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ABSTRACT

We present an automated morphological classification in 4 types (E, SO, Sab, Scd) of ~700000 galaxies from the SDSS DR7 spec-
troscopic sample based on support vector machines. The main new property of the classification is that we associate a probability
to each galaxy of being in the four morphological classes instead of assigning a single class. The classification is therefore better
adapted to nature where we expect a continuous transition between different morphological types. The algorithm is trained with a
visual classification and then compared to several independent visual classifications including the Galaxy Zoo first-release catalog.
We find a very good correlation between the automated classification and classical visual ones. The compiled catalog is intended for
use in different applications and is therefore freely available through a dedicated webpage* and soon from the CasJobs database.
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1. Introduction

Classification of objects is a key step in understanding and an-
alyzing an astrophysical sample. In particular, morphology is a
powerful tracer of the structure of a galaxy. Since Hubble’s first
classification of galaxies according to their shape (Hubble 1926),
it has been shown that this phenomenological description hides
important physical differences between galaxies and probably
different evolutionary tracks. Elliptical galaxies appear with old
stellar populations, high velocity dispersion, and small fraction
of gas while spiral galaxies are more gas-rich, with younger stel-
lar populations whose motion is rotation dominated.

The main problem with morphology comes from estimation,
since, even when done through visual inspection, there are sev-
eral intrinsic problems that can hardly be overcome. First, when
one goes at high redshift, several new galaxies appear that do
not necessarily fit in the Hubble fork (e.g. Abraham et al. 1994,
1996; Conselice et al. 2008; Delgado-Serrano et al. 2010), and
secondly, everybody who has looked at galaxies in detail has
realized how difficult it is to classify them by eye since there
are lots of objects that do not fall in a clear box (e.g. Postman
et al. 2005). This becomes even worse when other parameters
are included such as colors or stellar dynamics. For example,
Schawinski et al. (2009) and Kannappan et al. (2009) have found
a significant fraction of elliptical galaxies with blue colors in the
local Universe. In the SAURON project (e.g. Emsellem et al.
2007), one of the main conclusions is that a significant fraction
of morphologically defined early-type galaxies present features
similar to late-type ones, such as rotation in their cores. The

* Full catalog is only available in electronic form at CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strashg. fr/viz-bin/qcat?J/A+A/525/A157
or via
http://gepicom®4.obspm. fr/sdss_morphology/
Morphology_2010.html
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definition of an early or late type galaxy is consequently not
very clear. What defines a given galaxy type? Is it just a shape
and bulge fraction? or is it shape and stellar populations? or is it
stellar dynamics? Almost eighty years after Hubble’s definition,
these questions remain unanswered.

It seems that, instead of being a closed definition, there is
more like a continuous population of galaxies with some canon-
ical objects, prototypes of elliptical, or spiral galaxies and then
some galaxies that are more or less close to the definition.
Consequently, it makes more sense to assign distances or proba-
bilities of being in one of the canonical classes instead of having
a binary definition that is not necessarily very close to reality.

In addition to these intrinsic issues, there are methodological
problems as well because morphological classifications are, by
definition, done by visual inspection. This job can be done on
small samples but becomes an impossible task in very large sur-
veys such as the SDSS, unless it is done through the aggregated
efforts of hundreds of thousands of people over the course of
many months as for the Galaxy Zoo project (Lintott et al. 2008,
2010).

Lots of effort has been made to try to determine morphology
in an automated and simple way by measuring some parame-
ters, such as concentration, asymmetry, clumpiness, Gini index
(e.g. Abraham et al. 1996; Conselice et al. 2000; Abraham et al.
2003) or through 1D (Prieto et al. 2001; Trujillo et al. 2001)
or 2D-fitting algorithms (e.g. Simard et al. 2002; Peng et al.
2002; de Souza et al. 2004; Méndez-Abreu et al. 2008). More
sophisticated classifications include colors and color gradients
(e.g. Neichel et al. 2008) or use neural networks (e.g. Ball et al.
2004); however, all these methods deal with a finite number of
classes and/or at some point require a degree of human interven-
tion. Moreover, one can still argue that automated classifications
are not real morphological classifications since we are just mea-
suring parameters of the light distribution while morphology is
a much more complex pattern recognition problem.
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In Huertas-Company et al. (2008, 2009b) we presented a
method based on support vector machines (galSVM). It was
initially designed for high-redshift galaxies, and it has the advan-
tage of dealing with an unlimited number of parameters and as-
signing probabilities instead of binary classes. We showed that,
when applied to poorly resolved samples, it increases the accu-
racy by a factor of ~3, compared to more classical methods. The
method has already been used and validated in a variety of differ-
ent cases on space and ground-based data to study, for instance,
the fraction of blue early-type galaxies in the field (Huertas-
Company et al. 2010) and the morphological mixing in clusters
at intermediate redshift (Huertas-Company et al. 2009a).

In this paper, we revisit the Hubble sequence in the SDSS
DR?7 spectroscopic sample using this method and assign a prob-
ability to each galaxy of being in the following morphological
classes: E, S0, Sab, Scd, instead of a closed class. The paper pro-
ceeds as follow. In Sect. 2 we describe the sample used, and in
Sect. 3 the method employed for the classification is presented
in detail. We discuss the robustness of the classification at the
faint end in Sect. 4 and a comparison with a detailed visual clas-
sification of ~14 000 galaxies (Nair & Abraham 2010) and with
the Galaxy Zoo first release catalog (Lintott et al. 2010) is shown
in Sect. 5. Finally, we show some examples of how to use this
catalog in Sect. 6.

2. The sample

We used all the SDSS DR7 spectroscopic sample as the start-
ing base. Then, the selection of objects was based on Sanchez
Almeida et al. (2010) who performed an unsupervised auto-
mated classification of all the SDSS spectra. Basically, we chose
galaxies with redshift below 0.25, and with good photometric
data and clean spectra, meaning objects not too close to the
edges, not saturated, or not properly deblended. The final catalog
contains 698 420 objects for which we estimate the morphology
as shown below. No additional selection criteria were added so
that the catalog is not biased to any particular application.

3. The method

The classification method is based on support vector machines
(SVM) implemented in the libSVM library (Chang & Lin 2001).
SVM is a machine learning algorithm that tries to find the opti-
mal boundary (not necessarily linear) between several clouds of
points in an N-dimensional space. More information about the
algorithm can be found in Huertas-Company et al. (2008). There
are several interesting properties that make this algorithm attrac-
tive for galaxy classification. First, it can deal with an unlimited
number of dimensions so that everything that is related to the
classes one would like to separate can be included in the classifi-
cation process. Second, it does not deliver a binary classification
but a probability of belonging to a given class. This probabil-
ity is related to the accuracy of the classification, the higher it
is, the higher the success rate (and so the closer are the objects
to the canonical classes), so that the accuracy of the classifica-
tion can be studied in an objective way. This property is lacking
in most of the existing classification schemes (specially in the
visual techniques).

3.1. Training sample

The SVM method needs a training sample, and all the behav-
ior of the learning algorithm depends on how close this training
sample is to the real sample one wants to classify. For morpho-
logical classification, the training sample is typically built us-
ing a visually classified subsample. The problem is that, usually,
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Fig. 1. Schematic view of the procedure used to classify the sample and
the probabilities measured in each step.

visual classifications are performed on the brightest objects be-
cause it is obviously easier, and one would like to go fainter in
automated classifications. This causes a mismatch in the proper-
ties of the galaxies in the training sample and in the real sample,
which can lead to misclassifications. One solution, as shown in
Huertas-Company et al. (2008), is to simulate faint galaxies. In
this paper, we decided not to include any simulations to be able
to use the parameters measured in the SDSS database so as be
consistent in the way parameters were measured in the training
and real samples. The effects of such (risky) decisions are care-
fully studied in Sects. 4 and 5. We therefore used Fukugita et al.
(2007) classification as the training sample. In their paper, they
provide a visual classification of 2253 SDSS galaxies brighter
than m, = 16 (compared to the full DR7 sample, which goes
up to m, ~ 18). Since our goal is to classify galaxies in 4 main
classes (E, SO, Sab, Scd), we group them according to their mor-
phological index T (Fukugita et al. 2007, Table 1): E: T < 1, SO:
T =1,Sab:2 < T <4,and Scd: 4 < T < 7 before using them
for training the algorithm. We included irregulars (7' = 6) in the
Scd class since there are not enough objects in the local universe
(and in particular in the Fukugita et al. (2007) catalog) to make
a separate class for the training.

3.2. Procedure

SVM were originally thought to separate 2 classes. Some imple-
mentations were done to add multi-class separation but the accu-
racy is more difficult to assess. To avoid dealing with multi class
problems, in this paper we proceeded in two steps. First we sep-
arated the sample in two main classes, i.e. early-type galaxies,
which includes ellipticals and SO galaxies, and late-type galax-
ies, which contain all the remaining morphological types from
Sa to Scd/Im. Then we took the whole sample and classified it
again using 2 different training sets that contain only early-type
and late-type galaxies respectively (see Fig. 1). The probability
computed in this second step can thus be seen as a conditional
probability: “probability of being SO or E given that it is an early-
type galaxy” and “probability of being Sab or Scd given that it is
a late-type galaxy”. With this approach we were certain to have
a broad classification in two types (which is enough for lots of
science applications) with a high success rate, and then a more
detailed one. Each galaxy in the catalog is therefore associated
with 6 probability values, i.e. the probability of being in the two
broad classes and the probability of being in the 4 subclasses.
The 4 probabilities of the 4 subclasses can be computed with the
Bayes theorem using the conditional probabilities:

P(E) = P(Early) x P(E/Early) (D
P(SO0) = P(Early) x P(S0/Early) 2)
P(Sab) = P(Late) x P(Sab/Late) 3)
P(Scd) = P(Late) x P(Scd/Late). 4)
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Fig. 2. Distribution of the main parameters used (concentration (r90/r50), axis ratio (b/a), and color (g — r)) as a function of probability. All

parameters are measured in the i band (see text).

We considered in the 4 equations above that P(Early/E) =
P(Early/S0) = P(Late/Sab) = P(Late/Scd) = 1. Following these
equations, we obviously have P(Early) = P(E) + P(S0) and
P(Late) = P(Sab) + P(Scd) and P(E) + P(S0) + P(Sab) +
P(Scd) =1.

3.3. Parameters used

The SDSS database contains lots of photometric and spectro-
scopic parameters that are related to the morphological type of
the galaxy and could hence be used for the classification. One
interesting property of SVM is that they are not degenerate, in
the sense that adding extra-parameters does not lead to a de-
crease in the classification accuracy (Huertas-Company et al.
2008) even if they do not bring any extra information. However,
the computing time increases and the parameter space is less
well sampled if too many parameters are included. After sev-
eral tests, we decided to include three types of parameters: (1)
color (g — r,r — i) k-corrected with Blanton et al. (2005) code;
(2) shape (ISOB/1SOA in the i-band and DEVAB_1I); and (3) light
concentration (R90/R50 in the i-band). For color measurements
we use model magnitudes corrected for galactic extinction. ISOB
and ISOA are the isophotal minor and major axes respectively,
and DEVAB_I is the DeVaucouleurs fit 5/a. R90 and R50 are the
radii containing 90% and 50% of the petrosian flux, respectively.

Adding more parameters does not significantly change the clas-
sification and increases the execution time. The decision to in-
clude the color could be discussed, since, as pointed out in the in-
troduction, it is not clear how an early-type or a late-type galaxy
is actually defined. Since our approach is to define classes as
closely as possible to the canonical definition and then compute
distances to them, it makes sense to include color. Indeed, for an
elliptical to be elliptical it should be red, otherwise it should be
called blue elliptical, and it is an exception to the normal clas-
sification. Eitherway, tests performed reveal that removing the
color from the parameter space does not significantly change the
classification. Fewer than 10% of the galaxies change their main
morphological class. In Fig. 2, we show the 4 probabilities as a
function of some representative parameters used in the classifi-
cation. We observe some obvious correlations: i.e. the probabil-
ity of being elliptical increases with concentration, and redder
galaxies have higher probabilities of being ellipticals. The corre-
lations are less clear for intermediate classes (SO and Sab). One
important conclusion by looking at these plots is that one single
parameter is not enough to select galaxies with high probability
of being in a given class. For instance, it is common to use a
concentration threshold R90/R50 > 2.6 (in the r-band) to select
elliptical galaxies (e.g. Bell et al. 2003; Kauffmann et al. 2003).
As shown in the top panel of Fig. 2 this selection results in a
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Fig. 3. Probability distributions of bright (m, < 16, red dotted line) and
faint (m, > 16, black solid line) galaxies in the sample. The 4 panels
show the 4 computed probabilities as indicated in the x-axis labels.

significant fraction of galaxies with low probabilities of being
elliptical galaxies (as also shown in Bernardi et al. 2010b).

4. Robustness
4.1. Accuracy at the faint end

As pointed out in Sect. 3, there is a critical point in our
approach, since the classified sample contains lots of galaxies
fainter than the limiting magnitude of the training sample.
Therefore, it is very important to check that these faint galaxies
are not systematically misclassified just because they are not
represented in the training. As a first check, we computed
the probability distributions of bright (m, < 16) and faint
galaxies (m, > 16) in Fig. 3 to check that faint galaxies are
systematically classified with lower probabilities. As shown
in Huertas-Company et al. (2008), the probability is a kind
of measure of how good the classification is and how close
a given galaxy is to the corresponding associated class. Low
probabilities in all the classes consequently mean that the galaxy
is not close to any of the classes of the training, which would
mean that faint galaxies are not properly classified because they
are not properly sampled in the training set. We observe in Fig. 3
that there is no evident difference between both probability
distributions. A Kolmogorov-Smirnoff test gives between 99%
and 55% probability that the 2 distributions are drawn from
the same distribution, so the possibility that the 2 distributions
are decoupled is rejected. The probability values seem to be
quite independent of the galaxy brightness, at least up to the
magnitude limit of the sample. The algorithm is thus able to
find a clear, closest class even for the faintest objects, which
supports the robustness of the classification.

As a second check, we looked at some of the images of the
faint end of the sample (Fig. 4). We confirm that high-probability
values for a given morphological class still correspond to galax-
ies that closely look like galaxies in this given class indepen-
dently of the magnitude. It therefore seems that the classification
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is robust even for the faintest objects in the sample and that no
major misclassifications are evident. In Sect. 5 we perform a de-
tailed comparison with a visual classification of faint objects.

4.2. Dependence on the training set

Another important point that should be studied is the effect of
changes in the training set on the final classification. In fact, a
robust classification should not change significantly if some ele-
ments are removed from the training sample. On the contrary, if
removing some elements leads to a completely different classi-
fication, it means that the parameter space is not properly sam-
pled and therefore the classification is very unstable. To check
this point, we performed 10 different classifications with slightly
different training sets. The samples were generated by randomly
selecting a subset of 500 galaxies from the Fukugita et al. (2007)
sample. We then compared the different classifications in terms
of probability. These 10 runs on the full data set take only a few
minutes on a normal laptop.The average scatter over the 10 runs
of the probability of being early-type (or late-type) is 12%. In
other words, when one changes the training set, the probability
for a given galaxy changes ~12% on average. This 12% scatter
is compatible and even less than the typical scatter found when
several people perform visual classifications on the same sample
(e.g. Postman et al. 2005; Fukugita et al. 2007).

4.3. Uncertain objects

Another way of assessing the robustness of the classification is
by measuring the fraction of objects whose classification is un-
certain. If this fraction appears to be too high it would imply that
the algorithm is not working for a large fraction of the sample.
We define uncertain objects as those for which the difference be-
tween the maximum and the minimum probability value is less
than 0.15; i.e. the four probabilities are in a range less than 0.15,
so the galaxy does not clearly fit in any of the four morphological
classes.

There are 3013 objects verifying this condition, 0.4% of the
whole sample. The vast majority of the objects are therefore
close to one (or two) morphological classes and very few are
in an uncertain region. A visual inspection of these galaxies
(Fig. 5) reveals that they are small, compact, and/or disturbed ob-
jects, for which the visual morphology is also difficult to assess.
They are not, however, particularly distant or faint objects since
the magnitude and redshift distributions are compatible with the
ones of the full sample.

5. Comparison with visual classifications
5.1. Comparison with Nair & Abraham (2010)

One obvious validation check of the classification is to compare
it with existing visual classifications. As explained in previous
sections, we used the Fukugita et al. (2007) catalog for training.
It is therefore better to use a different independent subsample
for testing the accuracy and robustness of the classification. In a
recent paper, Nair & Abraham (2010) published a very detailed
visual catalog of 14034 galaxies in the SDSS with m, < 16.
Galaxies in this sample are included in our classification, but
most of them have not been used to build our training sample so
they represent an ideal independent cross check. Since Nair &
Abraham (2010) classification is much more detailed than ours,
we group their classes into 4 groups matching the 4 classes we
have defined in this work. We consider elliptical galaxies objects
with TType = -5, SOs, TType = -2, Sabs, 1 < TType < 3, and
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Fig. 5. Examples of uncertain classifications as defined in the text.

finally Scd, 5 < TType < 10 (see table 1 of Nair & Abraham
2010 for a definition of the TType index used in their work).
Figure 6 shows the probability distributions of these 4 groups.
Globally, we observe a good correlation between the probabil-
ity values and the visual class. For example, galaxies visually
classified as ellipticals have on average a probability of ~0.8 of
being ellipticals and ~0.2 of being S0O. The two other probabil-
ities are almost zero. Traditionally, it is well known that it is
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very difficult to separate SO galaxies by eye. This is reflected
in the probability distributions which are more uniform than for
the pure elliptical class. A galaxy visually classified as SO has
on average ~0.4 probability of being SO but also ~0.32 of being
elliptical and 0.2 of being Sab, which reflects the difficulty of
defining the SO class and the fact that these galaxies are indeed
a transition class in terms of morphology between the ellipticals
and the spirals. A similar effect is seen in the Sab population
which has on average a probability of ~0.55 of being Sab but
also ~0.15 of being SO or Scd. Another interesting measurement
is the fraction of catastrophic classifications, i.e. galaxies whose
automated and visual classes are completely different. We define
those cases as objects for which P(E) > 0.8 and TType > 5 or
P(Scd) > 0.8 and TType = -5, i.e. galaxies that are clearly ellip-
tical (Scd) for our algorithm and visually classified as Sc or later
(elliptical). There are only 2 objects verifying these conditions,
and both are in the first case. They are indeed spiral galaxies, so
the algorithm is wrong, but both have a large red bulge, which
can probably account for the misclassification.

5.2. Galaxy Zoo

Recently, the Galaxy Zoo' team (Lintott et al. 2010) has made
publicly available the visual classification of the full DR7

! http://galaxyzoo.org/
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performed through the aggregated efforts of hundreds of thou-
sands of people over the course of many months. This work is
an extraordinary effort (and probably the only way) to visually
classify present and future extremely large surveys. The main
drawback, however, is that it requires plenty of time (more than
2 years in this case) to collect all the information and put all the
catalogs in place. It is therefore a very interesting question to
see how our automated classification behaves compared to this
visual classification. Our classification is indeed much faster and
can be run several times with different parameters in just a few
minutes, but it is not obvious whether we can reach an accuracy
similar to the human brain. Moreover, this comparison also en-
ables the comparison for the faint end of the sample (since the
GalaxyZoo catalog contains all galaxies), hence a new evalua-
tion of the effect of lacking faint objects in the training sam-
ple (see Sect. 4). The classification made in the framework of
the GalaxyZoo is less detailed than a pure visual classification,
such as the one from Nair & Abraham (2010) or Fukugita et al.
(2007); i.e, they basically asked people if the galaxy is elliptical
like (which should include SOs) or spiral like (with different sub-
categories like clockwise or anti-clockwise rotation), but with-
out submorphological types. Galaxy Zoo 2> and Hubble Zoo?

2 http://z002.galaxyzoo.org/
3 http://hubble.galaxyzoo.org/
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will furnish more detailed classifications in the coming future
but are not publicly available for the moment. The confidence of
the classification in the current release is measured by the frac-
tion of votes received, since each galaxy is classified by several
persons. A galaxy is then flagged as early-type or spiral-like if
the fraction of votes in one of those categories is greater than
80%. In Fig. 7 we show the probability distribution obtained
with the galSVM classification for galaxies flagged as ellipti-
cal like (flag ELLIPTICAL = 1) and spiral like (flag SPIRAL =
1), respectively. We observe an extremely good correlation be-
tween both classifications even for faint galaxies not necessar-
ily well represented in the training set as discussed in Sect. 4.
Galaxies flagged as ellipticals in the Galaxy Zoo catalog have a
median probability of 0.92 of being elliptical or SO and the same
for galaxies classified as spirals. This means that robust classi-
fications in Galaxy Zoo are also very sure classifications in our
catalog; however the fraction of galaxies without a clear mor-
phological type (i.e. the fraction of votes is less than 80% so they
lie somewhere between a pure early-type or late-type galaxy) in
the Galaxy Zoo is relatively high (~60%), so it is interesting to
check where all these remaining galaxies fall.

For that purpose, we push the comparison a bit further. As
a matter of fact, since the quality of the classification in the
Galaxy Zoo is measured by the number of votes, another in-
teresting test is to compare our probability measurement to the


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201015735&pdf_id=6
http://zoo2.galaxyzoo.org/
http://hubble.galaxyzoo.org/

M. Huertas-Company et al.: DR7 morphological classification

0.30F 7 77
0.25F ]
1%} r 17
< ! I
3 02010 I
o i -
o ! 1]
% 045! 6200 ELLPTICALS (Al) 1]
= o [
o :I! | LN
€ 0.10F N 4
o L N
= [ 1 r |
0.05F = P
i -, - I
0.00 e e St i o I
0.0 0.2 0.4 0.6 0.8 1.0
probability
0.30F 7 77 ]
il "]
0.25} "
ot ¥
5 0200 Iy
9] [+ - 1]
o i .
B 0.15 16700 ELLPTICALS (my<16) 1
= 1 H
O F | | 4
ho! 1
£ 010f i '
o Lt 4
z ho Qo
0.05h ! - ¥
I L_ . I
0.00 e o tGr e
0.0 0.2 0.4 0.6 0.8 1.0
probability
0.30F 7
0.25F 1
12 [ "
c F b
S5 0.20¢:: I
o 1= Tl
° a Fig
B 0.15F 16200 ELLIPTICALS (m>16) 1
= oy : 1
£ 010k i
o l -
- not ro Y
0.05hF Y K :—
:! l-'l._ _.J-. |:
000 i e e et e T ]
0.0 0.2 0.4 0.6 0.8 1.0
probability

030
0.25F 1

0.20F 1
i GZ0O SPIRALS (All) i
b1 ]
0o
[, &

0.100 " i

0.15

Normalized counts
-
Il

0.05F i
[P, - i SPVEPS it L
0.2 0.4 0.6 0.8
probability

0.00t
0.0

1.0

0.30F 7 77

0.25F 1
' n
il
[l h
1 GZOO SPIRALS (m,<16)
:J 1 1
o.10p ! ]
[ ]
0.05F 7 T4
L --L -'.j

e

0.20

Normalized counts

0.00t
0.0

0.2 0.4 0.6

probability

0.8 1.0

0.30f
0.25; *
o.zof— ]
GZ0O SPIRALS (mg>16)

|
|
- |
|
|

Normalized counts

Ui
[l
I
[
4

1
[ - g ]
0.05F - FE
1 -
[ N i ]
e — B
st e e g e T ey e AT e e e o

0.2 0.4 0.6 0.8 1.0
probability

0.00t
0.0

Fig. 7. Probability distributions of p(Early), red dashed line, and p(Late), blue dashed dotted line for galaxies flagged as ellipticals (left column)
and spirals (right column) in the Galaxy Zoo. Top line shows all galaxies, and middle and bottom lines show bright (m, < 16) and faint (m, > 16)

galaxies, respectively.

fraction of votes. In other words: does the probability measure-
ment reflect the choice of the majority? We indeed expect to
find a correlation, since certain classifications in terms of votes
should also be galaxies close to the canonical definition, hence
objects with high probability values. This comparison is shown
in Fig. 8. There is significant scatter, but we observe 2 clear
clouds. Objects with a high fraction of votes for being elliptical

have high probability values and vice-versa. The same behavior
is measured for spirals. When we average the fraction of votes
per probability bin, the correlation becomes clearer, and we find
that there is a monotonic relation between the fraction of votes
and the probability (Fig. 8). This fact confirms that our probabil-
ity measurement indeed measures the robustness of the classifi-
cation for a given object.
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Fig. 9. Comparison between the fraction of votes for a galaxy to be ellipical like from Galaxy Zoo and the computed probabilities in this work.
Gray scales are scaled to the data; i.e. white is maximum and black is minimum. Solid line shows the average relation. The average is computed
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In Figs. 9 and 10 we compare the fraction of votes correlation between the number of votes given by people and
with the 4 more detailed probabilities computed in this work the probability computed in an automated way by galSVM.
(P(E), P(S0), P(Sab), and P(Scd)). We again find a clear
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6. How to use the catalog?

The most important new point of the classification presented in
this work is the measurement of probabilities. Therefore, a mor-
phological class is not defined as a closed box, but there is more
like a continuous transition from one class to another. How can
this new property can be used for selecting a particular popu-
lation and studying its properties? If one wants to perform lu-
minosity or mass functions for a given morphological type, the
optimal way (in terms of optimal estimation) is to make use of
the probability measure as a weight for the galaxy counts. As
shown in Huertas-Company et al. (2009b), we can define a ran-
dom variable Y:

y, — | 0 with a probability 1 — Prype
711 with a probability Prype ’

This way, the number of galaxies of a given morphological type
in a mass or luminosity bin is simply given by its mathematical
expectation,

NType = Z PType» (5)
Nobj

and the 1-o error is the square root of the variance:

O Type = Z PType x (1 - PType)' (6)

Nobj

All the galaxies contribute to the mass function of a given mor-
phological type weighted by its probability. As a result, a galaxy

that is 95% Sd and 0.5% E will still contribute to the mass func-
tion of elliptical galaxies with a weight of 0.005.

Another approach is to make probability cuts. This way, we
decide that galaxies belong to a given class by applying a proba-
bility threshold.This approach (even if not optimal) should be
closer to the classical approach from visual classifications in
which galaxies only contribute in one given class. The thresh-
old to apply depends on the application. For example, it is in-
teresting to determine which threshold is the best to get similar
distributions than with visual classifications. In Fig. 12, we com-
pare the two estimations of the observed distribution of stellar
masses with the ones obtained from the visual classification of
Nair & Abraham (2010). We use a threshold of Prype > 0.45 in
each type and obtain similar distributions for all morphological
types. Stellar masses are taken from the Nair & Abraham (2010)
catalog, also taken from Kauffmann et al. (2003) estimates.

In Fig. 11 we show the observed distribution of stellar
masses for the whole sample for different morphological types
using the probability estimator. In this case, stellar masses are
computed with the Bell et al. (2003) formula, adapted from
Bernardi et al. (2010b) to account for evolution:

log,o(MB/M)=1.097(g~r)—0.406—0.4(M,—4.67)—0.19z. (7)

We observe the expected trend; i.e, the mass function peaks at
lower values for later morphological types. In the same figure,
we compare the distribution of masses obtained from the Galaxy
Zoo classification. We compare the one obtained with galaxies
flagged as ellipticals (FLAG ELLIPTICAL = 1) with the one
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Fig. 11. Observed distribution of masses for different morphological types computed using different estimators described in the text (see text for
details). In the left panel the whole sample is shown using the probability weighting. Red short dashed line: ellipticals; yellow dashed dotted line:
SOs; green dashed three dotted line: Sabs; blue long dashed line: Scds. In the right panel, we show galaxies flagged as SPIRAL and ELLIPTICAL
in the galaxy zoo. Red solid lines are galaxies flagged as ellipticals in Galaxy Zoo (FLAG ELLIPTICAL = 1), red dashed line is the distribution
obtained using probability weighting and red dots are galaxies with p(E) > 0.5. Blue solid lines are galaxies flagged as spirals (FLAG SPIRAL = 1)
in the Galaxy Zoo, blue dashed line is the distribution obtained using probability weighting and blue dots are galaxies with p(Sab) + P(Scd) > 0.5.

Normalized counts

Normalized counts

Fig. 12. Observed distribution of masses for different morphological types in the Nair & Abraham (2010) sample using different estimators (see
tex for details). Black solid lines: visual classification; red filled circles: probability cuts; red dashed line: probability estimates. Each panel shows
a visual morphological class from Nair & Abraham (2010), selected as described in the text. For the probability cuts, we use P > 0.45 in this given

type.
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Fig. 13. Color magnitude relation for the 4 morphological types. Contours are computed by probability weighting. For reference, we show in the
4 panels the best fit to the elliptical red sequence from Bernardi et al. (2010a). Top left panel: Ellipticals; top right panel: SOs; bottom left panel:

Sab galaxies; bottom right panel: Scd galaxies.

obtained using the two estimators described above, i.e. galax-
ies having p(E) > 0.5 and probability weighting. The same is
computed for spirals. There is almost a perfect match with the
distributions computed using galSVM, which again confirms the
accuracy of the automated classification presented in this paper.

Another common application is to study the color-stellar
mass diagrams for different “robust” morphological types.
Again, the probability estimator can be used by computing the
2D histogram of galaxies in the color-mass plane weighted with
the probabilities. Figure 13 shows the probability contours in the
color-stellar mass plane for the 4 morphological types. We ob-
serve the expected trend: elliptical and SO galaxies are redder
with less scatter, while Sab and Scd are bluer. An interesting
feature of Sab galaxies (and for some Scd) is that there seems
to be 2 distinct populations: one red population and another one
lying in the so-called green valley between the blue cloud and
the red sequence. After careful visual inspection of an important
fraction of these red galaxies, we can confirm that for most of
them they are in fact edge-on spirals probably reddened by dust.
A small fraction are, however, real passive spirals as shown and
carefully studied by Masters et al. (2010a,b). Most of them are
classified as Sab galaxies with high probability (see Fig. 4). This
result confirms that a pure color selection is not enough to select
ellipticals or SO galaxies since it is highly polluted by edge-on
spirals as already shown in previous works (e.g. Schawinski et al.
2007; Lintott et al. 2008; Bernardi et al. 2010b).

These plots are just shown here to validate the morpholog-
ical classification. A more detailed analysis of the fundamental
parameters of galaxies is expected to come in future dedicated
papers.

7. Summary and conclusions

We have presented an automated morphological classification
of the SDSS DR7 spectroscopic sample. The algorithm used is
based on SVM, and the most interesting and new property is
that it associates a probability value to each galaxy instead of a
single class. This way, the transition between one class and an-
other is continuous, which should be a better approximation to
nature and to visual classifications. As a matter of fact, when
the brain decides which morphological class is closer to a given
object we are looking at, it probably also implicitly measures
some parameters and computes distances in this virtual param-
eter space to decide which one is the closest canonical class to
the object it is classifying. In that sense, even if the list of pa-
rameters we measure is reduced and much more simplistic than
what our brain can do (e.g we are not including spiral arms nor
tidal features that certainly play an important role in a visual
classification), the spirit of our approach is closer to a classical
visual classification than other existing automated methods. The
results obtained are in good agreement with existing visual clas-
sifications and are robust even at the faint end of the sample.
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The main advantage of this approach is that it is fast (a few min-
utes on a regular laptop) and reproducible. Moreover, we obtain
a classification into 4 morphological types instead of the 2 ob-
tained in the Galaxy Zoo. The probability measurements can be
used as a weighting factor for computing statistical quantities,
such as luminosity or mass functions, or as a selection criterion
to be sure that a cleaned sample of galaxies is selected. The clas-
sification is intended for use in many different applications and
is therefore freely available athttp://gepicom®4.obspm. fr/
sdss_morphology/Morphology_2010.html and soon from
the CasJobs database. In subsequent papers, the classification
will be used to compare spectroscopic and morphological classi-
fications and investigate possible transitions in color-mass space
(Sanchez-Almeida et al., in prep.) and to study the morphologi-
cal properties of galaxies around BCGs (Bernardi et al., in prep.).
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Appendix A: Catalog sample

Table A.1. First 10 objects in the catalog (the full table is available at the CDS).

id SpecObjld RA Dec z
p(Early) p(E) p(S0) p(Sab) p(Scd)  ask_class
1 7509409297491...  146.7441406  —0.6522176  0.203
0.941 0.790 0.150 0.032 0.026 2.0
2 7509409298330...  146.6285706  —0.7651463  0.064
0.145 0.023 0.121 0.641 0.213 0.0
3 7509409301266...  146.9341278  —0.670413 0.121
0.969 0.861 0.108 0.016 0.013 0.0
4 7509409301685...  146.9638977 —0.5450143  0.056
0.061 0.011 0.049 0.440 0.498 10.0
5 7509409302105...  146.9635162  —0.7593367 0.09
0.802 0.169 0.632 0.135 0.062 3.0
6 7509409302524...  146.9499969 -0.5922154  0.064
0.120 0.020 0.100 0.762 0.116 10.0
7 7509409303363...  146.8598328 —0.8089029  0.126
0.834 0.038 0.796 0.089 0.076 1.0
8 7509409303783...  146.5927277 -0.7602585  0.064
0.188 0.026 0.161 0.618 0.193 9.0
9 7509409304202...  146.8576965 —0.6628734  0.084
0.004 0.001 0.003 0.451 0.543 9.0
10 7509409304621... 146.727951  —0.5568492  0.089
0.939 0.721 0.217 0.031 0.029 0.0

Notes. Columns are: id, identification number, SpecObjld, id from the SDSS spectroscopic catalog, RA, right ascension, Dec: declination, z,
redshift from the SDSS database, p(Early), probability of being early-type (E or SO), p(E), probability of being elliptical, p(S0O), probability of
being SO, p(Sab), probability of being Sa or Sb, p(Scd), probability of being Sc or Sd and ask_class, the spectral class from Sdnchez Almeida et al.
(2010).
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