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ABSTRACT

Context. The huge and still rapidly growing amount of galaxies in modern sky surveys raises the need for an automated and objective
classification method. Unsupervised learning algorithms are of particular interest, since they discover classes automatically.
Aims. We briefly discuss the pitfalls of oversimplified classification methods and outline an alternative approach called “clustering
analysis”.
Methods. We have categorised different classification methods according to their capabilities. Based on this categorisation, we present
a probabilistic classification algorithm that automatically detects the optimal classes preferred by the data. We explored the reliability
of this algorithm in systematic tests. Using a sample of 1520 bright galaxies from the SDSS, we demonstrate the performance of this
algorithm in practice. We are able to disentangle the problems of classification and parametrisation of galaxy morphologies in this
case.
Results. We give physical arguments that a probabilistic classification scheme is necessary. When applied to a small set of 84 galax-
ies visually classified as face-on discs, edge-on discs, and ellipticals, the clustering algorithm discovers precisely these classes and
produces excellent object-to-class assignments. The resulting grouping of the galaxies outperforms a principal components analysis
applied to the same data set. Applying the algorithm to a sample of 1520 SDSS galaxies, we find morphologically distinct classes
when the number of classes are 3 and 8.
Conclusions. Although interpreting clustering results is a challenging task, the algorithm we present produces reasonable morpho-
logical classes and object-to-class assignments without any prior assumptions.

Key words. surveys – methods: data analysis – methods: statistical

1. Introduction

Classification of objects is typically the first step towards sci-
entific understanding, since it brings order to a previously un-
organised set of observational data and provides standardised
terms to describe objects. These standardised terms are usu-
ally qualitative, but they can also be quantitative, which makes
them accessible for mathematical analysis. A famous example
of a successful classification from the field of astrophysics is
the Hertzsprung-Russell diagram, where stars exhibit distinct
groups in the colour-magnitude diagram that represent their dif-
ferent evolutionary stages. For the same reason, galaxy classi-
fication is an important conceptual step towards understanding
the physical properties, formation, and evolution scenarios of
galaxies.

With the advent of modern sky surveys containing millions
(e.g. SDSS, COSMOS, PanSTARRS, GAMA) or even billions
(e.g. LSST) of galaxies, the classification of these galaxies is be-
coming more and more problematic. The vast amount of data
excludes the hitherto common practice of visual classification
and clearly calls for an automated classification scheme that
is more efficient and more objective. Consequently, automated
classification has attracted much interest: a (not exhaustive) list
of previously employed classification algorithms contains, e.g.,
artificial neural networks (Storrie-Lombardi et al. 1992; Lahav
et al. 1995, 1996; Ball et al. 2004; Banerji et al. 2010), nearest

neighbours and decision trees (Humphreys et al. 2001), and sup-
port vector machines (e.g. Huertas-Company et al. 2008, 2009).
More recently, Gauci et al. (2010) have demonstrated that a state-
of-the-art classification algorithm called “Random Forest” out-
performs decision trees and reaches accuracies of up to 97% in
recovering visual classifications. Despite these efforts, the is-
sue of morphological classification of galaxies is by no means
a solved problem. A potential reason is that the morphological
classes are usually defined by the scientists (“supervised” learn-
ing) and not by the data (“unsupervised” learning). The pub-
lication history of unsupervised methods, e.g., self-organising
maps (Naim et al. 1997) and Gaussian mixture models (Kelly &
McKay 2004, 2005), is much shorter. Unsupervised methods are
very promising, since they discover the “optimal” classes auto-
matically, thereby extending objectivity also to the definition of
the classes themselves, beyond the object-to-class assignment. In
this work we present an unsupervised algorithm for probabilistic
classification that is competitive with the Gaussian mixture mod-
els. However, the intention of this work is not to come up with
“yet another morphological classification scheme”, but rather to
demonstrate an classification method to the standard practice in
astrophysics. Besides, we are unable to present a full solution to
the problem of morphological galaxy classification, since there
is still no accepted method for parametrising arbitrary galaxy
morphologies (cf. Andrae et al., in prep.). In addition, the lack of
convincing classification schemes is why many experts are very
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Table 1. Overview of different classification and clustering algorithms
with examples.

Type Classification Clustering
Hard nearest neighbour, K-means,

Fisher’s linear spectral clustering,
discriminant analysis, kernel PCA
decision trees, support

vector machines
Soft naïve Bayes, Gaussian mixture

linear/quadratic models
discriminant analysis,

neural networks

sceptical about the subject of classifying galaxy morphologies
as a whole. Because parametrisation of galaxy spectra is more
reliable, spectral classifications have become more accepted.

In Sect. 2, we first give an overview of modern automated
classification methods and work out a categorisation of these
methods. We describe our parametrisation of galaxy morpholo-
gies using shapelets (Réfrégier 2003) in Sect. 3. In Sect. 4 we
present the algorithm we are using, which has been introduced
before by Yu et al. (2005) in the field of pattern recognition.
We extensively investigate the reliability of this classification
algorithm in Sect. 5. Such a study was not done by Yu et al.
(2005). In Sect. 6 we present a worked example with a small
sample of 1520 bright galaxies from the SDSS. The objects in
this sample are selected such that no practical problems with
parametrisation arise, as we want to disentangle the problems of
classification and parametrisation as much as possible. The aim
of this worked example is not related to science with the result-
ing classes or data-to-class assignments, but to demonstrate that
such an algorithm indeed produces reasonable results. We con-
clude in Sect. 7.

2. Classification methods

2.1. Overview

In Table 1 we give an overview of different classification meth-
ods and some example algorithms, with the following two crite-
ria.

1. Is the data-to-class assignment probabilistic (soft) or not
(hard)?

2. Are the classes specified a priori (classification, supervised
learning) or discovered automatically (clustering, unsuper-
vised learning)?

Soft (probabilistic) algorithms are always model-based, whereas
hard algorithms are not necessarily. Soft algorithms can always
be turned into hard algorithms, but not vice versa. The list of
example algorithms given in Table 1 is not complete. Not all
algorithms fit into this categorisation, namely those that do not
directly assign classes to objects (e.g. self-organising maps).

The algorithm we are going to present is a soft algorithm;
i.e., the data-to-class assignment is probabilistic (cf. next sec-
tion). The reason is that in the case of galaxy morphologies,
it is obvious that the classes will not be clearly separable. We
rather expect the galaxies to be more or less homogeneously dis-
tributed in some parameter space, with the classes appearing as
local overdensities and exhibiting potentially strong overlap. As
we demonstrate in Sect. 5.2, hard algorithms break down in this
case, producing biased classification results. There are physical

reasons to expect overlapping classes. First, the random incli-
nation and orientation angles with respect to the line of sight
induce a continuous transition of apparent axis ratios, apparent
steepness of the radial light profiles and ratio of light coming
from bulge and disc components. Second, observations of galax-
ies show that there are indeed transitional objects between dif-
ferent morphological types. For instance, there are transitional
objects between early- and late-type galaxies in the “green val-
ley” of the colour bimodality (e.g. Strateva et al. 2001; Baldry
et al. 2004), which is also reproduced in simulations (Croton
et al. 2006). We thus have to draw the conclusion that hard algo-
rithms are generically inappropriate for analysing galaxy mor-
phologies. This conclusion is backed up by practical experience,
since even specialists usually do not agree on hard visual classi-
fications (e.g. Lahav et al. 1996). In fact, the outcome of multi-
person visual classifications becomes a probability distribution
automatically (e.g. Bamford et al. 2009).

Furthermore, our algorithm is a clustering algorithm; i.e., we
do not specify the morphological classes a priori, but let the al-
gorithm discover them. This approach is called “unsupervised
learning” and it is the method of choice if we are uncertain about
the type of objects we will find in a given data sample. On the
other hand, if we were certain about the classes, e.g., for star-
galaxy classification, we should not use unsupervised methods.
In the context of clustering analysis, classes are referred to as
clusters, and we adopt this terminology in this article.

2.2. Probabilistic data-to-class assignment

Let O denote an object and x its parametrisation. Furthermore,
let ck denote a single class out of k = 1, . . . ,K possible classes,
then prob(ck|x) denotes the probability of class ck given the ob-
ject O represented by x. This conditional probability prob(ck|x)
is called the class posterior and is computed using Bayes’ theo-
rem

prob (ck |x) =
prob (ck) prob (x|ck)

prob (x)
· (1)

The marginal probability prob(ck) is called class prior and
prob(x|ck) is called class likelihood. The denominator prob(x)
acts as a normalisation factor. The class prior and likelihood are
obtained from a generative model (Sect. 4.3). Prior and posterior
satisfy the following obvious normalisation constraints

K∑

k=1

prob (ck) = 1 and
K∑

k=1

prob (ck|x) = 1, (2)

which ensure that each object is definitely assigned to some
class. In the case of hard assignments, both posterior prob(ck|x)
and likelihood prob(x|ck) are replaced by Kronecker symbols.

3. Parametrising galaxy morphologies
with shapelets

3.1. Basis functions and expansion

We parametrise galaxy morphologies in terms of shapelets
(Réfrégier 2003). Shapelets are a scaled version of two-
dimensional Gauss-Hermite polynomials that form a set of
complete basis functions that are orthonormal on the interval
[−∞,∞]. A given galaxy image I(x) can be decomposed into
a linear superposition of basis functions Bm,n(x/β); i.e.,

I (x) =
∞∑

m,n=0

cm,nBm,n (x/β) , (3)

Page 2 of 19



R. Andrae et al.: Soft clustering analysis of galaxy morphologies

where the cm,n denote the expansion coefficients that contain the
morphological information and β > 0 denotes a scaling radius.
In practice, the number of basis functions we can use is limited
by pixel noise, such that the summation in Eq. (3) stops at a cer-
tain maximum order Nmax < ∞, which depends on the object’s
signal-to-noise ratio and resolution. This means Eq. (3) is an ap-
proximation only,

I (x) ≈
Nmax∑

m,n=0

cm,nBm,n (x/β) . (4)

We use the C++ algorithm by Melchior et al. (2007) to esti-
mate Nmax, the scale radius and the linear coefficients, which was
shown to be faster and more accurate than the IDL algorithm by
Massey & Réfrégier (2005). Concerning computational feasibil-
ity, the shapelet decomposition of a typical SDSS galaxy takes a
few seconds on a standard computer and is therefore feasible for
very large data samples.

3.2. Problems with shapelet modelling

It was shown by Melchior et al. (2010) that the limitation of the
number of basis functions in Eq. (4) can lead to severe mod-
elling failures and misestimations of galaxy shapes in the case
of objects with low signal-to-noise ratios. They identified two
origins of these biases. First, the Gaussian profile of shapelets
does not match the true profiles of galaxies, which are typically
much steeper. Second, the shapelet basis functions are intrinsi-
cally spherical; i.e., they have problems in modelling highly ec-
centric objects. However, in this demonstration we only consider
galaxies with high signal-to-noise ratios, where we can use many
basis functions such that the impact of these biases is negligible.
We demonstrate this in Fig. 1, where we show the shapelet re-
constructions of a face-on disc, an edge-on disc, and an elliptical
galaxy drawn from the sample presented in Sect. 6.1. The re-
construction of the face-on disc galaxy (top row) is excellent,
leaving essentially uncorrelated noise in the residuals. However,
the reconstructions of the edge-on disc galaxy (centre row) and
the elliptical galaxy (bottom row) exhibit ring-like artefacts that
originate in the steep light profiles of the elliptical and the edge-
on disc along the minor axis. Such modelling failures appear
systematically and do not introduce additional scatter into the re-
sults; i.e., similar galaxies are affected in a similar way. However,
since shapelet models do not capture steep and strongly ellipti-
cal galaxies very well, we are aware that our algorithm has less
dicriminatory power for galaxies of this kind.

3.3. Distances in shapelet space

The coefficients form a vector space that we denote as vectors x.
In a first-order approximation, these coefficient vectors are inde-
pendent of the size of the object, which was encoded by the scale
radius β. Moreover, we can also make x invariant against the im-
age flux, since Eq. (3) implies that for a constant scalar α ! 0
the transformation x→ αx changes the image flux by this same
factor of α. Therefore, if we demand x · x = 1, then differing im-
age fluxes will have no impact on the shapelet coefficients. This
implies that morphologies are a direction in shapelet coefficient
space and the corresponding coefficient vectors lie on the surface
of a hypersphere with unit radius. We can thus measure distances
between morphologies on this surface via the angle spanned by
their (normalised) coefficient vectors,

d (x1, x2) = ! (x1, x2) = arccos (x1 · x2) . (5)

Employing the polar representation of shapelets (Massey &
Réfrégier 2005), we can apply rotations and parity flips to
shapelet models. We can estimate the object’s orientation angle
from the second moments of its light distribution (e.g. Melchior
et al. 2007) and then use this estimate to align all models. This
ensures invariance of the coefficients against random orienta-
tions. Additionally, we can break the degeneracy between left-
and right-handed morphologies by applying parity flips such that
the distance of two objects is minimised. These transformations
in model space do not suffer from pixellation errors and increase
the local density of similar objects in shapelet space.

4. Soft clustering algorithm

We now present the soft clustering algorithm of Yu et al. (2005).
Before we explain the details, we want to give a brief outline
of the general method. The basic idea is to assign similarities to
pairs of objects, so we first explain how to measure similarities of
galaxy morphologies and what a similarity matrix is. These pair-
wise similarities are then interpreted by a probabilistic model,
which provides our generative model. We also present the algo-
rithm that fits the model to the similarity matrix.

4.1. Estimating similarities

Instead of analysing the data in shapelet space, we compute a
similarity matrix by assigning similarities to any two data points.
This approach is an alternative to working directly in the sparsely
populated shapelet space or employing a method for dimension-
ality reduction. If we have N data points xn, then this similarity
matrix will be an N×N symmetric matrix. It is this similarity ma-
trix to which we are going to apply the soft clustering analysis.

Based on the pairwise distances in shapelet coefficient space
(Eq. (5)), we estimate pairwise similarities up to a constant fac-
tor as

Wmn ∝ 1 − (d (xm, xn) /dmax)α

s
· (6)

Here dmax denotes the maximum distance between any two ob-
jects in the given data sample, while the exponent α > 0 and
s > 1 are free parameters that tune the similarity measure. We
explain how to choose α and s in Sect. 5.3. This definition en-
sures that 0 < Wmn ≤ 1 and that the maximum similarities are
self-similarities for which d(xm, xm) = 0. This similarity mea-
sure is invariant under changes of size, flux, orientation, and par-
ity of the galaxy morphology.

4.2. Similarity matrices and weighted undirected graphs

Square symmetric similarity matrices have a very intuitive inter-
pretation, because they represent a weighted undirected graph.
Figure 2 shows a sketch of such a graph. The data points xn
are represented symbolically as nodes xn. The positions of these
nodes are usually arbitrary, and it is neither necessary nor helpful
to arrange them according to the true locations of the data points
in parameter space. Any two data nodes xm and xn are connected
by an edge, which is assigned a weight Wmn. Obviously, all the
weights Wmn form an N ×N matrix W, and if this matrix is sym-
metric; i.e., Wmn = Wnm, the edges will have no preferred di-
rection. In this case, the weighted graph is undirected. In graph
theory the matrix of weights W is called adjacency matrix, and
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Original image. Shapelet model. Residuals.

Fig. 1. Examples of shapelet models of three galaxies from SDSS (g band). Shown are the original images (left column), the shapelet models
(centre column), the residuals (right column) of a face-on disc galaxy (top row), an edge-on disc galaxy (centre row), and an elliptical galaxy
(bottom row). Note the different plot ranges of the residual maps. The shapelet decomposition used Nmax = 16; i.e., 153 basis functions.

we can interpret the similarity matrix as adjacency matrix of a
weighted undirected graph.

After inspecting Fig. 2, we now introduce some important
concepts. First, there is also an edge connecting x1 with itself.
This edge is weighted by the “self-similarity” W11. These self-
similarities Wnn are usually non-zero and have to be taken into

account to satisfy normalisation constraints (cf. Eq. (8)). Second,
we define the degree dn of a data node xn as the sum of weights
of all edges connected with xn; i.e.,

dn =

N∑

m=1

Wmn. (7)
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Fig. 2. Sketch of a weighted undirected graph. The data nodes xn are
connected by edges. For the sake of visibility, only edges connecting x1
are shown. The edges are undirected and weighted by the similarity of
the two connected nodes.

Fig. 3. Sketch of a bipartite graph. The bipartite graph contains two sets
of nodes, X = {x1, . . . , xN} and C = {c1, . . . , cK }. Edges connect nodes
from different sets only and are weighted by an adjacency matrix B. Not
all edges are shown.

We can interpret the degree dn to measure the connectivity of
data node xn in the graph. For instance, we can detect outlier
objects by their low degree, since they are very dissimilar to all
other objects. Third, we can rescale all similarities by a constant
scalar factor C > 0 without changing the pairwise relations. As
a result, we acquire the normalisation constraint

N∑

m,n=1

Wmn =

N∑

n=1

dn = 1. (8)

This constraint ensures the normalisation of the probabilistic
model we are going to set up for our soft clustering analysis of
the similarity matrix.

4.3. Bipartite-graph model

We need a probabilistic model of the similarity matrix W that
can be interpreted in terms of a soft clustering analysis. Such a
model was proposed by Yu et al. (2005). As similarity matrices
are closely related to graphs, this model is motivated from graph
theory, too. The basic idea of this model is that the similarity
of two data points xm and xn is induced by both objects being
members of the same clusters. This is the basic hypothesis of any
classification approach: objects from the same class are more
alike than objects from different classes.

In detail, we model a weighted undirected graph (Fig. 2) and
its similarity matrix by a bipartite graph (Fig. 3). A bipartite
graph is a graph whose nodes can be divided into two disjoint

sets X = {x1, . . . , xN } of data nodes and C = {c1, . . . , cK} of clus-
ter nodes, such that the edges in the graph only connect nodes
from different sets. Again, the edges are weighted and undi-
rected, where the weights Bnk form an N × K rectangular ma-
trix B, the bipartite-graph adjacency matrix. The bipartite-graph
model for the similarity matrix then reads

Ŵmn =

K∑

k=1

BnkBmk

λk
, (9)

with the cluster priors λk =
∑N

n=1 Bnk. A detailed derivation is
given in the following section. This model induces the pairwise
similarities via two-hop transitions X → C → X (cf. Yu et al.
2005). The numerator accounts for the strength of the connec-
tions of both data nodes to a certain cluster. The impact of the de-
nominator is that the common membership to a cluster of small
degree is considered more decisive. Obviously, the model de-
fined by Eq. (9) is symmetric, as is the similarity matrix itself.
The normalisation constraint on W as given by Eq. (8) translates
via the bipartite-graph model to

K∑

k=1

N∑

n=1

Bnk =

K∑

k=1

λk = 1. (10)

These constraints need to be respected by the fit algorithm.
Having fitted the bipartite-graph model to the given data simi-
larity matrix, we compute the cluster posterior probabilities

prob (ck |xn) =
prob (xn, ck)

prob (xn)
=

Bnk∑K
l=1 Bnl

, (11)

which are the desired soft data-to-cluster assignments.
Obviously, K cluster posteriors are assigned to each data
node xn, and the normalisation constraint

∑K
k=1 prob(ck |xn) = 1

is satisfied.

4.4. Mathematical derivation

Here we give a derivation of the bipartite-graph model of Eq. (9),
which is more detailed than in Yu et al. (2005). The ansatz is to
identify the similarity Ŵmn with the joint probability

Ŵmn = prob (xm, xn) . (12)

This interprets Ŵmn as the probability of finding xm and xn
in the same cluster. Equation (8) ensures the normalisation∑N

m,n=1 prob(xm, xn) = 1. As we do not know which particular
cluster induces the similarity, we have to marginalise over all
cluster nodes in Fig. 3,

prob (xm, xn) =
K∑

k=1

prob (xm, xn, ck) . (13)

With this marginalisation we have switched from the weighted
undirected graph to our bipartite-graph model. Applying Bayes’
theorem yields

prob (xm, xn) =
K∑

k=1

prob (xn|ck) prob (xm, ck) , (14)

where we have used

prob (xn|xm, ck) = prob (xn|ck) , (15)
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since xm and xn are not directly connected in the bipartite graph;
i.e., they are statistically independent. This is the only assump-
tion in this derivation, and it implies that all statistical depen-
dence is induced by the clusters. Using Bayes’ theorem once
more yields

prob (xm, xn) =
K∑

k=1

prob (xn, ck) prob (xm, ck)
prob (ck)

· (16)

We identify the bipartite-graph adjacency matrix in analogy to
Eq. (12),

Bnk = prob (xn, ck) , (17)

with its marginalisation

λk = prob (ck) =
N∑

n=1

prob (xn, ck) =
N∑

n=1

Bnk. (18)

The marginalised probabilities λk are the cluster priors of the
cluster nodes ck in the bipartite graph. Moreover, the λk are the
degrees of the nodes.

4.5. Fitting the similarity matrix

To fit the bipartite-graph model defined by Eq. (9) to a given
similarity matrix, we perform some simplifications. First, we can
rewrite Eq. (9) using matrix notation,

Ŵ = B · Λ−1 · BT, (19)

where B is the N × K bipartite-graph adjacency matrix and Λ =
diag(λ1, . . . , λk) is the K × K diagonal matrix of cluster degrees.
This notation enables us to employ fast and efficient algorithms
from linear algebra. We change variables by

B = H · Λ, (20)

where H is an N × K matrix. The elements of H can be inter-
preted as the cluster likelihoods, since Hnk =

Bnk
λk
=

prob(xn,ck)
prob(ck) =

prob(xn|ck). Using these new variables H and Λ, the model Ŵ of
the data similarity matrix W is given by

Ŵ = H · Λ · HT, (21)

where we have eliminated the matrix inversion and reduced the
nonlinearity to some extent. The normalisation constraints of
Eq. (10) translate to H as

N∑

n=1

Hnk =

N∑

n=1

prob (xn|ck) = 1 ∀ k = 1, . . . ,K. (22)

The normalisation constraints on H and Λ are now decoupled,
and we can treat both matrices as independent of each other. As
H is an N × K matrix and Λ a K × K diagonal matrix, we have
K(N + 1) model parameters. In comparison to this number, we
do have 1

2 N(N + 1) independent elements in the data similar-
ity matrix due to its symmetry; hence, a reasonable fit situation
requires 1

2 N * K in order to constrain all model parameters.
The data similarity matrix W is fitted by maximising the log-

arithmic likelihood function logL of the bipartite-graph model.
Yu et al. (2005) give a derivation of this function based on the
theory of random walks on graphs. Their result is

logL (Θ|W) =
N∑

m,n=1

Wmn log prob (xm, xn|Θ) , (23)

where Θ = {H11, . . . ,HNK , λ1, . . . , λK} denotes the set of K(N +
1) model parameters and prob(xm, xn|Θ) =

∑K
k=1 HmkλkHnk =

Ŵmn is the model. If we remember that Wmn = prob(xm, xn),
then we see that logL is the cross entropy of the true proba-
bility distribution Wmn = prob(xm, xn) and the modelled distri-
bution Ŵmn = prob(xm, xn|Θ). Consequently, maximising logL
maximises the information our model contains about the data
similarity matrix.

Directly maximising logL is too hard, since the fit parame-
ters are subject to the constraints given by Eqs. (10) and (22). We
use an alternative approach that makes use of the expectation-
maximisation (EM) algorithm, which is an iterative fit routine.
Given an initial guess on the model parameters, the EM algo-
rithm provides a set of algebraic update equations to compute an
improved estimate of the optimal parameters that automatically
respects the normalisation. These update equations are (Bilmes
1997; Yu et al. 2005)

λnew
k = λk

N∑

m,n=1

Wmn(
H · Λ · HT)

mn
HmkHnk, (24)

Hnew
nk ∝ Hnkλk

N∑

m=1

Wmn(
H · Λ · HT)

mn
Hmk. (25)

The Hnew
nk have to be normalised by hand, whereas the λnew

k
have already been normalised. Each iteration step updates all the
model parameters, which has time complexity O(K · N2) for K
clusters and N data nodes. We initialise all the cluster degrees to
λ0

k =
1
K , whereby we trivially satisfy the normalisation condition

and simultaneously ensure that no cluster is initialised as virtu-
ally absent. The H0

nk are initialised randomly and normalised “by
hand”.

Now, we want to briefly discuss the convergence properties
of the EM algorithm. It has been shown (e.g., Redner & Walker
1984) that the EM algorithm is guaranteed to converge to a local
maximum of logL under mild conditions. Indeed, it was shown
that the EM algorithm is monotonically converging; i.e., each it-
eration step is guaranteed to increase logL. Therefore, after each
iteration step, we check how much logL was increased com-
pared to the previous step. If logL changed by less than a factor
of 10−9, we consider the EM algorithm to have converged. This
convergence criterion was chosen based on systematic tests like
those discussed in Sect. 5. Finally, the fit results are not unique,
since the ordering of the clusters is purely random.

4.6. Computational feasibility

The large number of objects contained in existing and future
galaxy surveys is the main reason why automated algorithms
will replace visual classifications. Computational feasibility is
therefore an important aspect for every algorithm. Given a cer-
tain number N of galaxies that have to be classified, classifica-
tion algorithms have typical time complexities of O(N), whereas
clustering algorithms never scale better thanO(N2). This renders
clustering analysis on extremely large data samples infeasible.
We now briefly outline a combined strategy that benefits from
the class discovery of an unsupervised approach and from the
superior time complexity of a classifier.

The generic setup is that we have a large data set that we
want to classify, but we do not know what kind of classes there
are in the data. In this case, we can select a subset of T objects
from the complete data set, serving as a training sample. We run
a soft clustering analysis on this training sample to discover the
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classes. Here, we implicitly assume that the training sample is
representative of the complete data set, thus it has to be suffi-
ciently large. In this case, we can use the soft clustering results
to set up a soft classifier. Let xn denote a new data point from the
complete set that we want to classify into the scheme defined by
the clustering algorithm. We define the posterior probability of
cluster ck given the new object xn to be

prob (ck |xn) =
∑

i∈IWin prob (ck |xi)∑
i∈IWin

, (26)

where Win denotes the similarity (as estimated by Eq. (6)) of
the new object xn to the object xi from the training sample,
the prob(ck|xi) are the posteriors resulting from the clustering
analysis on the training sample, and I denotes the subset of the
training sample containing the k training objects most similar to
the new object. This assumes that the class assignment of the
new object is only determined by those objects from the training
sample that are very similar. Consequently, Eq. (26) defines a
soft k-nearest-neighbour classifier. The optimal number of near-
est neighbours is estimated by training the classifier on the data-
to-cluster assignments of the clustering on the training sample
itself. Obviously, the class posteriors defined by Eq. (26) are nor-
malised, since the cluster posteriors satisfy

∑K
k=1 prob(ck |xn) = 1.

4.7. Estimating the optimal number of clusters

In this section we demonstrate how to estimate the optimal num-
ber of clusters for a given data set, which is a crucial part of any
clustering analysis. It is essential to estimate the optimal number
of clusters with due caution. This is a problem of assessing non-
linear models, and there are no theoretically justified methods,
only heuristic approaches. Common heuristics are the Bayesian
information criterion

BIC = −2 logL + p log N (27)

and Akaike’s information criterion

AIC = −2 logL + 2p, (28)

where p and N denote the number of model parameters and the
number of data points, respectively. As we have seen in Sect. 4.5,
the bipartite-graph model involves K(N + 1) model parameters.
Consequently, BIC and AIC are not applicable, since logL is not
able to compensate for the strong impact of the penalty terms.
This inability of logL is likely to originate in the sparse data
population in the high-dimensional parameter space. Another
tool of model assessment is cross-validation, but this is com-
putationally infeasible in this case.

We now explain how to compare bipartite-graph models of
different complexities heuristically; i.e., how to estimate the op-
timal number of clusters. This heuristic employs the sum of
squared residuals

SSR(K) =
N∑

m=1

m∑

n=1




Wmn −
∑K

k=1 HmkλkHnk

Wmn




2

· (29)

The definition puts equal emphasis on all elements. If we left
out the denominator in Eq. (29), the SSR would emphasise devi-
ations of elements with high values, whereas elements with low
values would be neglected. However, both high and low values
of pairwise similarities are decisive. We estimate the optimal K
via the position of a kink in the function SSR(K) (cf. Fig. 4).
Such a kink arises if adding another cluster does not lead to a
significant improvement in the similarity-matrix reconstruction.

Fig. 4. Estimating the optimal number of clusters for the data sample
shown in Fig. 6. a) SSR(K) as a function of the number K of clusters.
b) Mean angular changes 〈∆(K)〉 averaged over ten fits.

We demonstrate this procedure in Fig. 4 by using the toy
example of Figs. 6 and 7, which is composed of six nicely sep-
arable clusters. We fit bipartite-graph models to the similarity
matrix shown in Fig. 7, with K ranging from 1 to 15. The result-
ing SSR values are shown in panel (a) of Fig. 4. In fact, SSR(K)
exhibits two prominent kinks at K = 3 and K = 6, rather than a
single one. Obviously, for K = 3, the clustering algorithm groups
the four nearby clusters together, thus resulting in three clusters.
For K = 6, it is able to resolve this group of “subclusters”.

We can construct a more quantitative measure by computing
the angular change ∆(K) of log SSR(K) at each K,

∆(K) = arctan
[
log SSR(K − 1) − log SSR(K)

]

− arctan
[
log SSR(K) − log SSR(K + 1)

]
. (30)

As K is an integer, log SSR(K) is a polygonal chain and thus an
angular change is well defined. A large positive angular change
then indicates the presence of a kink in SSR(K)1. However, we
can even do better by fitting the similarity matrix several times
for each K and averaging the angular changes. The results of
the fits differ slightly, since the model parameters are randomly
initialised each time. These mean angular changes are shown
in panel (b) of Fig. 4, averaged over 20 fits for each K. First,
for large K the mean angular changes are consistent with zero;
i.e., in this domain increasing K decreases SSR(K) but does not
improve the fit systematically. Second, for K = 3 and K = 6,
the mean angular changes deviate significantly from zero. For
K = 2 and K = 4, the mean angular changes are negative, which
corresponds to “opposite” kinks in the SSR spectrum and stems
from K = 3 being a very good grouping of the data.

For large K these detections may be less definite due to the
flattening of SSR(K). Therefore, we may systematically under-
estimate the optimal number of clusters. Moreover, this toy ex-
ample also demonstrates that there may be more than a single

1 It is not possible to compute the angular change for K = 1, but this
case is not a reasonable grouping anyway under the assumption that
there are objects of different types in the given data sample.
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advantageous grouping of the data and there may be disadvan-
tageous groupings. If there are multiple detections of advanta-
geous groupings, it may be difficult to judge which grouping is
the best. In the worst case, we may even not find any signal of
an advantageous grouping, which would either imply that our
given sample is composed of objects of the same type or that the
data does not contain enough information about the grouping.
Unfortunately, this scheme of estimating the optimal number
of clusters is extremely inefficient from a computational point
of view. This is a severe disadvantage for very large data sets.
Moreover, though this heuristic is working well, the significance
of the mean angular changes is likely to be strongly influenced
by the variance caused by the algorithm’s initialisation.

4.8. Comparison with previous work

As the work of Kelly & McKay (2004, 2005) is very close to our
own work, we want to discuss it in some detail and work out the
differences. The authors applied a soft clustering analysis to the
first data release of SDSS. In Kelly & McKay (2004), they de-
composed r-band images of 3037 galaxies into shapelets, using
the IDL shapelet code by Massey & Réfrégier (2005). In Kelly &
McKay (2005), they extended this scheme to all five photomet-
ric bands u, g, r, i, z of SDSS, thereby also taking colour informa-
tion into account. Afterwards, they used a principal component
analysis (PCA) to reduce the dimensionality of their parameter
space. In Kelly & McKay (2004), the reduction was from 91 to 9
dimensions, and in Kelly & McKay (2005) from 455 to 2 dimen-
sions. Then they fitted a mixture-of-Gaussians model (Bilmes
1997) to the compressed data, where each Gaussian component
represents a cluster. They were able to show that the result-
ing clusters exhibited a reasonable correlation to the traditional
Hubble classes.

Reducing the parameter space with PCA and also using
a mixture-of-Gaussians model are both problematic from our
point of view. First, PCA relies on the assumption that those di-
rections in parameter space that carry the desired information
also carry a large fraction of the total sample variance. This
is neither guaranteed nor can it be tested in practice. Second,
galaxy morphologies are not expected to be normally distributed.
Therefore, using a mixture-of-Gaussians model is likely to mis-
estimate the data distribution. Nonetheless, the work by Kelly
& McKay (2004, 2005) was a landmark, both concerning their
use of a probabilistic algorithm and, conceptually, by applying a
clustering analysis to the first data release of SDSS.

In contrast to Kelly & McKay (2004, 2005), we do not re-
duce the dimensionality of the parameter space and then apply
a clustering algorithm to the reduced data. We also do not try to
model the data distribution in the parameter space, which would
be virtually impossible owing to its high dimensionality (curse
of dimensionality, cf. Bellman 1961). Rather, we use a similarity
matrix, which has two major advantages. First, we do not rely
on any compression technique such as PCA. Second, we can-
not make any mistakes by choosing a potentially wrong model
for the data distribution, since we model the similarity matrix.
There are two sources of potential errors in our method:

1. estimation of pairwise similarities (Eq. (6)). This is ham-
pered by our lack of knowledge about the metric in the mor-
phological space, and it is in some sense similar to mismod-
elling;

2. modelling the similarity matrix by a bipartite-graph model.
As the only assumption in the derivation of the bipartite-
graph model is Eq. (15), this happens if and only if a

significant part of the pairwise similarity is not induced by
the clusters, but rather by observational effects among oth-
ers. However, any other classification method (automated or
not) will have problems in this situation, too.

5. Systematic tests

In this section we conduct systematic tests using artificial data
samples that are specifically designed to investigate the impact
of certain effects. First, we demonstrate that hard classification
schemes cause problems with subsequent parameter estimation.
Furthermore, we investigate the impact of non-optimal similarity
measures, two-cluster separation, noise, and cluster cardinalities
on the clustering results.

5.1. Overview

We start by describing the artificial data sets that we are go-
ing to use. Furthermore, we describe the diagnostics by which
we assess the performance of the clustering algorithm. The data
sets are always composed of two clusters, where the number
of example objects drawn from each cluster may be different.
The clusters are always designed as p-variate Gaussian distribu-
tions; i.e.,

prob (x|µ,Σ) =
exp

[
− 1

2 (x − µ)T · Σ−1 · (x − µ)
]

√
(2π)p detΣ

, (31)

where µ andΣ denote the mean vector and the covariance matrix,
respectively.

By knowing the true analytic form of the underlying proba-
bility distributions, we are able to assess the probabilistic data-
to-cluster assignments proposed by the clustering algorithm. For
two clusters, A and B, the true data-to-cluster assignment of
some data point x to cluster k = A, B is given by the cluster
posterior

prob (k|x) =
prob (x|µk,Σk)

prob (x|µA,ΣA) + prob (x|µB,ΣB)
· (32)

The numerator prob(x|µk,Σk) is the cluster likelihood. The clus-
ter priors prob(A) = prob(B) = 1

2 are flat and cancel out. For a
given data set of N objects, these true cluster posteriors are com-
pared to the clustering results using the expectation values of the
zero-one loss function

〈L01〉 =
1
N

N∑

n=1




0 ⇔ probfit (Cn|xn)
> probfit (¬Cn|xn)

1 else
(33)

and of the squared-error loss function

〈LSE〉 =
1
N

N∑

n=1

(
probfit (Cn|xn) − probtrue (Cn|xn)

)2 , (34)

where Cn denotes the correct cluster label of object xn and ¬Cn
the false label. The zero-one loss function is the misclassifica-
tion rate, whereas the squared-error loss function is sensitive to
misestimations of the cluster posteriors that do not lead to mis-
classifications. As the two clusters are usually well separated in
most of the following tests, the true maximum cluster posteriors
are close to 100%. Therefore, misestimation means underestima-
tion of the maximum posteriors, which is quantified by

√〈LSE〉.
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Fig. 5. Breakdown of hard classifications in case of overlapping clus-
ters. Deviation µ̂A − µA of estimated and true means vs. two-cluster
separation ∆x for class A for hard estimator (red line), soft estimator
(blue line), and predicted bias of hard estimator for ∆x → 0 (dashed
line). From 1000 realisations of data samples we estimated errorbars,
which are shown but too small to be visible.

5.2. Impact of hard cuts on parameter estimation

In this first test, we want to demonstrate that hard cuts that are
automatically introduced when using hard classification, or clus-
tering algorithms can lead to systematic misestimations of pa-
rameters; i.e., biases. This is a general comment in support of
our claim that hard data-to-class assignments are generically in-
appropriate for overlapping classes. We are not concerned yet
with our soft clustering algorithm. We use two one-dimensional
Gaussians with means µA and µB, variable two-cluster separa-
tion ∆x = µA − µB, and constant variance σ2 = 1. We then draw
N = 10 000 objects from each Gaussian cluster. We estimate the
means µ̂k of the two Gaussians from the resulting data sample
and compare with the true means µk. The results are averaged
over 1000 realisations of data samples.

Figure 5 shows the deviations of the estimated from the true
means when using a hard cut at x = 0 (red line) and a weighted
mean (blue line). A hard cut at x = 0 that assigns all data points
with x < 0 to class A and those with x > 0 to class B is the most
reasonable hard classification in this simple example. Once the
complete sample is divided into two subsamples for classes A
and B, we estimate the usual arithmetic mean

µ̂hard
k =

1
Nk

Nk∑

n=1

xk,n. (35)

As Fig. 5 shows, this estimator is strongly biased when the clus-
ters are overlapping (∆x → 0). In the limit of ∆x = 0, we can
predict this bias analytically from the expectation value

〈x〉A/B = ∓2
∫ ∞

0
dx x e−x2/2 =

∓2√
2π
≈ ∓0.7979, (36)

where the integration is only over one half of the parameter space
and the factor of 2 arises from both Gaussians contributing the
same for ∆x = 0. This bias is shown in Fig. 5, where for ∆x = 0

Fig. 6. Artificial data sample with six clusters (top) and the matrix of
pairwise Euclidean distances (bottom). Each cluster has an underlying
bivariate Gaussian distribution with covariance matrix Σ = diag(1, 1).
We sampled 50 data points from each cluster.

also µA/B = ∓∆x/2 = 0. If we employ the true posteriors defined
by Eq. (32) as weights and use

µ̂soft
k =

∑N
n=1 prob (k|xn) xn
∑N

n=1 prob (k|xn)
, (37)

then we get an unbiased estimate despite the overlap, as is evi-
dent from Fig. 5. This comparison demonstrates the breakdown
of hard algorithms for overlapping clusters.

5.3. Impact of non-optimal similarity measures

We now explain how to optimise the similarity measure defined
in Eq. (6) and what “optimal” means. Given the N×N symmetric
matrix of pairwise distances d(xm, xn), we can tune the similarity
measure by adjusting the two parameters α and s. Tuning the
similarity measure has to be done with care, since there are two
undesired cases: first, for α→ ∞, the resulting similarity matrix
approaches a constant; i.e., Wmn =

1
N2 for all elements – self-

similarities and off-diagonal elements – since d(xm, xn) ≤ dmax.
This case prefers K = 1 clusters, independent of any grouping
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Fig. 7. Estimating the optimal similarity measure for the example data
of Fig. 6. Top panel: modified Manhattan distance C (Eq. (39)) for s =
1.01 (cyan line), s = 1.03 (blue line), and s = 1.1 (red line). For α →
0 the matrix becomes a step matrix, which is why the constant levels
depend on the scale parameter. Bottom panel: the resulting similarity
matrix.

in the data. Second, for α→ 0, the similarity matrix approaches
the step matrix defined by

S mn ∝
{

1 ⇔ m = n
1 − 1

s ⇔ m ! n, (38)

which is normalised such that
∑N

m,n=1 S mn = 1. The self-
similarities differ from the off-diagonal elements due to
d(xm, xm) = 0. This case prefers K = N clusters. The opti-
mal similarity measure should be as different as possible from
these two worst cases. We choose α and s such that the modified
Manhattan distance to the constant matrix

C =
N∑

m=1

m∑

n=1

∣∣∣∣∣Wmn −
1

N2

∣∣∣∣∣ (39)

is large. Figure 7 demonstrates how to tune the similarity mea-
sure using the artificial data set from the toy example of Fig. 6.
The basis is the N × N symmetric distance matrix shown in
the bottom panel of Fig. 6. For three different values of s, the
top panel shows C as functions of α. Obviously, C(α) exhibits
a maximum and can be used to choose α. For s = 1.1 the

maximum is lowest and so is the distance to a constant matrix.
s = 1.01 exhibits the maximum deviation from a constant ma-
trix, but this choice of s downweights off-diagonal terms in W
according to Eq. (38). Thus, we also prefer that s is not too close
to 1 and s = 1.03 is the compromise of the three scale parame-
ters shown in Fig. 7. The choice of s is not an optimisation but
a heuristic. Although the artificial data set of Fig. 6 and its dis-
tance matrix are very special, we experienced that C(α) as shown
in Fig. 7 is representative of the general case.

The resulting similarity matrix is shown in the right panel of
Fig. 7 and exhibits a block-like structure, since we have ordered
the data points in the set. This is just for the sake of visualisation
and does not affect the clustering results. We clearly recognise
six blocks along the diagonal, because the within-cluster simi-
larities are always greater than the between-cluster similarities.
Furthermore, we recognise a large block of four clusters in the
bottom right corner that are quite similar to each other, whereas
the remaining two clusters are more or less equally dissimilar
to all other clusters. Consequently, the similarity matrix indeed
represents all the features of the data set shown in Fig. 6.

We now demonstrate first that the optimal similarity measure
indeed captures the crucial information on the data and second
what happens if we do not use the optimal similarity measure.
We used an artificial data set composed of two one-dimensional
Gaussian clusters, both with unit variance and two-cluster sep-
aration of ∆x = 3. We sampled 100 example objects from each
cluster and computed the matrix of pairwise distances using the
Euclidean distance measure. This data set and its distance matrix
remain unchanged. For a constant parameter s = 2.25, we var-
ied the exponent α in the similarity measure defined by Eq. (6).
For each value of α, we fit bipartite-graph models with K = 1,
2 and 3 to the resulting similarity matrix, averaging the results
over 15 fits each time.

Results of this test are shown in Fig. 8. Panel (a) shows the
modified Manhattan distance C to a constant matrix. This curve
is very similar to Fig. 7. There is a prominent peak at α ≈ 0.6,
indicating the optimal similarity measure. If the similarity mea-
sure is very nonoptimal, then the similarity matrix will be close
to a constant or step matrix; i.e., it constrains the bipartite-graph
model poorly. In this case, we expect to observe overfitting ef-
fects; i.e., low residuals of the reconstruction and results with
high variance. The computation times are longer, too, since the
nonlinear model parameters can exhibit degeneracies thereby
slowing down the convergence. Counter-intuitively, we seek a
high value of SSR in this test, since a similarity matrix that cap-
tures the information content of the data is harder to fit. Indeed,
the SSR values shown in panel (c) of Fig. 8 are significantly
lower for nonoptimal α’s, and they peak near the optimal α. As
expected, the mean computation times shown in panel (b) are
minimal for the optimal similarity measure. Panel (d) shows how
the evidence for two clusters evolves2. Near optimal α, the ev-
idence of two clusters also shows a local maximum. The mis-
classification rate shown in panel (e) is insensitive to α over a
broad range, but approaches a rate of 50% rather abruptly for
extremely non-optimal similarity measures. The squared-error
loss shown in panel (f) is more sensitive to non-optimalities. It
exhibits a minimum for the optimal α and grows monotonically
for non-optimal values.

The most important conclusion to draw from this test is
that our method of choosing α and s for the similarity mea-
sure defined in Sect. 4.1 is indeed “optimal”, in the sense that it

2 This is the reason why we need to fit bipartite-graph models using
K = 1, 2, and 3 to compute the angular change of SSR(K) at K = 2.
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Fig. 8. Impact of non-optimal similarity measures on clustering results. a) Modified Manhattan distance C (Eq. (39)). b) Mean computation time
per fit without errorbars. c) Mean SSR(K) values of resulting fits for K = 2. d) Mean angular change of SSR(K) at K = 2. e) Mean misclassification
rate (solid line) and 50% misclassification rate (dashed line). f) Mean squared-error loss of maximum cluster posteriors.

minimises both the misclassification rate and the squared-error
loss. Additionally, we see that using the optimal similarity mea-
sure can also reduce computation times by orders of magnitude.

5.4. Impact of two-cluster overlap

As we have to expect overlapping clusters in the context of
galaxy morphologies, we now investigate the impact of the two-
cluster overlap on the clustering results. The data sets used are
always composed of 100 example objects drawn from two one-
dimensional Gaussian clusters, both with unit variance. The two-
cluster separation ∆x is varied from 1 to 1000. For each data set,
we compute the matrix of pairwise Euclidean distances and then
automatically compute the optimal similarity matrix by optimis-
ing α using a constant s = 2.25 as described in Sect. 5.3. To
each similarity matrix we fit bipartite-graph models with K = 1,
2, and 3 clusters. Furthermore, we fit a K-means algorithm with
K = 1, 2, and 3 to each data set in order to compare the results
of both clustering algorithms. For each configuration, the results
are averaged over 50 fits.

Results of this test are summarised in Fig. 9. Panel (a) shows
the mean evidence of two clusters, based on the angular changes
in SSR(K) for the bipartite-graph model and the within-cluster
scatter for the K-means algorithm. For decreasing separation∆x;
i.e., increasing overlap, this evidence decreases for both algo-
rithms, as is to be expected3. As panel (b) reveals, the misclas-
sification rates for K-means and the bipartite-graph model both
agree with the theoretical misclassification rate expected in the

3 These two curves cannot be compared directly. Their agreement for
∆x < 20 is a coincidence.

ideal case. For two one-dimensional Gaussians with means ±∆x
2 ,

the theoretical misclassification rate is given by

〈
Ltheo

01

〉
=

∫ 0

−∞
dx prob

(
x
∣∣∣∣∣µ = +

∆x
2
,σ

)
, (40)

which measures the overlap of both Gaussians. In the limit
∆x = 0, this yields 〈Ltheo

01 〉 = 1
2 . The explanation for the ex-

cellent performance of both K-means and bipartite-graph model
is that in this case the clusters have equal numbers of member
objects (cf. Sect. 5.6) and are spherical. Nevertheless, the re-
sults of the K-means are biased by the hard data-to-cluster as-
signment. Panel (c) of Fig. 9 shows the mean squared-error loss
of the bipartite-graph models4. First, the general trend is that
the squared-error loss increases for decreasing two-cluster sep-
aration. This comes from the growing amount of overlap that
confuses the bipartite-graph model. Second, the squared-error
loss decreases significantly for ∆x " 4. This effect can be ex-
plained as follows. For very small separations, the overlap is so
strong that even the true cluster posteriors are both close to 50%.
Therefore, the fitted cluster posteriors scatter around 50%, too,
thereby reducing the squared error. Third, the squared error es-
tablishes a constant value of 〈LSE〉 ≈ 0.045 at large separations.
In this case, the true maximum cluster posteriors are essentially
100%, so this corresponds to a systematic underestimation of
the maximum posteriors of

√
〈LSE〉 ≈ 21%. Thanks to the large

two-cluster separation, this bias does not lead to misclassifica-
tions, as is evident from panel (b) in Fig. 9. This bias originates
from the fact that any two objects have a finite distance and thus
a non-vanishing similarity.

4 We do not compare with K-means, since K-means is a hard algorithm
and squared-error loss is no reasonable score function in this case.
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Fig. 9. Impact of two-cluster overlap on clustering results for K-means
algorithm and bipartite-graph model. a) Mean angular change of
SSR(K) (bipartite-graph model) and within-cluster scatter (K-means)
at K = 2. b) Mean misclassification rates of K-means and bipartite-
graph model (see text) compared to theoretical prediction. All curves
coincide. c) Mean squared-error loss of bipartite-graph model.

This test further demonstrates that the bipartite-graph model
yields convincing results. This is the most evident in the misclas-
sification rate, which is in excellent agreement with the theoret-
ical prediction of the best possible score.

5.5. Impact of noise

As observational data is subject to noise, we now investigate the
response of the clustering results to noise on the similarity ma-
trix. We simulate the noise by adding a second dimension y to
the data. The two clusters are bivariate Gaussian distributions,
both with σ2

x = 1 and two-cluster separation of ∆x = 10 and
∆y = 0. We vary the size of the variance in y-direction ranging
from σ2

y = 0.1 to 10 000, thereby introducing noise that trans-
lates via the Euclidean distance to the similarity matrix. From
each cluster 100 example objects are drawn and we fit bipartite-
graph and K-means models using K = 1, 2 and 3. The results are
averaged over 50 fits for each value of σ2

y.
Results of this test are shown in Fig. 10. The evidence of

two clusters (panel (a)) rapidly degrades for increasing variance
for the bipartite-graph model, as well as for the K-means al-
gorithm, as is to be expected. Inspecting the misclassification
rate (panel (b)) reveals that both algorithms are insensitive to σ2

y
until a critical variance is reached where both misclassification
rates increase abruptly. For the K-means algorithm, this break-
down happens at σ2

y ≈ 30, whereas the bipartite-graph model

Fig. 10. Impact of noise variance σ2
y on clustering results for K-means

algorithm and bipartite-graph model. a) Mean angular change of
SSR(K) (bipartite-graph model) and within-cluster scatter (K-means) at
K = 2. b) Mean misclassification rate of K-means and bipartite-graph
model. c) Mean squared-error loss of bipartite-graph model.

breaks down at σ2
y ≈ 40, which amounts to ∆x

σy
≈ 1.6 in this

setup. The evidence of two clusters (panel (a)) rises again for
larger variances, although both algorithms have already broken
down. This is a geometric effect, because with increasing σ2

y,
the two clusters become more extended in the y-direction, un-
til it is better to split the data along x = 0 rather than y = 0.
This also explains why the misclassification rate is 50% in this
regime. Consequently, the abrupt breakdown originates in the
setup of this test. Sampling more objects from each cluster might
have prevented this effect, but would have increased the com-
putational effort drastically. Moreover, this demonstrates that
isotropic distance measures are problematic. Using, e.g., a dif-
fusion distance (e.g. Richards et al. 2009) may solve this prob-
lem. The breakdown is less abrupt in the mean squared-error loss
(panel (c)), since 〈LSE〉 is also sensitive to posterior misestima-
tion that do not lead to misclassifications.

We conclude that the bipartite-graph model is fairly insensi-
tive to noise of this kind over a broad range, until the setup of
this test breaks down.

5.6. Impact of cluster cardinalities

Typically different types of galaxy morphologies have different
abundancies in a given data sample. For instance, Bamford et al.
(2009) observe different type fractions of early-type and spiral
galaxies in the Galaxy Zoo project. Therefore, we now inves-
tigate how many objects of a certain kind are needed in order
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Fig. 11. Impact of cardinalities on clustering results. a) Mean misclas-
sification rate. b) Mean squared-error loss. c) Correlation of estimated
and true cluster cardinality.

to detect them as a cluster. The concept of a number of objects
being members of a certain cluster is poorly defined in the con-
text of soft clustering. We generalise this concept by defining the
cardinality of a cluster ck

card(k) =
N∑

n=1

prob (ck |xn) . (41)

This definition satisfies
∑K

k=1 card(k) = N, since the cluster pos-
teriors are normalised. In the case of hard clustering, Eq. (41)
is reduced to simple number counts, where the cluster posteri-
ors become Kronecker symbols. We use two clusters, both one-
dimensional Gaussians with unit variance and a fixed two-cluster
separation of ∆x = 10. We then vary the number of objects
drawn from each cluster such that the resulting data set always
contains 200 objects. For each data set, we compute two different
similarity matrices: First, we compute the similarity matrix us-
ing the optimal α for a constant s = 2.0, according to the recipe
given in Sect. 5.3. This similarity measure is adapted to every
data set (adaptive similarity measure). Second, we compute the
similarity matrix using α = 0.6 and s = 2.0, which is the opti-
mal similarity measure for the data set composed to equal parts
of objects from both clusters. This similarity measure is the same
for all data sets (constant similarity measure). To each of the two
similarity matrices we fit a bipartite-graph model using K = 2
and average the results over 50 fits.

The results are summarised in Fig. 11. Panel (a) shows the
dependence of the misclassification rate on the cardinality of
cluster A. For the adaptive similarity measure the bipartite-graph
model will break down, if one cluster contributes less than 10%

to the data set. For the constant similarity measure it will break
down, if one cluster contributes less than 3%. The same be-
haviour is evident from the squared-error loss in panel (b). This
problem is caused by the larger group in the data set dominat-
ing the statistics of the modified Manhattan distance C defined
by Eq. (39). This is a failure of the similarity measure, not of
the bipartite-graph model. The constant similarity measure stays
“focussed” on the difference between the two clusters and its
breakdown at 3% signals the limit where clusters are detectable
with the bipartite-graph model.

Panel (c) in Fig. 11 shows the correlation of the measured
cluster cardinality to the true cluster cardinality. For the con-
stant similarity measure, both quantities correlate well. In con-
trast to this, the two quantities do not correlate at all for the adap-
tive similarity measure. Again, the adaptive similarity measure is
dominated by the larger group; i.e., the similarities between the
large and the small groups are systematically too high. This leads
to systematic underestimation of the maximum cluster posteriors
(cf. panel (b)), since for a two-cluster separation of ∆x = 10 the
true posteriors are essentially 100% as shown by Fig. 9c. This
also affects the cluster cardinalities defined by Eq. (41). If the
cluster overlap is stronger, then this bias is likely to lead to mis-
classifications, too.

We conclude that the optimal similarity measure defined in
Sect. 5.3 fails to discover groups that contribute 10% or less to
the complete data sample. A different similarity measure may
solve this problem, but the optimal similarity measure has the ad-
vantage of minimising the misclassification rate and the squared-
error loss for the discovered groups.

6. Worked example with SDSS galaxies

In this section we present our worked example with SDSS galax-
ies. First, we describe the sample of galaxies we analyse. Before
applying the bipartite-graph model to the whole sample, we ap-
ply it to a small subsample of visually classified galaxies to prove
that it is working not only for simple simulated data but also for
real galaxy morphologies. Again, we emphasise that this is just
meant as a demonstration, so parametrisation and sample selec-
tion are idealised.

6.1. The data sample by Fukugita et al. (2007)

Fukugita et al. (2007) derived a catalogue of 2253 bright galax-
ies with Petrosian magnitude in the r band brighter than rP = 16
from the Third Data Release of the SDSS (Abazajian et al.
2005). Furthermore, the authors provide a visual classification of
galaxy morphologies based on g-band imaging, which is sensi-
tive to HII regions and spiral arm structures. Therefore, we also
analysed only g-band imaging of this sample. We expect that
objects that are bright in r are also bright in the neighbouring
g-band. Therefore, all these objects have a high signal-to-noise
ratio; i.e., the shapelet decomposition can employ a maximum
order large enough to reduce possible modelling problems.

Apart from the g-band imaging data, we also retrieved
further morphological information from the SDSS database,
namely Petrosian radii r50 and r90 containing 50% and 90%
of the Petrosian flux, ratios of isophotal semi major and semi
minor axes, and the logarithmic likelihoods of best-fitting de
Vaucouleurs and exponential-disc profiles. Given the Petrosian
radii r50 and r90 containing 50% and 90% of the Petrosian
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flux, we define the concentration index in analogy to Conselice
(2003),

C = 5 log
(
r90

r50

)
· (42)

For compact objects, such as elliptical galaxies, this concentra-
tion index is high, whereas it is lower for extended objects with
slowly decreasing light profiles, such as disc galaxies.

We then reduced the data sample in three steps, First, we
sorted out peculiar objects; i.e., objects that are definitely not
galaxies, blended objects, and objects that were cut in the mo-
saic. All these objects have no viable galaxy morphologies. This
was done by visual inspection of all objects. Second, we decom-
posed all images into shapelets using the same maximum or-
der Nmax = 12 (91 expansion coefficients) for all objects. The
shapelet code performs several internal data processing steps,
such as estimating the background noise and subtracting the po-
tentially non-zero noise mean, image segmentation, and masking
of multiple objects, estimating the object’s centroid position (cf.
Melchior et al. 2007). Third, we sorted out objects for which
the shapelet reconstruction does not provide reasonable models.
This is done by discarding all objects whose best fits have a re-
duced χ2 that is not in the interval [0.9, 2.0]. The lower limit is
chosen very close to unity, since shapelets have the tendency to
creep into the background noise and overfit objects. Setting out
from the 2253 bright galaxies of Fukugita et al. (2007), the data
processing leaves us with 1520 objects with acceptable χ2. We
check that the morphological information contained in the orig-
inal data set and the reduced data set does not differ systemati-
cally, by comparing the sample distributions of Petrosian radii,
axis ratios, concentration indeces, and logarithmic likelihoods of
best-fitting deVaucouleur and exponential-disc profiles. All ob-
jects are large compared to the point-spread function (PSF) of
SDSS, such that a PSF deconvolution as described in Melchior
et al. (2009) is not necessary. This means we analyse apparent in-
stead of intrinsic morphologies, but both are approximately the
same.

6.2. Demonstration with three clusters

In this section we apply the soft clustering algorithm by Yu
et al. (2005) for the first time to real galaxies. We used a small
data set of 84 galaxies, which we visually classified as edge-on
disc, face-on disc or ellipticals (28 objects per type). As these
84 galaxies were very large and very bright, we decomposed
them anew using a maximum order of Nmax = 16, resulting in
153 shapelet coefficients per object. Figure 1 shows one example
object and its shapelet reconstruction for each type. This data set
exhibits a strong grouping, and we demonstrate that the bipartite-
graph model indeed discovers the edge-on discs, face-on discs,
and ellipticals automatically, without any further assumptions.

The estimation of the number of clusters is shown in Fig. 12.
The mean angular changes in SSR(K) averaged over 20 fits in-
deed reveal only one significant kink at K = 3. The lowest value
of SSR at K = 3 is SSR ≈ 48, which corresponds to an rms
residual (cf. Eq. (29)) of
√

SSR
1
2 N(N + 1)

≈ 11.6%. (43)

The denominator 1
2 N(N + 1) is the number of independent ele-

ments in the symmetric similarity matrix.

Fig. 12. Mean angular changes 〈∆(K)〉 of bipartite-graph model for data
set composed of edge-on discs, face-on discs, and ellipticals.

Fig. 13. Cluster posterior space of bipartite-graph model for edge-on
discs, face-on discs, and ellipticals. The triangle defines the subspace
allowed by the normalisation constraint of the posteriors. The corners
of the triangle mark the points of 100% posterior probability. The *
indicates the point where all three posteriors are equal. Colours encode
a priori classifications unknown to the algorithm.

We conclude from Fig. 12 that the bipartite-graph model in-
deed favours three clusters. However, we still have to prove that
the similarity matrix contains enough information on the data
and that the bipartite-graph model discovers the correct classes.
For K = 3, the cluster posteriors populate a two-dimensional
plane because they are subject to a normalisation constraint. This
plane is shown in Fig. 13. Indeed, the distribution of cluster
posteriors exhibits an excellent grouping of ellipticals, edge-on
discs, and face-on discs. The three clusters are well separated,
apart from two objects labelled as edge-on discs but assigned
to the cluster of ellipticals. A second visual inspection of these
two “outliers” revealed that we had initially misclassified them
as edge-on disc. The excellent results are particularly impres-
sive if we remember that we analysed 84 data points distributed
in a 153-dimensional parameter space. Moreover, it is very en-
couraging that the soft clustering analysis did indeed recover the
ellipticals, face-on and edge-on discs automatically.

In order to get an impression of how good these results ac-
tually are, we compare the cluster posterior plane to results ob-
tained from PCA; therefore, we estimate the covariance matrix Σ
of the data sample in shapelet-coefficient space and diagonalise
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Fig. 14. Comparing Fig. 13 with results of PCA for edge-on discs, face-
on discs, and ellipticals. The parameter space is spanned by the first two
principal components. The first principal component carries ≈45.2%
and the second ≈21.4% of the total variance. Colours encode a priori
classifications unknown to the PCA algorithm.

it. Only the first 83 eigenvalues of Σ are non-zero, since the
84 data objects poorly constrain the 153 × 153 covariance ma-
trix. The first two principal components carry 66.6% of the to-
tal sample variance, and Fig. 14 displays the parameter space
spanned by them. Obviously, PCA performs well in reducing
the parameter space from 153 dimensions down to two, since
the ellipticals, face-on, and edge-on discs exhibit a good group-
ing5. However, the bipartite-graph model provides much more
compact and well-separated groups. This is due to the degenera-
cies we have broken when we computed the minimal spherical
distances as described in Sect. 3. In the case of PCA, these de-
generacies are unbroken and introduce additional scatter.

In both Figs. 13 and 14, we notice that the group of ellipti-
cals is significantly more compact than the groups of face-on and
edge-on discs. This is caused by three effects. First, as discussed
in Sect. 3, our parametrisation of elliptical galaxies is problem-
atic, thereby introducing common artefacts for all objects of this
type. These common features are then picked up by the soft clus-
tering algorithm. Ironically, the problems of the parametrisation
help to discriminate the types in this case. Second, we described
in Sect. 3 how to make our morphological distance measure in-
variant against various random quantities, namely image size,
image flux, orientation angle, and handedness. However, the dis-
tance measure and thus the similarity measure are not invariant
against the inclination angle with respect to the line of sight,
which introduces additional scatter into the clustering results.
We expect that the impact of this random effect is less for ellip-
ticals than for disc galaxies. Third, disc galaxies usually exhibit
complex substructures (e.g. spiral arms or star-forming regions),
whereas elliptical galaxies do not. Consequently, the intrinsic
morphological scatter of disc galaxies is larger than for ellip-
ticals.

6.3. Analysing the data set of Fukugita et al. (2007)

We now present the soft clustering results from analysing all
1520 bright galaxies from the reduced data set of Fukugita et al.
(2007). We have chosen the similarity measure with s = 1.02
and corresponding optimal α ≈ 0.12, according to Sect. 5.3. The

5 PCA only reduces the parameter space, but does not assign classes
to objects.

Fig. 15. Estimating the number of clusters in the data set of Fukugita
et al. (2007). Mean angular changes 〈∆(K)〉 are averaged over 15 Fits.

Table 2. Fitting the similarity matrix of 1520 objects, with the minimal
SSR value out of 15 fits and the mean angular change averaged over
15 fits.

K Minimal SSR Mean angular changes (degrees)
1 39 220 –
2 12 313 14.489 ± 0.047
3 6146 22.67 ± 0.14
4 4965 −2.01 ± 0.19
5 3868 2.76 ± 0.27
6 3155 2.19 ± 0.61
7 2676 −0.89 ± 1.17
8 2254 5.91 ± 0.69
9 2093 −0.18 ± 0.95
10 1931 −0.35 ± 1.11
11 1790 0.24 ± 0.86
12 1661 1.92 ± 0.52
13 1593 0.36 ± 0.35
14 1532 0.03 ± 0.73
15 1476 0.15 ± 0.94
16 1430 0.86 ± 0.71
17 1405 0.04 ± 0.43
18 1383 0.22 ± 0.39
19 1365 0.14 ± 0.34
20 1348 –

shapes of the curves of the modified Manhattan distances C(α)
have the same generic form as before. Fit results of the simi-
larity matrix for K ranging from 1 to 20 are shown in Table 2
and Fig. 15. There are significant deviations of the mean angular
changes from zero for K = 3 and K = 8. The signal at K = 2 is
ignored, since the SSR value is very high (cf. Table 2).

First, we investigate the clustering results for K = 3, where
we have SSR ≈ 6146 (cf. Table 2) corresponding to an rms
residual of ≈3.7% (cf. Eq. (43)) for the similarity-matrix recon-
struction. In Fig. 17 we show the top five example objects for
each of the three clusters, together with a histogram of the distri-
bution of cluster posteriors. Inspecting the example images, we
clearly see that the first cluster is obviously composed of face-
on disc galaxies, whereas the second cluster contains ellipticals.
The third cluster is the cluster of edge-on disc galaxies or discs
with high inclination angles. However, a blended object has been
misclassified into this cluster, too. There are still some blended
objects left that we have failed to remove, since when sorting
out blended objects we visually inspected the images in reduced
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Fig. 16. Comparing the data-to-cluster assignments for K = 3 clusters
(panel a) and K = 8 clusters (panel b) to visual classifications. We
show how the Fukugita types distribute over the automatically identified
clusters. The cluster’s posterior distributions are estimated by summing
the posteriors of all objects of this Fukugita type.

resolution. The cluster posteriors for K = 3 are very informa-
tive, because we first notice that objects from cluster 1 typically
have very low posteriors in cluster 2 and intermediate posteriors
in cluster 3; i.e., face-on discs are more similar to edge-on discs
than to ellipticals. Second, objects from cluster 2 have low pos-
teriors in all other clusters. Third, objects from cluster 3 tend to
be more alike to objects in cluster 2; i.e., edge-on discs are closer
to ellipticals. This is probably caused by the higher light concen-
tration and steep light profiles. To improve our understanding of
the clustering results, we compared the data-to-cluster assign-
ments to the visual classification of Fukugita et al. (2007). The
authors classified all galaxies into the types elliptical (E), S0, Sa,
Sb, Sc, Sd, Im, and “unclassified” (uncl.), ignoring the differ-
ence between barred and unbarred galaxies. Results are shown
in panel (a) of Fig. 16. Obviously, there are trends when mov-
ing from type E to Im: first, the fraction of objects assigned to
cluster 2 decreases substantially, since we are moving from com-
pact to loose objects. Second, the fraction of objects assigned to
cluster 3 increases substantially, since elliptical galaxies usually
do not exhibit pronounced elongations. Third, there is a minor
increase in the fraction of objects assigned to cluster 1, which
may be due to an increase in substructure while smoothness is
decreasing. Apart from that, there are no obvious correlations of
the results obtained from both classification schemes. We con-
clude that both methods roughly agree. A more detailed com-
parison – e.g. estimating the misclassification rate of one method
with respect to the other – is conceptually impossible since both
schemes use different classes, while the “truth” remains uncer-
tain. Such a comparison would require a simulation where the
“true” galaxy morphologies are known.

These results demonstrate that the clustering analysis indeed
yields reasonable results for realistic data sets. Furthermore, the
results for three clusters are very similar to the clustering scheme
of Sect. 6.2. However, three clusters are not enough to describe
the data faithfully. This is evident from the much higher SSR
value for K = 3 compared to K = 8 and from Fig. 18, where
we show the resulting cluster posterior space for K = 3. Large
parts of the available posterior space remain empty, whereas the
central region is crowded. This behaviour stems from to the lack

Fig. 17. Top example objects for K = 3 clusters. Each row corresponds
to a cluster. We also show the distribution of its cluster posteriors be-
neath each object. Cluster 1 seems to contain face-on discs, cluster 2
compact objects, and cluster 3 edge-on discs.

Fig. 18. Cluster posterior space for K = 3. See Fig. 13 for an explana-
tion of the topology of this plot.

of complexity in the bipartite-graph model and strongly suggests
that more clusters are necessary.

For K = 8 we have SSR ≈ 2254 (cf. Table 2), which cor-
responds to an rms residual of ≈2.2% for the similarity-matrix
reconstruction. We show ten top example objects for each clus-
ter in Fig. 19. First, we notice that the resulting grouping is ex-
cellent. However, it is difficult to understand the differences be-
tween some clusters. Clusters 1 and 5 are obviously objects with
high ellipticities, e.g. edge-on discs, but what is the difference? Is
it the bulge dominance, which is much weaker in cluster 1 than
in 5? Do the clusters differ in their radial light profiles? What
is the difference between clusters 2 and 7, which are both face-
on discs? Of particular interest are clusters 3 and 8, where both
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Fig. 19. Top example objects for K = 8 clusters. Each row corresponds to a cluster. For each object, we also show the histogram of the distribution
of its cluster posteriors beneath it. The objects were aligned in shapelet space, not in real space.
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Fig. 20. Mean axis ratios and concentration indices for the clusters of
Fig. 19. Weighted means were computed from the top 100 example ob-
jects of each cluster. We show the contours of 1σ and take possible
correlations into account.

seem to contain roundish and compact objects. However, the
posterior histograms reveal a highly asymmetric relation, where
objects from cluster 3 also prefer cluster 8 above all other clus-
ters. Nevertheless, most of the top examples of cluster 8 have ex-
tremely low posteriors in cluster 3; i.e., association with cluster
3 is highly disfavoured. Although we cannot explain this result
without further investigation, it is interesting that the algorithm
picked up such a distinctive signal. In panel (b) of Fig. 16 we
compare the data-to-cluster assignments to the visual classifi-
cation of Fukugita et al. (2007). Again, there are trends when
moving from types E to Im. Clusters 1 and 7 clearly prefer spi-
ral galaxies, whereas clusters 3 and 8 prefer smooth and com-
pact objects. Cluster 2 slightly prefers Fukugita types Sb, Sc,
Sd, whereas cluster 4 does not. Irregular and unclassified ob-
jects clearly favour clusters of looser objects over clusters of
smooth and compact objects. Interestingly, all curves meet at
type Sa, which implies that certain features that are important
for the clustering cancel out. This confirms our understanding of
the clustering results being a sequence of smoothness and com-
pactness, since Sa galaxies are the first in the sequence E, S0,
Sa, Sb, Sc, Sd, Im that exhibit substructures, thereby becom-
ing loose and less compact. We conclude that both methods also
agree roughly for K = 8 clusters, though the clustering results
appear to pick up more details.

As we have access to the isophotal axis ratio and the concen-
tration index (cf. Eq. (42)) for all objects, we investigate their
distributions for the clusters. Figure 20 shows the mean axis ra-
tios and the mean concentration indices for all eight clusters av-
eraged over the 100 top examples. The cluster with the highest
mean axis ratio is cluster 1, which is the cluster of edge-on disc
galaxies. The cluster with lowest concentration index is cluster 7,
which is the cluster of face-on disc galaxies that exhibit extended
smooth light profiles. Clusters 3, 4, 5, and 8 have the highest
concentration indices. As is evident from Fig. 19, these clusters
are indeed composed of rather compact objects that seem to be
elliptical galaxies. However, there is no decisive distinction in
Fig. 20. This is not necessarily a flaw in the clustering results,
but more likely caused by concentration and axis ratio being an
insufficient parametrisation scheme (cf. Andrae et al., in prep.).

It seems like the resulting classification scheme is essen-
tially face-on disc, edge-on disc, and elliptical. If we increase
the number of clusters, we get further diversification that may be

caused by bulge dominance or inclination angles. We emphasise
again that our primary goal is to demonstrate that our method
discovers morphological classes and provides data-to-class as-
signments that are reasonable.

7. Conclusions

We briefly summarise our most important arguments and results.

– Galaxy evolution, the process of observation, and the experi-
ence with previous classification attempts strongly suggest a
probabilistic (“soft”) classification. Hard classifications ap-
pear to be generically inappropriate.

– There are two distance-based soft clustering algorithms that
have been applied to galaxy morphologies so far: Gaussian
mixture models by Kelly & McKay (2004, 2005) and the
bipartite-graph model by Yu et al. (2005) presented in this
work. The weak points of the Gaussian mixture model
are the dimensionality reduction and its assumption of
Gaussianity. The weakness of the bipartite-graph model is
the definition of the similarity measure.

– The shapelet formalism, our similarity measure, and the
bipartite-graph model produce reasonable clusters and data-
to-cluster assignments for real galaxies. The automated dis-
covery of classes corresponding to face-on discs, edge-on
discs, and elliptical galaxies without any prior assumptions
is impressive and demonstrates the great potential of cluster-
ing analysis. Moreover, the automatically discovered classes
have a qualitatively different meaning compared to pre-
defined classes, since they represent grouping that is pre-
ferred by the given data sample itself.

– Random effects, such as orientation angle and inclination,
are a major obstacle, since they introduce additional scatter
into a parametrisation of galaxy morphologies.

– For data sets containing N galaxies, the computation times
scale as O(N2). Nevertheless, we experienced that a clus-
tering analysis is feasible for data sets containing up to
N = 10 000 galaxies without employing supercomputers. We
conclude that a clustering analysis on a data set of one mil-
lion galaxies is possible using supercomputers.

– It is possible to enhance this method by setting up a classifier
based on the classes found by the soft clustering analysis,
thereby improving the time complexity fromO(N2) to O(N).

– The method presented in this paper is not limited to
galaxy morphologies alone. For instance, it could possi-
bly be applied to automated star-galaxy classification or
AGN detection.

The bottom line of this paper is that automatic discovery of mor-
phological classes and object-to-class assignments (clustering
analysis) does work and is less prejudiced and time-consuming
than visual classifications, though interpreting the results is still
an open issue. Especially when analysing new data samples for
the first time, clustering algorithms are more objective than using
pre-defined classes and visual classifications. The advantages of
such a sophisticated statistical algorithm justify its considerable
complexity.
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