;
Leauthaud et al. 2012; Yang et al. 2012; Behroozi, Wech-
sler & Conroy 2013b; Moster, Naab & White 2013; Skibba
et al. 2015). The value of the maximum of the stellar-to-halo
mass ratio moves to lower values with increasing redshift,
approximately a factor of 3 between z ∼ 0.1 and z ∼ 4. At
redshift z ∼ 7 the stellar-to-halo mass ratio has decreased
by an order of magnitude. Nonetheless, given the uncertain-
ties when deriving the GSMFs at high redshifts, z > 4,
this result should be taken with caution. For comparison,
both panels show the Universal baryon fraction plotted by
the dotted lines implied by the Planck Collaboration et al.
(2015) cosmology, fb = ΩB/ΩM ≈ 0.16.

Next, we study the integral stellar conversion efficiency,
defined as η = f∗/fb. This is shown in the left panel of Fig-
ure 6 for dark matter halos progenitors at z = 0 with masses
between Mvir = 1010.5M⊙ and Mvir = 1015M⊙. Dark mat-
ter halos are more efficient when their progenitors reached
masses between Mvir ∼ 5× 1011M⊙ − 2× 1012M⊙ at z < 1
and this is never larger than η ∼ 0.2. Theoretically, the char-
acteristic mass of 1012h−1M⊙ is expected to mark a tran-
sition above which the stellar conversion efficiency becomes
increasingly inefficient. The reasons for this is that at halo
masses above 1012h−1M⊙ the efficiency at which the virial
shocks can heat the gas increases (e.g., Dekel & Birnboim
2006). Additionally, the gas can be kept from cooling by the
feedback from active galactic nuclei (Croton et al. 2006; Cat-
taneo et al. 2008; Henriques et al. 2015; Somerville & Davé
2015, , and references therein). Thus central galaxies in mas-
sive halos are expected to become passive systems roughly
at the epoch when the halo reached the mass of 1012h−1M⊙,
thus the term halo mass quenching.

The right panel of Figure 6 shows the stellar conversion
efficiency for the corresponding stellar mass growth histories
of the halo progenitors discussed above. The range of the
characteristic stellar mass Mchar(z), defined as the stellar
mass at which the fraction of star forming is equal to the
fraction of quenched galaxies (see Section 7), is shown by
the dotted lines. Below these lines galaxy are more likely
to be star forming. Note that the right panel of Figure 6
shows that Mchar(z) roughly coincides when η is maximum
at all redshift, specially at low z. This reflects the fact that
halo mass quenching is part of the physical mechanisms that
quenched galaxies in massive halos. We will come back to
this point in Section 8.2.

6.2 Galaxy growth and star-formation histories

Figure 7 shows the predicted star formation histories for pro-
genitors of average dark matter halos at z = 0 with masses
between Mvir = 1010.5M⊙ and Mvir = 1015M⊙. Panel a)
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Figure 7. Panel a): Galaxy growth trajectories as a function of redshift and halo mass. The solid lines indicate average trajectories for
galaxies in dark matter halo progenitors at z = 0 with Mvir = 1011, 1011.5, 1012, 1013, 1014 and 1015M⊙. Also, the color code shows the
star formation histories for every galaxy. Panel b): Galaxy growth trajectories in the stellar-to-halo mass plane, this is a projection of the
Panel a) when collapsing over the redshift axis. Panel c): Galaxy star formation histories as a function of halo mass, this is a projection
of the Panel a) when collapsing over the M∗ axis. Panel d): Galaxy star formation histories as a function of galaxy stellar mass, this is a
projection of the Panel a) when collapsing over the Mvir axis. The dotted lines show the transition above which galaxies are statistically
quenched.

Figure 8. Halo star formation efficiencies, defined as sSFR/sMAR, as a function of halo mass (left panel) and stellar mass (right panel)
for halo progenitors at z = 0. The black solid lines show the trajectories for progenitors with Mvir = 1011, 1011.5, 1012, 1013, 1014 and
1015M⊙. The dotted lines show the stellar mass and halo mass at which the observed fraction of star forming galaxies is equal to the
quenched fraction of galaxies.
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Figure 14. Integrated mass density at 1 kpc, as a function of halo mass (left panel) and stellar mass (right panel) for halo progenitors
at z = 0. The black solid lines show the trajectories for progenitors with Mvir = 1011, 1011.5, 1012, 1013, 1014 and 1015M⊙. The dotted
line in the left hand panel shows the stellar mass and halo mass at which the observed fraction of star forming galaxies is equal to the
quenched fraction of galaxies.

Figure 15. Left Panel: Trajectories for progenitors at z = 0 with Mvir = 1011, 1011.5, 1012, 1013, 1014 and 1015M⊙ in the Σ1−sSFR
plane. Right Panel: Same progenitors but in the M∗−sSFR plane. The symbols show different redshifts as indicated by the labels and
the dashed lines show the transition below which galaxies are quiescent.

galaxies in halos of a given mass. Consider the trajectory
of a halo with final mass Mvir,0 hosting a galaxy with fi-
nal total stellar mass M∗,0 at the redshift of observation z0:
M∗(z|M∗,0, z0) = M∗(z|Mvir,0, z0). Next, we use this rela-
tion to describe the mean structural evolution of galaxies
as:

Σ(r, z|z0) = Σ(r,M∗(z|M∗,0, z0)). (64)

7.1 Surface Mass Density and Size Evolution

Figure 13 shows the evolution of the radial stellar mass
density for galaxies in different halo progenitors at z = 0:

Mvir = 1011, 1011.5, 1012, 1013, 1014 and 1015M⊙. This figure
shows that, in general, galaxies form from the inside–out. At
high redshifts, most of the galaxies are exponential n = 1
disks, as expected, and most of the low mass galaxies at
z ∼ 0 are still disks, while for more massive galaxies, the con-
tribution of the n = 4 component increases as z is smaller.
In the most massive halos, the stellar mass within ∼ 4 kpc
was already in place since z ∼ 1.25, for Mvir = 1013M⊙,
and since z ∼ 2.5 for Mvir = 1015M⊙. Notice that Figure
6 shows that the star formation efficiency in a progenitor
with Mvir = 1013M⊙ is sSFR/sMAR ∼ 1 at z ∼ 1. Re-
call that galaxies with star formation efficiencies below ∼ 1
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Figure 19. Summary plot for various galaxy properties: Panel a) Integrated surface mass density at 1 kpc, Panel b) Effective surface mass density and 
Panel c) Effective radius. The magenta, violet, green, red, blue and black lines show the trajectories for progenitors of Mvir = 1011, 1011.5, 1012, 1013, 
1014, and 1015M⊙. The gray, cyan, light red and light green shaded areas in all the panels show the epoch range at which the progenitors of halos of 
1012, 1013, 1014, and 1015M⊙ reached the mass of Mvir = 1011.8 −1012M⊙. The dashed lines show the transition when galaxies are statistically 
quenched.  Note that the quenching transition occurs at Reff ≈ 3 kpc.
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Figure 14. Integrated mass density at 1 kpc, as a function of halo mass (left panel) and stellar mass (right panel) for halo progenitors
at z = 0. The black solid lines show the trajectories for progenitors with Mvir = 1011, 1011.5, 1012, 1013, 1014 and 1015M⊙. The dotted
line in the left hand panel shows the stellar mass and halo mass at which the observed fraction of star forming galaxies is equal to the
quenched fraction of galaxies.

Figure 15. Left Panel: Trajectories for progenitors at z = 0 with Mvir = 1011, 1011.5, 1012, 1013, 1014 and 1015M⊙ in the Σ1−sSFR
plane. Right Panel: Same progenitors but in the M∗−sSFR plane. The symbols show different redshifts as indicated by the labels and
the dashed lines show the transition below which galaxies are quiescent.

galaxies in halos of a given mass. Consider the trajectory
of a halo with final mass Mvir,0 hosting a galaxy with fi-
nal total stellar mass M∗,0 at the redshift of observation z0:
M∗(z|M∗,0, z0) = M∗(z|Mvir,0, z0). Next, we use this rela-
tion to describe the mean structural evolution of galaxies
as:

Σ(r, z|z0) = Σ(r,M∗(z|M∗,0, z0)). (64)

7.1 Surface Mass Density and Size Evolution

Figure 13 shows the evolution of the radial stellar mass
density for galaxies in different halo progenitors at z = 0:

Mvir = 1011, 1011.5, 1012, 1013, 1014 and 1015M⊙. This figure
shows that, in general, galaxies form from the inside–out. At
high redshifts, most of the galaxies are exponential n = 1
disks, as expected, and most of the low mass galaxies at
z ∼ 0 are still disks, while for more massive galaxies, the con-
tribution of the n = 4 component increases as z is smaller.
In the most massive halos, the stellar mass within ∼ 4 kpc
was already in place since z ∼ 1.25, for Mvir = 1013M⊙,
and since z ∼ 2.5 for Mvir = 1015M⊙. Notice that Figure
6 shows that the star formation efficiency in a progenitor
with Mvir = 1013M⊙ is sSFR/sMAR ∼ 1 at z ∼ 1. Re-
call that galaxies with star formation efficiencies below ∼ 1
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