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Brief introduction to modern cosmology, based on ΛCDM: dark energy and dark matter

Cosmic large scale structure simulations and star formation in galaxies

Comparing high-resolution hydrodynamic galaxy simulations with observations

Astronomers used to think that galaxies form as disks, that forming galaxies are pretty 
smooth, and that galaxies generally grow in radius as they grow in mass — but Hubble 
Space Telescope data show that all these statements are false, and our simulations may 
explain why.  

We are using these simulations and deep learning to improve understanding of galaxy 
formation, with support from Google. 
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Planck Collaboration: The Planck mission
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter⇤CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ` = 50, and linear beyond. The vertical scale is `(`+ 1)Cl/2⇡. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-` region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ` = 50,
and linear beyond. The vertical scale is `(` + 1)Cl/2⇡. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di↵ers from the ERCSC in its extraction philosophy: more e↵ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di↵erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di↵erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the
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Planck Collaboration: Cosmological parameters

Fig. 10. Planck TT power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB
spectrum computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed
in Table 5. The red line shows the best-fit base ⇤CDM spectrum. The lower panel shows the residuals with respect to the theoretical
model. The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and
36b), and include beam uncertainties and uncertainties in the foreground model parameters.

Fig. 11. Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from
the base ⇤CDM Planck+WP+highL model, which is fitted to the TT data only.
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Planck Collaboration: The Planck mission

Fig. 7. Maximum posterior CMB intensity map at 50 resolution derived from the joint baseline analysis of Planck, WMAP, and
408 MHz observations. A small strip of the Galactic plane, 1.6 % of the sky, is filled in by a constrained realization that has the same
statistical properties as the rest of the sky.

Fig. 8. Maximum posterior amplitude Stokes Q (left) and U (right) maps derived from Planck observations between 30 and 353 GHz.
These mapS have been highpass-filtered with a cosine-apodized filter between ` = 20 and 40, and the a 17 % region of the Galactic
plane has been replaced with a constrained Gaussian realization (Planck Collaboration IX 2015). From Planck Collaboration X
(2015).

viewed as work in progress. Nonetheless, we find a high level of
consistency in results between the TT and the full TT+TE+EE
likelihoods. Furthermore, the cosmological parameters (which
do not depend strongly on ⌧) derived from the T E spectra have
comparable errors to the TT -derived parameters, and they are
consistent to within typically 0.5� or better.

8.2.2. Number of modes

One way of assessing the constraining power contained in a par-
ticular measurement of CMB anisotropies is to determine the
e↵ective number of a`m modes that have been measured. This
is equivalent to estimating 2 times the square of the total S/N
in the power spectra, a measure that contains all the available
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Fig. 9. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94 % of the sky. The best-fit base⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties. From Planck Collaboration XIII (2015).
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Fig. 10. Frequency-averaged T E (left) and EE (right) spectra (without fitting for T–P leakage). The theoretical T E and EE spectra
plotted in the upper panel of each plot are computed from the best-fit model of Fig. 9. Residuals with respect to this theoretical model
are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the best-fit
temperature-to-polarization leakage model, fitted separately to the T E and EE spectra. From Planck Collaboration XIII (2015).

cosmological information if we assume that the anisotropies are
purely Gaussian (and hence ignore all non-Gaussian informa-
tion coming from lensing, the CIB, cross-correlations with other
probes, etc.). Carrying out this procedure for the Planck 2013
TT power spectrum data provided in Planck Collaboration XV
(2014) and Planck Collaboration XVI (2014), yields the number
826 000 (which includes the e↵ects of instrumental noise, cos-
mic variance and masking). The 2015 TT data have increased
this value to 1 114 000, with T E and EE adding a further 60 000

and 96 000 modes, respectively.4 From this perspective the 2015
Planck data constrain approximately 55 % more modes than in
the 2013 release. Of course this is not the whole story, since
some pieces of information are more valuable than others, and
in fact Planck is able to place considerably tighter constraints on
particular parameters (e.g., reionization optical depth or certain

4Here we have used the basic (and conservative) likelihood; more
modes are e↵ectively probed by Planck if one includes larger sky frac-
tions.
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Fig. 9. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94 % of the sky. The best-fit base⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties. From Planck Collaboration XIII (2015).
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Fig. 10. Frequency-averaged T E (left) and EE (right) spectra (without fitting for T–P leakage). The theoretical T E and EE spectra
plotted in the upper panel of each plot are computed from the best-fit model of Fig. 9. Residuals with respect to this theoretical model
are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the best-fit
temperature-to-polarization leakage model, fitted separately to the T E and EE spectra. From Planck Collaboration XIII (2015).
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When we look 
out in space 
we look back 
in time…

Earth Forms

Big Galaxies Form
Bright Galaxies Form

Cosmic Dark Ages

Cosmic Background Radiation
Cosmic Horizon (The Big Bang)

Today



Cosmological Simulations
Astronomical observations represent snapshots 
of moments in time.  It is the role of astrophysical 
theory to produce movies -- both metaphorical 
and actual -- that link these snapshots together 
into a coherent physical theory.  

Cosmological dark matter simulations show 
large scale structure and dark matter halo 
properties, basis for semi-analytic models 

Hydrodynamic galaxy formation simulations: 
evolution of galaxies, formation of galactic 
spheroids, mock galaxy images and spectra 
including stellar evolution and dust effects
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1.5 million light years

100,000 light years

Milky Way Dark Matter Halo

Milky Way

Aquarius Simulation
Volker Springel





Bolshoi Cosmological Simulation
Anatoly Klypin & Joel Primack

Pleiades Supercomputer at NASA Ames Research Center
8.6x109 particles   1/h kpc resolution

1 Billion Light Years



100 Million Light Years

1 Billion Light Years



100 Million Light Years

How the Halo of the Big Cluster Formed



Bolshoi-Planck
Cosmological Simulation

Merger Tree of a Large Halo

Peter Behroozi & Christoph Lee



by Aldo Rodríguez-Puebla, Joel Primack, Peter Behroozi, Sandra Faber   MNRAS 2016
Is Main Sequence SFR Controlled by Halo Mass Accretion?

We theorists make very complicated models of the star formation 
rate (SFR) in galaxies — but

One can show that this must be true on average
Our radical SHARC (stellar halo accretion rate co-evolution) 
hypothesis is that this may be true halo-by-halo for many dark 
matter halos hosting star-forming galaxies 

We then put SHARC in the bathtub, by combining the SHARC 
hypothesis with “bathtub” galaxy models 

KEY BACKGROUND INFORMATION
- the stellar/halo mass relation
- the galaxy main sequence



Relationship Between Galaxy 
Stellar Mass and Halo Mass

4 BEHROOZI, WECHSLER & CONROY
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FIG. 3.— Left panel: the stellar mass to halo mass ratio at multiple redshifts as derived from observations (Behroozi et al. 2012) compared to a model which
has a time-independent star formation efficiency (SFE). Error bars show 1 -� uncertainties (Behroozi et al. 2012). A time-independent SFE predicts a roughly
time-independent stellar mass to halo mass relationship. Right: the cosmic star formation rate for a compilation of observations (Behroozi et al. 2012) compared
to the best-fit model from a star formation history reconstruction technique (Behroozi et al. 2012) as well as the time-independent SFE model. The latter model
works surprisingly well up to redshifts of z ⇠ 4. However, a model which has a constant efficiency (with mass and time) also reproduces the decline in star
formation well since z ⇠ 2.
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FIG. 4.— Left panel: Star formation rate as a function of halo mass and cosmic time, weighted by the number density of dark matter halos at that time. Contours
show where 50 and 90% of all stars were formed; dashed line shows the median halo mass for star formation as a function of time. Right panel: Star formation
rate as a function of galaxy stellar mass and time, weighted by the number density of galaxies at that time. Contours and dashed line are as in top-left panel;
dotted line shows current minimum stellar masses reached by observations.

characteristic mass is to use a different mass definition. For
example, using M200b (i.e., 200 times the background density)
would cancel some of the evolution from z = 1 to z = 0. How-
ever, this would also raise the mass accretion rate at z = 0,
which would increase evolution in the star formation effi-
ciency’s normalization. Using the maximum circular velocity
(Vcirc) or the velocity dispersion (�) instead would also lead
to more evolution in the SFE (at fixed Vcirc or �): due to the
smaller physical dimensions of the universe at early times,
both these velocities increase with redshift at fixed virial halo
mass.

The nearly-constant characteristic mass scale is robust to
our main assumption that the baryon accretion rate is propor-
tional to the halo mass accretion rate, because this mass scale

is already present in the conditional SFR (Fig. 1). A baryon
accretion rate which scales nonlinearly with the dark matter
accretion rate would change the width of the most efficient
halo mass range, but it would not change the location. How-
ever, as discussed previously, the baryon accretion rate for
small halos (Mh < 1012M�) can differ from the dark matter
accretion rate through recooling of ejected gas; the changing
virial density threshold can also introduce non-physical evolu-
tion in the halo mass which affects the accretion rate (Diemer
et al. 2012). Properly accounting for these effects may change
the low-mass slope of the star formation efficiency; we will
investigate this in future work.

Note that the level of consistency seen in the star forma-
tion efficiency is not possible to achieve using other common

The stellar mass to halo mass ratio at multiple 
redshifts as derived from observations compared to 
the Bolshoi cosmological simulation. Error bars show 
1σ uncertainties. A time-independent Star Formation 
Efficiency predicts a roughly time-independent stellar 
mass to halo mass relationship.  (Behroozi, 
Wechsler, Conroy, ApJL 2013)

Star-forming Galaxies Lie 
on a “Main Sequence”

Just as the properties of hydrogen-burning stars 
are controlled by their mass, the galaxy star 
formation rate (SFR) is approximately 
proportional to the stellar mass, with the 
proportionality constant  increasing with redshift up 
to about z = 2.5.  (Whitaker et al. ApJ 2014)

The Astrophysical Journal, 795:104 (20pp), 2014 November 10 Whitaker et al.

(a) (b)

Figure 1. Star formation rate as a function of stellar mass for star-forming galaxies. Open circles indicate the UV+IR SFRs from a stacking analysis, with a second-order
polynomial fit above the mass completeness limits (solid vertical lines). Open squares signify measurements below the mass-completeness limits. The running medians
for individually detected objects in MIPS 24 µm imaging with S/N > 3 (shown as a gray-scale density plot in the Panel (a), left) are indicated with filled circles in the
right panel and are color-coded by redshift. The number of star-forming galaxies with S/N > 3 detections in the 24 µm imaging and those with S/N < 3 are indicated
in the bottom right of each panel. The star formation sequence for star-forming galaxies is curved, with a constant slope of unity at log(M⋆/M⊙) < 10 (solid black
line in Panel (b) is linear), whereas the slope at the massive end flattens with α = 0.3–0.6 from z = 0.5 to z = 2.5. We show the SDSS curve (gray dotted line in Panel
(b)) from Brinchmann et al. (2004) as it is one of the few measurements that goes to very low mass, but it is based on another SFR indicator.
(A color version of this figure is available in the online journal.)

Wuyts et al. 2007; Williams et al. 2009; Bundy et al. 2010;
Cardamone et al. 2010; Whitaker et al. 2011; Brammer et al.
2011; Patel et al. 2012); quiescent galaxies have strong Balmer/
4000 Å breaks, characterized by red rest-frame U–V colors
and relatively blue rest-frame V–J colors. Following the two-
color separations defined in Whitaker et al. (2012a), we select
58,973 star-forming galaxies at 0.5 < z < 2.5 from the 3D-
HST v4.0 catalogs.14 Of these, 39,106 star-forming galaxies are
above the mass-completeness limits (Tal et al. 2014). Among
the UVJ-selected star-forming galaxies with masses above the
completeness limits, 22,253 have S/N > 1 MIPS 24 µm
detections (amongst which 9,015 have S/N > 3) and 35,916 are
undetected in MIPS 24 µm photometry (S/N < 1).15 The full
sample of star-forming galaxies are considered in the stacking
analysis. Although we have not removed sources with X-ray
detections in the following analysis, we estimate the contribution
of active galactic nuclei (AGNs) to the median 24 µm flux
densities in Section 4.2.

3. THE STAR FORMATION SEQUENCE

Figure 1 shows the star formation sequence, log Ψ as a
function of log M⋆, in four redshifts bins from z = 0.5 to
z = 2.5. We use a single SFR indicator, the UV+IR SFRs
described in Section 2.4, probing over two decades in stellar
mass. The gray scale represents the density of points for star-
forming galaxies selected in Section 2.5 with S/N > 3 MIPS

14 Essentially identical to the publicly released catalogs available through
http://3dhst.research.yale.edu/Data.html, with the same catalog identifications
and photometry.
15 Even though the SFR is dominated by the IR contribution, the limiting
factor here is the depth of the Spitzer/MIPS 24 µm imaging.

24 µm detections, totaling 9015 star-forming galaxies over the
full redshift range. Mass completeness limits are indicated by
vertical lines. The GOODS-N and GOODS-S fields have deeper
MIPS imaging (3σ limit of ∼10 µJy) and HST/WFC3 JF125W

and HF160W imaging (5σ ∼ 26.9 mag), whereas the other three
fields have shallower MIPS imaging (3σ limits of ∼20 µJy) and
HST/WFC3 JF125W and HF160W imaging (5σ ∼ 26.3 mag).
The mass completeness limits in Figure 1 correspond to the
90% completeness limits derived by Tal et al. (2014), calculated
by comparing object detection in the CANDELS/deep with a
re-combined subset of the exposures that reach the depth of
the CANDELS/wide fields. Although the mass completeness
in the deeper GOODS-N and GOODS-S fields will extend to
lower stellar masses, we adopt the more conservative limits for
the shallower HST/WFC3 imaging.

First, we look at the measurements for individual galaxies.
The running median of the individual UV+IR measurements
of the SFR are indicated with solid circles when the data are
complete both in stellar mass and SFR (above the shallower
data 3σ MIPS 24 µm detection limit).16 We consider all MIPS
photometry in the median for the individual UV+IR SFRs
measurements (filled circles), even those galaxies intrinsically
faint in the IR. Only 1% of the star-forming galaxies above the
20 µJy limit in each redshift bin have 24 µm photometry with
S/N < 1.

To leverage the additional decade lower in stellar mass
that the CANDELS HST/WFC3 imaging enables us to probe

16 In the case of the 1.0 < z < 1.5 and 1.5 < z < 2.5 bins, the filled circles
representing individual measurements are limited by the 3σ 24 µm
completeness limits (horizontal dotted line, ∼20 µJy), which therefore makes
it appear as though the higher redshift sample extends to lower completeness
limits due to the strongly evolving normalization.
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Figure 1. Star formation rate as a function of stellar mass for star-forming galaxies. Open circles indicate the UV+IR SFRs from a stacking analysis, with a second-order
polynomial fit above the mass completeness limits (solid vertical lines). Open squares signify measurements below the mass-completeness limits. The running medians
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line in Panel (b) is linear), whereas the slope at the massive end flattens with α = 0.3–0.6 from z = 0.5 to z = 2.5. We show the SDSS curve (gray dotted line in Panel
(b)) from Brinchmann et al. (2004) as it is one of the few measurements that goes to very low mass, but it is based on another SFR indicator.
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Wuyts et al. 2007; Williams et al. 2009; Bundy et al. 2010;
Cardamone et al. 2010; Whitaker et al. 2011; Brammer et al.
2011; Patel et al. 2012); quiescent galaxies have strong Balmer/
4000 Å breaks, characterized by red rest-frame U–V colors
and relatively blue rest-frame V–J colors. Following the two-
color separations defined in Whitaker et al. (2012a), we select
58,973 star-forming galaxies at 0.5 < z < 2.5 from the 3D-
HST v4.0 catalogs.14 Of these, 39,106 star-forming galaxies are
above the mass-completeness limits (Tal et al. 2014). Among
the UVJ-selected star-forming galaxies with masses above the
completeness limits, 22,253 have S/N > 1 MIPS 24 µm
detections (amongst which 9,015 have S/N > 3) and 35,916 are
undetected in MIPS 24 µm photometry (S/N < 1).15 The full
sample of star-forming galaxies are considered in the stacking
analysis. Although we have not removed sources with X-ray
detections in the following analysis, we estimate the contribution
of active galactic nuclei (AGNs) to the median 24 µm flux
densities in Section 4.2.

3. THE STAR FORMATION SEQUENCE

Figure 1 shows the star formation sequence, log Ψ as a
function of log M⋆, in four redshifts bins from z = 0.5 to
z = 2.5. We use a single SFR indicator, the UV+IR SFRs
described in Section 2.4, probing over two decades in stellar
mass. The gray scale represents the density of points for star-
forming galaxies selected in Section 2.5 with S/N > 3 MIPS

14 Essentially identical to the publicly released catalogs available through
http://3dhst.research.yale.edu/Data.html, with the same catalog identifications
and photometry.
15 Even though the SFR is dominated by the IR contribution, the limiting
factor here is the depth of the Spitzer/MIPS 24 µm imaging.

24 µm detections, totaling 9015 star-forming galaxies over the
full redshift range. Mass completeness limits are indicated by
vertical lines. The GOODS-N and GOODS-S fields have deeper
MIPS imaging (3σ limit of ∼10 µJy) and HST/WFC3 JF125W

and HF160W imaging (5σ ∼ 26.9 mag), whereas the other three
fields have shallower MIPS imaging (3σ limits of ∼20 µJy) and
HST/WFC3 JF125W and HF160W imaging (5σ ∼ 26.3 mag).
The mass completeness limits in Figure 1 correspond to the
90% completeness limits derived by Tal et al. (2014), calculated
by comparing object detection in the CANDELS/deep with a
re-combined subset of the exposures that reach the depth of
the CANDELS/wide fields. Although the mass completeness
in the deeper GOODS-N and GOODS-S fields will extend to
lower stellar masses, we adopt the more conservative limits for
the shallower HST/WFC3 imaging.

First, we look at the measurements for individual galaxies.
The running median of the individual UV+IR measurements
of the SFR are indicated with solid circles when the data are
complete both in stellar mass and SFR (above the shallower
data 3σ MIPS 24 µm detection limit).16 We consider all MIPS
photometry in the median for the individual UV+IR SFRs
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S/N < 1.

To leverage the additional decade lower in stellar mass
that the CANDELS HST/WFC3 imaging enables us to probe

16 In the case of the 1.0 < z < 1.5 and 1.5 < z < 2.5 bins, the filled circles
representing individual measurements are limited by the 3σ 24 µm
completeness limits (horizontal dotted line, ∼20 µJy), which therefore makes
it appear as though the higher redshift sample extends to lower completeness
limits due to the strongly evolving normalization.

4

The Astrophysical Journal, 795:104 (20pp), 2014 November 10 Whitaker et al.

(a) (b)

Figure 1. Star formation rate as a function of stellar mass for star-forming galaxies. Open circles indicate the UV+IR SFRs from a stacking analysis, with a second-order
polynomial fit above the mass completeness limits (solid vertical lines). Open squares signify measurements below the mass-completeness limits. The running medians
for individually detected objects in MIPS 24 µm imaging with S/N > 3 (shown as a gray-scale density plot in the Panel (a), left) are indicated with filled circles in the
right panel and are color-coded by redshift. The number of star-forming galaxies with S/N > 3 detections in the 24 µm imaging and those with S/N < 3 are indicated
in the bottom right of each panel. The star formation sequence for star-forming galaxies is curved, with a constant slope of unity at log(M⋆/M⊙) < 10 (solid black
line in Panel (b) is linear), whereas the slope at the massive end flattens with α = 0.3–0.6 from z = 0.5 to z = 2.5. We show the SDSS curve (gray dotted line in Panel
(b)) from Brinchmann et al. (2004) as it is one of the few measurements that goes to very low mass, but it is based on another SFR indicator.
(A color version of this figure is available in the online journal.)

Wuyts et al. 2007; Williams et al. 2009; Bundy et al. 2010;
Cardamone et al. 2010; Whitaker et al. 2011; Brammer et al.
2011; Patel et al. 2012); quiescent galaxies have strong Balmer/
4000 Å breaks, characterized by red rest-frame U–V colors
and relatively blue rest-frame V–J colors. Following the two-
color separations defined in Whitaker et al. (2012a), we select
58,973 star-forming galaxies at 0.5 < z < 2.5 from the 3D-
HST v4.0 catalogs.14 Of these, 39,106 star-forming galaxies are
above the mass-completeness limits (Tal et al. 2014). Among
the UVJ-selected star-forming galaxies with masses above the
completeness limits, 22,253 have S/N > 1 MIPS 24 µm
detections (amongst which 9,015 have S/N > 3) and 35,916 are
undetected in MIPS 24 µm photometry (S/N < 1).15 The full
sample of star-forming galaxies are considered in the stacking
analysis. Although we have not removed sources with X-ray
detections in the following analysis, we estimate the contribution
of active galactic nuclei (AGNs) to the median 24 µm flux
densities in Section 4.2.

3. THE STAR FORMATION SEQUENCE

Figure 1 shows the star formation sequence, log Ψ as a
function of log M⋆, in four redshifts bins from z = 0.5 to
z = 2.5. We use a single SFR indicator, the UV+IR SFRs
described in Section 2.4, probing over two decades in stellar
mass. The gray scale represents the density of points for star-
forming galaxies selected in Section 2.5 with S/N > 3 MIPS

14 Essentially identical to the publicly released catalogs available through
http://3dhst.research.yale.edu/Data.html, with the same catalog identifications
and photometry.
15 Even though the SFR is dominated by the IR contribution, the limiting
factor here is the depth of the Spitzer/MIPS 24 µm imaging.

24 µm detections, totaling 9015 star-forming galaxies over the
full redshift range. Mass completeness limits are indicated by
vertical lines. The GOODS-N and GOODS-S fields have deeper
MIPS imaging (3σ limit of ∼10 µJy) and HST/WFC3 JF125W

and HF160W imaging (5σ ∼ 26.9 mag), whereas the other three
fields have shallower MIPS imaging (3σ limits of ∼20 µJy) and
HST/WFC3 JF125W and HF160W imaging (5σ ∼ 26.3 mag).
The mass completeness limits in Figure 1 correspond to the
90% completeness limits derived by Tal et al. (2014), calculated
by comparing object detection in the CANDELS/deep with a
re-combined subset of the exposures that reach the depth of
the CANDELS/wide fields. Although the mass completeness
in the deeper GOODS-N and GOODS-S fields will extend to
lower stellar masses, we adopt the more conservative limits for
the shallower HST/WFC3 imaging.

First, we look at the measurements for individual galaxies.
The running median of the individual UV+IR measurements
of the SFR are indicated with solid circles when the data are
complete both in stellar mass and SFR (above the shallower
data 3σ MIPS 24 µm detection limit).16 We consider all MIPS
photometry in the median for the individual UV+IR SFRs
measurements (filled circles), even those galaxies intrinsically
faint in the IR. Only 1% of the star-forming galaxies above the
20 µJy limit in each redshift bin have 24 µm photometry with
S/N < 1.

To leverage the additional decade lower in stellar mass
that the CANDELS HST/WFC3 imaging enables us to probe

16 In the case of the 1.0 < z < 1.5 and 1.5 < z < 2.5 bins, the filled circles
representing individual measurements are limited by the 3σ 24 µm
completeness limits (horizontal dotted line, ∼20 µJy), which therefore makes
it appear as though the higher redshift sample extends to lower completeness
limits due to the strongly evolving normalization.
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but if the M∗–Mvir relation is independent of redshift then the 
stellar mass of a central galaxy formed in a halo of mass 
Mvir(t) is M∗ = M∗(Mvir(t)). From this relation star formation 
rates are given simply by 

where f∗ = M∗/Mvir.  We call this Stellar-Halo Accretion Rate 
Coevolution (SHARC) if true halo-by-halo. 

2

2.2 The Galaxy Mass Function

We use the GSMF for central galaxies reported in ? and
obtained from the ? galaxy group catalog based on the SDSS
DR7. This catalog represents an updated version of ?.

2.3 Connecting Galaxies to Halos

We model the central GSMF by defining P (M∗|Mvir) as the
probability distribution function that a distinct halo of mass
Mvir hosts a central galaxy of stellar mass M∗. Then the
GSMF for central galaxies as a function of stellar mass is
given by

φ∗,cen(M∗) =

Z ∞

0

P (M∗|Mvir)φh(Mvir)dMvir. (2)

Here, P (M∗|Mvir) is a lognormal distributions with a scatter
around M∗ assumed to be constant with σc = 0.15 dex. Such
a value is supported the analysis of general large group cat-
alogs (alias?), studies on the kinematics of satellite galaxies
(More et al. 2011) as well as on clustering analysis of large
samples of galaxies ??.

Emphasis that the model reproduces the observed
GSMF at redshift z ∼ 4.

2.4 Inferring Star Formation Rates From Halo
Mass Accretion Rates

In recent analysis of the galaxy stellar mass functions, star
formation rates and cosmic star formation rates from z = 0
to z = 8 combined with the growth halos obtained from N-
body simulations, ? show that the M∗–Mvir relation evolves
slowly with redshift. Moreover, ? showed that when assum-
ing that the ratio of galaxies specific star formation rates
(sSFR) to their host halos specific mass accretion rates
(sMAR), star formation efficiency ϵ, is independent of red-
shift simply explains the cosmic star formation rate since
z = 4.

In this paper we use these results by assuming that
the M∗–Mvir is independent of redshift. We use the relation
obtained in Section 2.3 for local galaxies. Specifically, we
infer galaxy star formation rates from halo mass accretion
rates as follow. Let M∗ = M∗(Mvir(t), t) the stellar mass of
a central galaxy formed in a halo of mass Mvir(t) at time t. If
M∗–Mvir is independent of redshift then M∗ = M∗(Mvir(t)).
From this relation star formation rates are given simply by;

dM∗

dt
= f∗

d log M∗

d log Mvir

dMvir

dt
, (3)

where f∗ = M∗/Mvir. Moreover, from the above equation
we can deduce that the star formation efficiency, ϵ, is just,

sSFR
sMAR

= ϵ =
d log M∗

d log Mvir
. (4)

While in the above analysis the term dMvir/dt refers to
the instantaneous mass accretion rates we also infer SFRs
by using dMvir/dt averaged over a dynamical time scale as
measured from the simulations.

As we will show below, we confirm the previous claim
in ? that this model reproduces the observed evolution of
the SFR−M∗ and cosmic star formation rate. Moreover, we
show that this is also true when using halo mass accretion

Figure 7. Upper Panel: Cosmic mass density as a function of
z. Cosmic star-formation rate as a function of z.

rates averaged over a dynamical time instead. Additionally,
we show that a redshift-independent M∗–Mvir model ex-
plains the observed scatter of the SFR−M∗ in main sequence
galaxies.

3 RESULTS

Figures: SFR vs M∗; sSFR vs M∗; SFRD vs z and cosmic
mass density vs z.

4 DISCUSSION

Discuss about the star formation efficiency. For which galax-
ies ϵ = 1. Do we need a figure of ϵ vs Mvir?

4.1 Implications for the bathtub model

Equation 3 is essentially the bathtub model. Differences be-
tween the observed SFRs and our models will give con-
straints on the regime where the bathtub model is valid.

• For z > 5 our SFRs are above observations. This means
that at early epochs galaxies did not convert gas in stars as
fast as they receive it. This is a phase of gas accumulation
where the bathtub is being fill with gas.

c⃝ 20?? RAS, MNRAS 000, 1–??
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different, especially at lower masses where satellites tend to
have more stellar mass compared to centrals of the same halo
mass (for a more general discussion see Rodŕıguez-Puebla,
Drory & Avila-Reese 2012; Rodŕıguez-Puebla, Avila-Reese
& Drory 2013; Reddick et al. 2013; Watson & Conroy 2013;
Wetzel et al. 2013). Since we are interested in studying the
connection between halo mass accretion and star formation
in central galaxies, for our analysis we derive the SHMR for
central galaxies only.

We model the GSMF of central galaxies by defining
P (M∗|Mvir) as the probability distribution function that a
distinct halo of mass Mvir hosts a central galaxy of stellar
mass M∗. Then the GSMF for central galaxies as a function
of stellar mass is given by

φ∗,cen(M∗) =

Z

∞

0

P (M∗|Mvir)φh(Mvir)dMvir. (2)

Here, φh(Mvir) is the halo mass function and P (M∗|Mvir)
is a log-normal distribution assumed to have a scatter of
σc = 0.15 dex independent of halo mass. Such a value is
supported by the analysis of large group catalogs (Yang,
Mo & van den Bosch 2009; Reddick et al. 2013), studies of
the kinematics of satellite galaxies (More et al. 2011), as well
as clustering analysis of large samples of galaxies (Shankar
et al. 2014; Rodŕıguez-Puebla et al. 2015). Note that this
scatter, σc, consists of an intrinsic component and a mea-
surement error component. At z = 0, most of the scatter
appears to be intrinsic, but that becomes less and less true
at higher redshifts (see, e.g., Behroozi, Conroy & Wechsler
2010; Behroozi, Wechsler & Conroy 2013b; Leauthaud et al.
2012; Tinker et al. 2013). Here, we do not deconvolve to re-
move measurement error, as most of the observations that
we will compare to include these errors in their measure-
ments.

As regards the GSMF of central galaxies, we here use
the results reported in Rodŕıguez-Puebla et al. (2015). In a
recent analysis of the SDSS DR7, Rodŕıguez-Puebla et al.
(2015) derived the total, central, and satellite GSMF for stel-
lar masses from M∗ = 109M⊙ to M∗ = 1012M⊙ based on the
NYU-VAGC (Blanton et al. 2005) and using the 1/Vmax es-
timator. The membership (central/satellite) for each galaxy
was obtained from an updated version of the Yang et al.
(2007) group catalog presented in Yang et al. (2012). The
corresponding SHMR is shown as the black curve in Fig-
ure 3, and the SHMR for all galaxies from Behroozi, Wech-
sler & Conroy (2013a) is shown as the red curve. The dif-
ference between the two curves for halo masses lower than
Mvir ∼ 1012M⊙ reflects the fact that the SHMR of cen-
trals and satellite galaxies are slightly different as mentioned
above. At halo masses higher than Mvir ∼ 1012M⊙ , this
difference is primarily due to the differences between the
GSMFs used to derive these SHMRs, Behroozi et al. 2013
used (Moustakas et al. 2013). When comparing both GSMFs
we find that the high mass-end from Rodŕıguez-Puebla et al.
(2015) is significantly different to the one derive in (Mous-
takas et al. 2013). In contrast, when comparing Rodŕıguez-
Puebla et al. (2015) GSMF with Bernardi et al. (2010) we
find an excellent agreement, for a more general discussion
see Rodŕıguez-Puebla et al. (2015). In less degree, we also
find that the different values employed for the scatter of the
SHMR explain these differences.

2.3 Inferring Star Formation Rates From Halo
Mass Accretion Rates

A number of recent studies exploring the SHMR at differ-
ent redshifts have found that it evolves only slowly with
time (see, e.g., Leauthaud et al. 2012; Hudson et al. 2013;
Behroozi, Wechsler & Conroy 2013b, and references therein).
For example, based on the observed evolution of the GSMF,
the star formation rate SFR, and the cosmic star formation
rate, Behroozi, Wechsler & Conroy (2013b) showed that this
is the case at least up to z = 4 (cf. possible increased evolu-
tion at z > 4; Behroozi & Silk 2015; Finkelstein et al. 2015).
Moreover, Behroozi, Wechsler & Conroy (2013a) showed
that assuming a time-independent ratio of galaxy specific
star formation rate (sSFR) to host halo specific mass accre-
tion rate (sMAR), defined as the star formation efficiency ϵ,
simply explains the cosmic star formation rate since z = 4.
If we assume a time-independent SHMR, the star formation
efficiency is the slope of the SHMR,

ϵ =
Ṁ∗/M∗

Ṁvir/Mvir

=
∂ log M∗

∂ log Mvir
. (3)

This equation simply relates galaxy SFRs to their host
halo MARs without requiring knowledge of the underlying
physics. (This is the main difference between the equilibrium
solution we present below and previous “bathtub” models.)
Our primary motivation here is to understand whether halo
MARs are responsible for the mass and redshift dependence
of the SFR main sequence and its scatter. Similar models
have been explored in the past for different purposes, includ-
ing generating mock catalogs (Taghizadeh-Popp et al. 2015)
and understanding the different clustering of quenched and
star-forming galaxies (Becker 2015).

Using halo MARs, we operationally infer galaxy SFRs
as follows. Let M∗ = M∗(Mvir(t), t) be the stellar mass of a
central galaxy formed in a halo of mass Mvir(t) at time t.
In a time-independent SHMR, the above reduces to M∗ =
M∗(Mvir(t)). From this relation the change of stellar mass
in time is simply

dM∗

dt
= f∗

∂ log M∗

∂ log Mvir

dMvir

dt
, (4)

where f∗ = M∗/Mvir is the stellar-to-halo mass ratio.
Equation (4) implies stellar-halo accretion rate coevolution,
SHARC. The left panel of Figure 4 shows the resulting
stellar-to-halo mass ratio, f∗, derived for SDSS central galax-
ies (see Section 2.2). Consistent with previous studies, we
find that f∗ has a maximum of ∼ 0.03 at Mvir ∼ 1012M⊙,
and it decreases at both higher and lower halo masses. The
product f∗ × ϵ = dM∗/dMvir will be shown as the black
curves in Figure 5 below.

In the more general case M∗ = M∗(Mvir(t), z), equation
(4) generalizes to

dM∗

dt
=

∂M∗(Mvir(t), z)
∂Mvir

dMvir

dt
+

∂M∗(Mvir(t), z)
∂z

dz
dt

, (5)

where the first term is the contribution to the SFR from
halo MAR and the second term is the change in the SHMR
with redshift. Although in this paper we assume a constant
SHMR, the formalism that we describe below applies to this
more general case.

The relation between stellar mass growth and observed
star formation rate is given by

c⃝ 0000 RAS, MNRAS 000, 000–000
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Table 1. List of acronyms used in this paper.

ART Adaptive refinement tree (simulation code).
CSFR Cosmic star formation rate.
IMF Initial mass function.
ISM Interstellar medium.
GSMF Galaxy stellar mass function.
MAR Mass accretion rate, Ṁvir.
SHARC Stellar halo accretion rate coevolution.
E+SHARC Equilibrium+SHARC.
SDSS Sloan digital sky survey.
SFR Star formation rate.
SHMR Stellar-to-halo mass relation.
sMAR Specific mass accretion rate, Ṁvir/Mvir.
sSFR specific star formation rate, SFR/M∗.

the spherical overdensity criterion of Bryan & Norman (1998). We
also assume a Chabrier (2003) IMF. Finally, Table 1 lists all the
acronyms used in this paper.

2 ST E L L A R H A L O AC C R E T I O N R AT E
C O E VO L U T I O N ( S H A R C )

2.1 The simulation

We generate our mock galaxy catalogues based on the N-body
Bolshoi–Planck simulation (Klypin et al. 2014). The Bolshoi–
Planck simulation is based on the !CDM cosmology with param-
eters consistent with the latest results from the Planck Collabora-
tion (Planck Collaboration XIII 2015) and run using the ART code
(Kravtsov, Klypin & Khokhlov 1997; Gottloeber & Klypin 2008).
The Bolshoi–Planck simulation has a volume of (250 h−1Mpc)3 and
contains 20483 particles of mass 1.9 × 108 M⊙. Haloes/subhaloes
and their merger trees were calculated with the phase-space tempo-

ral halo finder ROCKSTAR (Behroozi, Wechsler & Wu 2013b; Behroozi
et al. 2013c). Halo masses were defined using spherical overden-
sities according to the redshift-dependent virial overdensity "vir(z)
given by the spherical collapse model (Bryan & Norman 1998),
with "vir = 178 for large z and "vir = 333 at z = 0 with our
#M. Like the Bolshoi simulation (Klypin et al. 2011), Bolshoi–
Planck is complete down to haloes of maximum circular velocity
vmax ∼ 55 km s−1.

In this paper, we calculate instantaneous halo MARs from the
Bolshoi–Planck simulation, as well as halo MARs averaged over
the dynamical time (Ṁvir,dyn), defined as
〈 dMvir

dt

〉

dyn
= Mvir(t) − Mvir(t − tdyn)

tdyn
. (1)

The dynamical time of the halo is tdyn(z) = [G"vir(z)ρm]−1/2, which
is ∼20 per cent of the Hubble time. Simulations (e.g. Dekel et al.
2009) suggest that most star formation results from cold gas flowing
inward at about the virial velocity – i.e. roughly a dynamical time
after the gas enters. As instantaneous accretion rates for distinct
haloes near clusters can also be negative (Behroozi et al. 2014),
using time-averaged accretion rates allows galaxies in these haloes
to continue forming stars.

Fig. 1 shows the instantaneous and the dynamical-time-averaged
halo MARs as a function of halo mass and redshift, and Fig. 2 shows
their respective scatters. Even before converting halo accretion rates
into SFRs (Section 2.3), it is evident that both the slope and disper-
sion in halo MARs are already very similar to that of galaxy SFRs
on the main sequence.

2.2 Connecting galaxies to haloes

The abundance matching technique is a simple and powerful statis-
tical approach to connecting galaxies to haloes. In its most simple

Figure 1. Halo MARs from z = 0 to 3, from the Bolshoi–Planck simulation. The instantaneous rate is shown in black, and the dynamically time averaged rate
in red. The grey band is the 1σ (68 per cent) range of the instantaneous MARs. All the slopes are approximately the same ∼1.1 both for Ṁvir and Ṁvir,dyn.
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Figure 2. Scatter of halo MARs from z = 0 to 3 from the Bolshoi–Planck
simulation. As in Fig. 1, scatter for the instantaneous rate is shown in black,
and that for the dynamically time averaged rate in red.

form, the cumulative halo and subhalo mass function1 and the cu-
mulative GSMF are matched in order to determine the mass relation
between haloes and galaxies. In order to assign galaxies to haloes
in the Bolshoi–Planck simulation, in this paper we use a more gen-
eral procedure for abundance matching. Recent studies have shown
that the mean SHMRs of central and satellite galaxies are slightly
different, especially at lower masses where satellites tend to have
more stellar mass compared to centrals of the same halo mass (for
a more general discussion see Rodrı́guez-Puebla et al. 2012, 2013;
Reddick et al. 2013; Watson & Conroy 2013; Wetzel et al. 2013).
Since we are interested in studying the connection between halo
mass accretion and star formation in central galaxies, for our anal-
ysis we derive the SHMR for central galaxies only.

We model the GSMF of central galaxies by defining P (M∗|Mvir)
as the probability distribution function that a distinct halo of mass
Mvir hosts a central galaxy of stellar mass M∗. Then the GSMF for
central galaxies as a function of stellar mass is given by

φ∗,cen(M∗) =
∫ ∞

0
P (M∗|Mvir)φh(Mvir) dMvir. (2)

Here, φh(Mvir) is the halo mass function and P (M∗|Mvir) is a log-
normal distribution assumed to have a scatter of σ c = 0.15 dex
independent of halo mass. Such a value is supported by the anal-
ysis of large group catalogues (Yang, Mo & van den Bosch 2009;
Reddick et al. 2013), studies of the kinematics of satellite galaxies
(More et al. 2011), as well as clustering analysis of large samples
of galaxies (Shankar et al. 2014; Rodrı́guez-Puebla et al. 2015).
Note that this scatter, σ c, consists of an intrinsic component and a
measurement error component. At z = 0, most of the scatter ap-
pears to be intrinsic, but that becomes less and less true at higher
redshifts (see e.g. Behroozi, Conroy & Wechsler 2010; Leauthaud
et al. 2012; Behroozi et al. 2013d; Tinker et al. 2013). Here, we
do not deconvolve to remove measurement error, as most of the
observations that we will compare to include these errors in their
measurements.

As regards the GSMF of central galaxies, we here use the results
reported in Rodrı́guez-Puebla et al. (2015). In a recent analysis of
the SDSS DR7, Rodrı́guez-Puebla et al. (2015) derived the total,
central, and satellite GSMF for stellar masses from M∗ = 109 M⊙

1 Typically defined at the time of subhalo accretion.

Figure 3. Upper panel: SHMR for SDSS galaxies. The red curve is for all
SDSS galaxies, from Behroozi et al. (2013d) abundance matching using the
Bolshoi simulation. The black curve is for SDSS central galaxies, using the
abundance matching method of Rodrı́guez-Puebla, Avila-Reese & Drory
(2013) applied to the Bolshoi–Planck simulation. The latter is what we
use in this paper, where we restrict attention to central galaxies. Bottom
Panel: halo-to-stellar mass relations. The dotted vertical line and the blue
arrow indicate that galaxies below M∗ = 1010.5 M⊙ are considered as main
sequence galaxies, while some higher mass galaxies are not on the main
sequence.

to 1012 M⊙ based on the NYU-VAGC (Blanton et al. 2005) and
using the 1/Vmax estimator. The membership (central/satellite) for
each galaxy was obtained from an updated version of the Yang
et al. (2007) group catalogue presented in Yang et al. (2012). The
corresponding SHMR is shown as the black curve in Fig. 3, and
the SHMR for all galaxies from Behroozi et al. (2013a) is shown
as the red curve. The difference between the two curves for halo
masses lower than Mvir ∼ 1012 M⊙ reflects the fact that the SHMR
of centrals and satellite galaxies are slightly different as mentioned
above. At halo masses higher than Mvir ∼ 1012 M⊙, this difference
is primarily due to the differences between the GSMFs used to derive
these SHMRs, Behroozi et al. (2013c) used Moustakas et al. (2013).
When comparing both GSMFs, we find that the high-mass end from
Rodrı́guez-Puebla et al. (2015) is significantly different to the one
derive in Moustakas et al. (2013). In contrast, when comparing
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Figure 8. Specific star formation rates as a function of redshift z for stellar masses M∗ = 109, 109.5, 1010 and 1010.5M⊙ from time-
independent SHMR model. The red and black curves are the sSFRs, from both dynamically-time-averaged and instantaneous mass
accretion rates, respectively, with the gray band representing the dispersion in the latter. Both are corrected for mergers. The orange
curve is the Speagle et al. (2014) summary of observed sSFRs on the main sequence. Observations from Whitaker et al. (2014), Ilbert
et al. (2015) and Schreiber et al. (2015) are also included.

esting to discuss these differences in the light of the constant
SHMR model.

First, the observed sSFRs of galaxies at z > 4 are sys-
tematically lower than the time independent SHMR model
predictions. These differences increase at z = 6. The dis-
agreement between the constant SHMR predicted SFRs and
the observations implies that the changing SHMR must be
used, as in equation (5), at least at high redshift.

Between z = 4 and z = 3 the observed star-forming
sequence is consistent with the SHARC predictions. Between
z = 2 and z = 0.5, the observed sSFRs are slightly above
the SHARC predictions. This departure occurs at the time
of the peak value of the cosmic star formation rate.

After the compilation carried out by Speagle et al.
(2014), new determinations of the sSFR have been pub-
lished, particularly for redshifts z < 2.5. In Figures 7 and 8,
we reproduce new data published in Whitaker et al. (2014);
Ilbert et al. (2015) and Schreiber et al. (2015). This new
set of data agrees better with our model between z = 2
and z = 0.5, implying that the time-independent SHMR
(SHARC assumption) may be nearly valid across the wide
redshift range from z ∼ 4 to z ∼ 0, a remarkable result.
However, it is not clear whether this is valid since the newer
observations have not been recalibrated as in Speagle et al.
(2014).

Figure 9. Scatter of the sSFR for main-sequence galaxies pre-
dicted in our model.

4.2 Scatter of the sSFR Main Sequence

We now turn our discussion to the scatter of the star-forming
main sequence, displayed in Figure 9. When using Ṁvir, the
scatter is nearly independent of redshift and it increases
very slowly with mass for z < 2. The value of the scat-

c⃝ 0000 RAS, MNRAS 000, 000–000

SHARC correctly predicts star formation rates to z ~ 4
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At the present day, only a few galaxies lie between the 
peaks of the blue and red galaxies, in the so-called “green 
valley” (so named because green wavelengths are midway 
between red and blue in the spectrum). A blue galaxy that 
is vigorously forming stars will become green within a 
few hundred million years if star formation is suddenly 
quenched. On the other hand, a galaxy that has lots of old 
stars and a few young ones can also be green just through 
the combination of the blue colors of its young stars and 
the red colors of the old ones. The Milky Way probably 
falls in this latter category, but the many elliptical galaxies 
around us today probably made the transition from blue 
to red via a rapid quenching of star formation. CANDELS 
lets us look back at this history. 

Most galaxies of interest to astronomers working on 
CANDELS have a look-back time of at least 10 billion 
years, when the universe was only a few billion years old. 
Because the most distant galaxies were relatively young at 
the time we observe them, we thought few of them would 
have shut off star formation. So we expected that red gal-
axies would be rare in the early universe. But an impor-
tant surprise from CANDELS is that red galaxies with the 
same elliptical shapes as nearby red galaxies were already 
common only 3 billion years after the Big Bang — right 
in the middle of cosmic high noon. 

Puzzlingly, however, elliptical galaxies from only 
about 3 billion years after the Big Bang are only one-
third the size of typical elliptical galaxies with the same 
stellar mass today. Clearly, elliptical galaxies in the early 
universe must have subsequently grown in a way that 
increased their sizes without greatly increasing the num-
ber of stars or redistributing the stars in a way that would 
change their shapes. Many astronomers suspect that the 

present-day red ellipticals with old stars grew in size by 
“dry” mergers — mergers between galaxies having older 
red stars but precious little star-forming cold gas. But 
the jury is still out on whether this mechanism works in 
detail to explain the observations. 

The Case of the Chaotic Blue Galaxies
Ever since Hubble’s first spectacular images of distant 
galaxies, an enduring puzzle has been why early star-
forming galaxies look much more irregular and jumbled 
than nearby blue galaxies. Nearby blue galaxies are 
relatively smooth. The most beautiful ones are elegant 
“grand-design” spirals with lanes of stars and gas, such as 
M51. Smaller, irregular dwarf galaxies are also often blue.

But at cosmic high noon, when stars were blazing 
into existence at peak rates, many galaxies look distorted 
or misshapen, as if galaxies of similar size are colliding. 
Even the calmer-looking galaxies are often clumpy and 
irregular. Instead of having smooth disks or spiral arms, 
early galaxies are dotted with bright blue clumps of very 
active star formation. Some of these clumps are over 100 
times more luminous than the Tarantula Nebula in the 
Large Magellanic Cloud, one of the biggest star-forming 
regions in the nearby universe. How did the chaotic, dis-
ordered galaxies from earlier epochs evolve to become the 
familiar present-day spiral and elliptical galaxies? 

Because early galaxies appear highly distorted, astro-
physicists had hypothesized that major mergers — that is, 
collisions of galaxies of roughly equal mass — played an 
important role in the evolution of many galaxies. Merg-
ers can redistribute the stars, turning two disk galaxies 
into a single elliptical galaxy. A merger can also drive gas 
toward a galaxy’s center, where it can funnel into a black 
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STARBIRTH RATE  Using data from many surveys, including CANDELS, 
astronomers have plotted the rate of star formation through cosmic history. 
The rate climbed rapidly at cosmic dawn and peaked at cosmic high noon.

COSMIC WEB  This frame from the Bolshoi supercom-
puter simulation depicts the distribution of matter at 
redshift 3. Clusters of galaxies lie along the bright filaments. 
Dark matter and cold gas flow along the filaments to supply 
galaxies with the material they need to form stars.
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Cosmological Simulations
Astronomical observations represent snapshots 
of moments in time.  It is the role of astrophysical 
theory to produce movies -- both metaphorical 
and actual -- that link these snapshots together 
into a coherent physical theory.  

Cosmological dark matter simulations show 
large scale structure and dark matter halo 
properties, basis for semi-analytic models 

Hydrodynamic galaxy formation simulations: 
evolution of galaxies, formation of galactic 
spheroids, mock galaxy images and spectra 
including stellar evolution and dust effects



Galaxy Hydro Simulations: 2 Approaches
1. Low resolution (~ kpc)

Advantages: it’s possible to simulate many galaxies and study 
galaxy populations and their interactions with CGM & IGM. 
Disadvantages: we learn little about how galaxies themselves 
evolve, and cannot compare in detail with high-z galaxy images 
and spectra. 
Examples: Overwhelmingly Large Simulations (OWLs, EAGLE), 
AREPO simulations in 100 Mpc box (Illustris)

Advantages: it’s possible to compare in detail with high-z 
galaxy images and spectra, to discover how galaxies evolve, 
morphological drivers (e.g., galaxy shapes, clumps and other 
instabilities, origins of galactic spheroids, quenching).  
Radiative feedback essential?  
Disadvantages: it’s hard to run statistical galaxy samples, so 
the best approach puts simulation insights into SAMs.  
Examples: ART and FIRE simulation suites, AGORA simulation 
comparison project

2. High resolution (~10s of pc)



simulated 
z ~ 2 galaxies 

Ly alpha blobs from same simulation

ART hydro sims. 
Ceverino et al. 2010

observed 
z ~ 2 galaxies

Face-on Edge-on

Fumagalli, Prochaska, Kasen, Dekel, Ceverino, & Primack 2011

Edge-on

Face-on

Generation 1 Simulation

Clumpy Galaxies in hydroART Generation 1 Simulations

Edge-on

GAS, Face-on GAS, Edge-on STARS, Face-on STARS, Edge-on



Simulated 
Galaxy 

10 billion 
years ago 

as it would 
appear 

nearby to 
our eyes 

face-on edge-on

as it 
would 

appear to 
Hubble’s 

ACS 
visual 

camera

as it 
would 

appear to 
Hubble’s 

WFC3 
infrared 
camera

face-on edge-on

VELA27-RP 
z = 2.1

VELA27-RP 
z = 2.1

Radiative Feedback: Fewer Stars 

More Elongated

CANDELized



Ceverino+ RP simulations 
analyzed by Zolotov, Dekel, 

Tweed, Mandelker, Ceverino, 
& Primack MNRAS 2015

Barro+ (CANDELS) 2013

VELA07-RP VELA12-RP

FAST-TRACK

SLOW-TRACK

VELA11-RP VELA27-RP

•
•

minor merger
major merger

COMPACTION —>
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Zolotov+2015



Compaction and Quenching in the Inner 1 kpc 

whole galaxy

inner 1 kpc

Avishai Dekel                                      based on  Zolotov+2015

Inner 10 kpc



Gen 3 VELA07-RP  Animations  z = 4.4 to 2.3
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The Astrophysical Journal Letters, 792:L6 (6pp), 2014 September 1 van der Wel et al.
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Figure 3. Reconstructed intrinsic shape distributions of star-forming galaxies in our 3D-HST/CANDELS sample in four stellar mass bins and five redshift bins. The
model ellipticity and triaxiality distributions are assumed to be Gaussian, with the mean indicated by the filled squares, and the standard deviation indicated by the
open vertical bars. The 1σ uncertainties on the mean and scatter are indicated by the error bars. Essentially all present-day galaxies have large ellipticities, and small
triaxialities—they are almost all fairly thin disks. Toward higher redshifts low-mass galaxies become progressively more triaxial. High-mass galaxies always have
rather low triaxialities, but they become thicker at z ∼ 2.
(A color version of this figure is available in the online journal.)

Figure 4. Color bars indicate the fraction of the different types of shape defined in Figure 2 as a function of redshift and stellar mass. The negative redshift bins
represent the SDSS results for z < 0.1; the other bins are from 3D-HST/CANDELS.
(A color version of this figure is available in the online journal.)

Letter allows us to generalize this conclusion to include earlier
epochs.

At least since z ∼ 2 most star formation is accounted for by
!1010 M⊙ galaxies (e.g., Karim et al. 2011). Figures 3 and 4
show that such galaxies have disk-like geometries over the same
redshift range. Given that 90% of stars in the universe formed
over that time span, it follows that the majority of all stars in the
universe formed in disk galaxies. Combined with the evidence
that star formation is spatially extended, and not, for example,
concentrated in galaxy centers (e.g., Nelson et al. 2012; Wuyts
et al. 2012) this implies that the vast majority of stars formed in
disks.

Despite this universal dominance of disks, the elongatedness
of many low-mass galaxies at z ! 1 implies that the shape of
a galaxy generally differs from that of a disk at early stages
in its evolution. According to our results, an elongated, low-
mass galaxy at z ∼ 1.5 will evolve into a disk at later times, or,
reversing the argument, disk galaxies in the present-day universe
do not initially start out disks.13

As can be seen in Figure 3, the transition from elongated
to disky is gradual for the population. This is not necessarily

13 This evolutionary path is potentially interrupted by the removal of gas and
cessation of star formation.
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van der Wel+2014

Prolate
Spheroidal
Oblate

See also Morphological Survey of Galaxies z=1.5-3.6  Law, Steidel+ ApJ 2012
               When Did Round Disk Galaxies Form?  T. M. Takeuchi+ ApJ 2015

Prolate Galaxies Dominate at High Redshifts & Low Masses
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Dark matter halos are elongated, especially !
near their centers.  Initially stars follow the !
gravitationally dominant dark matter, as shown.!
But later as the ordinary matter central density 
grows and it becomes gravitationally dominant, 
the star and dark matter distributions both 
become disky — as observed by Hubble 
Space Telescope  (van der Wel+ ApJL Sept 
2014).!

Our cosmological zoom-in simulations often produce elongated galaxies like observed 
ones.  The elongated stellar distribution follows the elongated inner dark matter halo.

MNRAS 453, 408–413 (2015) doi:10.1093/mnras/stv1603
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ABSTRACT
We report the identification of elongated (triaxial or prolate) galaxies in cosmological simula-
tions at z ≃ 2. These are preferentially low-mass galaxies (M∗ ≤ 109.5 M⊙), residing in dark
matter (DM) haloes with strongly elongated inner parts, a common feature of high-redshift
DM haloes in the ! cold dark matter cosmology. Feedback slows formation of stars at the
centres of these haloes, so that a dominant and prolate DM distribution gives rise to galaxies
elongated along the DM major axis. As galaxies grow in stellar mass, stars dominate the total
mass within the galaxy half-mass radius, making stars and DM rounder and more oblate. A
large population of elongated galaxies produces a very asymmetric distribution of projected
axis ratios, as observed in high-z galaxy surveys. This indicates that the majority of the galaxies
at high redshifts are not discs or spheroids but rather galaxies with elongated morphologies.

Key words: galaxies: evolution – galaxies: formation.

1 IN T RO D U C T I O N

The intrinsic, three-dimensional (3D) shapes of today’s galaxies
can be roughly described as discs or spheroids, or a combination of
the two. These shapes are characterized by having no preferential
long direction. Examples of galaxies elongated along a preferential
direction (prolate or triaxial) are rare at z = 0 (Padilla & Strauss
2008; Weijmans et al. 2014). They are usually unrelaxed systems,
such as ongoing mergers. However, at high redshifts, z = 1–4, we
may witness the rise of the galaxy structures that we see today at
the expense of other structures that may be more common during
those early and violent times.

Observations trying to constrain the intrinsic shapes of the stellar
components of high-z galaxies are scarce but they agree that the
distribution of projected axis ratios of high-z samples at z = 1.5–4
is inconsistent with a population of randomly oriented disc galaxies
(Ravindranath et al. 2006; Law et al. 2012; Yuma, Ohta & Yabe
2012). After some modelling, Law et al. (2012) concluded that
the intrinsic shapes are strongly triaxial. This implies that a large
population of high-z galaxies are elongated along a preferential
direction.

van der Wel et al. (2014) looked at the mass and redshift de-
pendence of the projected axis ratios using a large sample of star-
forming galaxies at 0 < z < 2.5 from CANDELS+3D-HST and
SDSS. They found that the fraction of intrinsically elongated galax-
ies increases towards higher redshifts and lower masses. They con-

⋆ E-mail: daniel.ceverino@cab.inta-csic.es

cluded that the majority of the star-forming galaxies with stellar
masses of M∗ = 109–109.5 M⊙ are elongated at z ≥ 1. At lower
redshifts, galaxies with similar masses are mainly oblate, disc-like
systems. It seems that most low-mass galaxies have not yet formed
a regularly rotating stellar disc at z ! 1. This introduces an interest-
ing theoretical challenge. In principle, these galaxies are gas-rich
and gas tends to settle in rotationally supported discs, if the angular
momentum is conserved (Fall & Efstathiou 1980; Blumenthal et al.
1986; Mo, Mao & White 1998; Bullock et al. 2001). At the same
time, high-mass galaxies tend to be oblate systems even at high-z.
The observations thus suggest that protogalaxies may develop an
early prolate shape and then become oblate as they grow in mass.

Prolateness or triaxiality are common properties of dark mat-
ter (DM) haloes in N-body-only simulations (Jing & Suto 2002;
Allgood et al. 2006; Bett et al. 2007; Macciò et al. 2007; Macciò,
Dutton & van den Bosch 2008; Schneider, Frenk & Cole 2012,
and references therein). Haloes at a given mass scale are more pro-
late at earlier times, and at a given redshift more massive haloes
are more elongated. For example, small haloes with virial masses
around Mv ≃ 1011 M⊙ at redshift z = 2 are as prolate as today’s
galaxy clusters. Individual haloes are more prolate at earlier times,
when haloes are fed by narrow DM filaments, including mergers,
rather than isotropically, as described in Vera-Ciro et al. (2011). The
progenitors of Milky Way-sized haloes are fairly prolate at redshift
z = 2 and they are increasingly more elongated at smaller radii
(Allgood et al. 2006) because their inner shells collapsed earlier.

The shape of the inner DM halo could influence the shape of
the central galaxy (Dekel & Shlosman 1983). If a triaxial halo
dominates the inner gravitational potential, the inner galaxy feels
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Formation of elongated galaxies 
with low masses at high redshift 
Daniel Ceverino, Joel Primack and Avishai Dekel 
ABSTRACT 

We report the identification of elongated (triaxial or prolate) 
galaxies in cosmological simulations at z ~ 2. These are 
preferentially low-mass galaxies (M∗ ≤ 109.5 M⊙), residing in 
dark matter (DM) haloes with strongly elongated inner parts, a 
common feature of high-redshift DM haloes in the cold dark 
matter cosmology. A large population of elongated galaxies 
produces a very asymmetric distribution of projected axis ratios, 
as observed in high-z galaxy surveys. This indicates that the 
majority of the galaxies at high redshifts are not discs or spheroids 
but rather galaxies with elongated morphologies 

Nearby large galaxies are mostly disks and spheroids — but they start out looking more like pickles.



In hydro sims, dark-matter dominated galaxies are 
prolateCeverino, Primack, Dekel

M* <1010 M☉ at z=2Stars

Dark matter

20 kpc

MNRAS 453, 408 (2015)

Formation of elongated galaxies with low masses at 
high redshift

Also Tomassetti et al. 2016 MNRAS

Daniel Ceverino, Joel Primack and Avishai Dekel MNRAS 2015

Simulated elongated galaxies are 
aligned with cosmic web filaments, 
become round after compaction 
(gas inflow to center)



How we are using galaxy simulations and deep learning to improve 
understanding of galaxy formation, with support from Google. 

Sander Dieleman used a deep learning code to predict Galaxy Zoo nearby galaxy 
image classifications with 99% accuracy, winning 2014 Kaggle competition

Marc Huertas-Company used Dieleman’s code to classify CANDELS galaxy images

Google supports Marc H-C’s visits to UCSC Summer 2016 and 2017, and his grad 
student Fernando Caro’s visit March-August 2017 using deep learning, CANDELS 
images, and Primack group’s galaxy simulations to understand galaxy formation

H-C et al. 2015, Catalog of  Visual-like Morphologies in 5 CANDELS Fields Using Deep Learning 

H-C et al. 2016, Mass assembly and morphological transformations since z ~ 3 from CANDELS

UCSC group here today: Profs. David Koo, Joel Primack; grad students Fernando Caro, 
Christoph Lee, Viraj Pandya, astrophysics senior thesis student Sean Larkin

Related UCSC deep learning project: damped Lyα systems in SDSS spectra
Here today: Dr. Shawfeng Dong

Related UCSC deep learning project: better galaxy environment estimates
Here today: Dr. Doug Hellinger, grad students James Kakos, Dominic Pasquali



Sander Dieleman used a deep learning code to predict Galaxy Zoo nearby galaxy 
image classifications with 99% accuracy, winning 2014 Kaggle competition

Dieleman, Willett, Dambre 2015, Rotation-invariant convolutional neural networks for galaxy 
morphology prediction, MNRAS 

http://benanne.github.io/2014/04/05/galaxy-zoo.html

Krizhevsky-style	diagram	of	the	architecture	of	the	best	performing	network.

From the ABSTRACT:  The Galaxy Zoo project successfully applied a crowdsourcing strategy, inviting online users to 
classify images by answering a series of  questions.  We present a deep neural network model for galaxy morphology 
classification which exploits translational and rotational symmetry. For images with high agreement among the Galaxy Zoo 
participants, our model is able to reproduce their consensus with near-perfect accuracy (>99 per cent) for most questions.

The Galaxy Zoo 2 decision tree. Reproduced from fig.1 in 
Willett et al. (2013). 

http://benanne.github.io/2014/04/05/galaxy-zoo.html


Marc Huertas-Company used Dieleman’s code to classify CANDELS galaxy images
H-C et al. 2015, Catalog of  Visual-like Morphologies in 5 CANDELS Fields Using Deep Learning

H-C et al. 2016, Mass assembly and morphological transformations since z ~ 3 from CANDELS

In this work, we mimic human perception with deep learning using convolutional neural networks (ConvNets). The 
ConvNet is trained to reproduce the CANDELS visual morphological classification based on the efforts of  65 individual 
classifiers who contributed to the visual inspection of  all of  the galaxies in the GOODS-S field.  It was then applied to the 
other four CANDELS fields.  The galaxy classification data was then released to the astronomical community. 

ConvNets have been proven to perform extremely well in
image recognition tasks. For example, they have achieved an
error rate of 0.23% for the MNIST database, which is a
collection of manuscript numbers considered as a standard
test for all new machine learning algorithms (Ciresan
et al. 2012). When applied to facial recognition, they achieve
a 97.6% recognition rate on 5600 images of more than 10
subjects (Matusugu et al. 2003). The ImageNet Large Scale
Visual Recognition Challenge is a benchmark in object
classification and detection, with millions of images and
hundreds of object classes. In Krizhevsky et al. (2012),
ConvNets were able to achieve an error rate of 15.3%

compared to the rate of 26.2% achieved by the second best
competitors (non-deep). Also, the performance of convolu-
tional neural networks on the ImageNet tests is now close
to a purely human-based classification (Russakovsky
et al. 2014).
ConvNets were first applied to galaxy morphological

classification earlier this year in the framework of the Galaxy
Zoo Challenge on the Kaggle platform.13 The goal of the
challenge was to find an algorithm able to predict the 37 votes
of the Galaxy Zoo 2 release. The winner of the competition

Figure 2. Configuration of the Convolutional Neural Network used in this paper. The Network is based on the one used by Dieleman et al. (2015) on SDSS galaxies. It
is made of 5 convolutional layers followed by 2 fully connected perceptron layers. In the convolutional part there are also 3 max-pooling steps of different sizes. The
input are SDDSized CANDELS galaxies as explained in the text and the output (for this paper) is made of 5 real values corresponding to the fractions defined in the
CANDELS classification scheme.

Figure 3. CANDELS Main Morphology visual classification scheme as described in Kartaltepe et al. (2014). Each classifier (3–5 per galaxy on average) is asked to
provide 5 flags for each galaxy corresponding to the main morphological properties of the galaxy as labeled in the figure. The flags are then combined to produce the
fractions of people that voted for a given feature.

13 https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
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Configuration of  the Convolutional Neural Network used in this paper, 
based on the one used by Dieleman et al. (2015) on SDSS galaxies. It 
is made of  5 convolutional layers followed by 2 fully connected 
perceptron layers. 

Following the approach in CANDELS, we 
associate five real numbers with each galaxy 
corresponding to the frequency at which 
expert classifiers flagged a galaxy as having 
a bulge, having a disk, presenting an 
irregularity, being compact or point-source, 
and being unclassifiable. Galaxy images are 
interpolated to a fixed size, rotated, and 
randomly perturbed before feeding the 
network to (i) avoid over-fitting and (ii) reach 
a comparable ratio of  background versus 
galaxy pixels in all images. ConvNets are 
able to predict the votes of  expert classifiers 
with a <10% bias and a ∼10% scatter. This 
makes the classification almost equivalent to 
a visual-based classification. The training 
took 10 days on a GPU and the classification 
is performed at a rate of  1000 galaxies/hour. 

From the ABSTRACT: We quantify the evolution of  star-forming and quiescent galaxies as a function of  morphology from 
z ~ 3 to the present. Our main results are: 1) At z ~ 2, 80% of  the stellar mass density of  star-forming galaxies is in 
irregular systems. However, by z ∼ 0.5, irregular objects only dominate at stellar masses below 109M⊙.                                    

2) Quenching: We confirm that galaxies reaching a stellar mass M∗ ~ 1010.8M⊙ tend to quench. Also, quenching implies 
the presence of  a bulge: the abundance of  massive red disks is negligible at all redshifts 



Google supports Marc H-C’s visits to UCSC Summer 2016 and 2017, and his grad 
student Fernando Caro’s visit March-August 2017 using deep learning, CANDELS 
images, and Primack group’s galaxy simulations to understand galaxy formation
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Figure 3: Evolution of zoom-in galaxy simulation VELA23-RP. The upper three panels show the
probabilities that the galaxy is best fit by GALFIT as a single-Sérsic Bulge or Disk, or instead as
a double Sérsic Bulge+Disk, based on classifications by deep learning codes trained using
synthetic images. (Note that these probabilities do not need to sum to unity, since they are
independent.) Classifications are plotted for 20 di↵erent orientations, with the medians plotted as
heavy lines. The lower panels show the evolution of masses and rates in the inner 1 kpc (left
panel) and out to 10 kpc (right panel). Masses plotted are dark matter (black), stars formed in
situ (red), accreted ex situ stars (green), and gas (blue), and mass rates plotted are star formation
(purple), gas inflow (cyan), and gas outflow (magenta).

mergers leads to stellar mass dominating over dark matter in the inner kpc. The Bulge
probability accordingly increases at z <⇠ 3 and the pure Disk and Bulge+Disk probabilities
drop there. The gas density in the galaxy center then declines as gas is turned into stars
or expelled, and the stellar mass in the inner kpc remains essentially constant for several
Gyr. But on the 10 kpc scale star formation continues, producing a disk around the bulge,
so the Bulge+Disk and the pure Disk probabilities increase and the pure Bulge probability
decreases. Then a gas-rich major merger occurs at z ⇠ 1.2, leading to significant central star
formation with a corresponding increase in the Bulge and Bulge+Disk probabilities and a
decrease in the pure Disk probability.

The key message from this and other tests we have done is that the deep learning codes
e�ciently extract information in the H-band images of the forming galaxy at most orien-
tations that correlates with the astrophysical phenomena. Note also that the compaction
due to gas inflow at z ⇠ 3 and the bulge growth due to a merger at z ⇠ 1.2 lead to similar

7

Evolution of  zoom-in galaxy simulation VELA23-RP. The upper three panels show the probabilities 
that the galaxy is best fit by GALFIT as a single-Sersic Bulge or Disk, or instead as a double Sersic 
Bulge+Disk, based on classifications by a deep learning code trained using synthetic images. 
(Note that these probabilities do not need to sum to unity, since they are independent.) 
Classifications are plotted for 20 different orientations, with the medians plotted as heavy lines. 
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Google supports Marc H-C’s visits to UCSC Summer 2016 and 2017, and his grad 
student Fernando Caro’s visit March-August 2017 using deep learning, CANDELS 
images, and Primack group’s galaxy simulations to understand galaxy formation
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This is an oversimplified example, 
where we just used the total dark 
matter mass within the halo radius 
RV to estimate when a major merger
occurred.  We are now analyzing
the entire satellite galaxy population 
to determine when major and minor 
mergers and satellite fly-bys occur.

UCSC group here today: Profs. David Koo, Joel Primack; grad students Fernando Caro, 
Christoph Lee, Viraj Pandya, astrophysics senior thesis student Sean Larkin



Related UCSC deep learning project: better galaxy environment estimates
Here today: Dr. Doug Hellinger, grad students James Kakos, Dominic Pasquali
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SORT allows recovery of the 2-pointcorrelation function for s > 4 Mpc/h
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SORT allows recovery of the 2-pointcorrelation function for s > 4 Mpc/h

Images at various wavelengths (=>photometric redshifts, photo-z’s) are much more plentiful than 
spectroscopic redshifts.  How can we best combine a few spectroscopic z’s with many photo-z’s 
to estimate the environment of  each galaxy?  A preprint by Nicholas Tejos, Aldo Rodriguez-
Puebla, and Joel Primack introduces a method (“sort”) to do this.  Can deep learning do better? 

photo-z’sspec-z’s sort z’s true z’s
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Ratio of  measured and 
true 2-point correlation 
function as a function 
of  redshift space 
distance s.  Sort gets it 
right for s > 4 h-1 Mpc, 
while photo-z’s fail 
even at s > 40 h-1 Mpc.



DLA detection using deep learning

Figure 2: An outline of the neural network architecture used. See section V for a more detailed description.

Neural Network Architecture
The neural network architecture is shown in
figure 2. We use a convolutional neural net-
work with three convolutional layers followed
by a fully connected layer.

Convolutional neural networks essentially
break an image into component pieces which
are matched to different parts of the image you
are looking at, then builds these back up in
a hierarchical fashion to construct the desired
result. The process of breaking the image, or
sightline in our case, into component pieces,
and learning what those components are that
are most beneficial in producing a correct re-
sult, forces the neural network to learn con-
cepts such as measuring column density, rather
than simply memorizing the input. Hence con-
volutional network generalize to unseen sam-
ples quite well.

The structure of the network with detailed
hyperparameters is provided in section V.

The architecture consists of an input, which

are the flux values of a 400 pixel segment of
the sightline (for each sightline we pass it every
such 400 pixel segment as separate samples,
1748 of them). The input is not normalized,
but we do pad the blue end of the spectrum
to lrest = 900Å if it does not have data in that
range as discussed in ??. It goes through three
standard convolutional layers each followed
by a pooling layer (essentially down sampling
the input size) which breaks the sightline into
component pieces. Then a fully connected layer
is applied at the end.

The architecture to that point is fairly sim-
ple, three convolutional layers followed by a
fully connected layer. These layers of the net-
work are shared components. The final layer
of the network has 3 independent fully con-
nected layers. Each of these 3 layers connects
to the shared fully connected layer, and each of
the 3 output layers has a loss function: 1) sig-
moid/cross entropy loss for [0, 1] classification;
2) square-loss for [�60,+60] localization; and
3) square-loss for real valued column density

5

DLA detection using deep learning

Figure 15: The sightline is broken into 400 pixel segments in a sliding window, so 1748 inference computations must
be made for each sightline. Using each of the 1748 pixels in the sightline as the center point of a 400
pixel window generates a prediction per pixel. This approach facilitates identifying overlapping DLAs and
generates a large training dataset.

identified sightlines with or without a DLA
(simple binary classification). We then created
a separate network that performed localization
by improving upon the simple binary classifica-
tion and outputting a predicted center point of
the DLA relative to the current input. Finally
we trained a third model to take the samples
where a DLA exists somewhere in the window
and trained it to predict the column density of
the DLA, regardless of its location. We found
that combining the models into one produced
better results than training each model inde-
pendently. An astute reader will note that us-
ing a single model for all 3 of these outputs
will force us to train on areas of the sightline
where no DLA exists, rendering the result of
the column density measurement irrelevant.
We side step this issue by masking the gradient
appropriate, and discuss this in detail in the
section on multi task learning V.

A visualization of the labels for each pixel
in a sightline is shown in the visualization
16. We demonstrate how the data is labeled,
classification is fairly straight forward, as longI think

some
words
are miss-
ing here

I think
some
words
are miss-
ing here

as the DLA is within 60 pixels of the 400 pixel
window it takes on a 1/true value, else 0/false.
Localization operates similarly, though instead
of a 0/1 value the output is an offset between
[�60,+60], essentially pointing to the DLA,
and column density is either the column den-
sity of a DLA if one is within 60 pixels of that
point, or 0 (we again reference the section on
multi task learning for further details here V).

A notable problem occurs at the boundary
where a valid DLA is 61 pixels from the center

of the window and the localization label skips
from ±60 to 0 suddenly. This would certainly
cause a learning algorithm trouble, and to side
step the problem we do not train the algorithm
on these cases, and during inference we do not
need the values at these edges to be accurate,
they go unused and untrained.

The figure 17 shows a sightline and the posi-
tive (green), negative (red), and ignored (grey)
regions. Notably there are far more negative
regions than positive regions of the sightline.
This is the reason that our training dataset only
contains sightlines with DLAs. In training we
sample all positive samples from the sightline,
and an equal number of negative sightlines at
chosen at random so that we maintain a 50/50
balance between positive and negative regions.

Note that we also ignore regions of the sight-
line where Lyb absorption takes place, these
regions are often falsely detected as sub-DLA’s,
and even bonafide DLAs when the true DLA
has log NHI > 21. Training on these regions
does not stop the algorithm from learning, but
lowers its accuracy by training on labels that
indicate no absorption exists when it does. It’s
instructive to point out that the algorithm is
not trained in a manner that would allow it to
identify the difference between a Lya absorp-
tion and a Lyb absorption. Although this is
potentially feasible, we did not include it in
the scope of this work as we can simply com-
pute the Lyb location and mark any identified
absorption as Lyb in post-processing.

Convolutional network architecture: the neural
network is constructed using a fairly standard
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Figure 15: The sightline is broken into 400 pixel segments in a sliding window, so 1748 inference computations must
be made for each sightline. Using each of the 1748 pixels in the sightline as the center point of a 400
pixel window generates a prediction per pixel. This approach facilitates identifying overlapping DLAs and
generates a large training dataset.

identified sightlines with or without a DLA
(simple binary classification). We then created
a separate network that performed localization
by improving upon the simple binary classifica-
tion and outputting a predicted center point of
the DLA relative to the current input. Finally
we trained a third model to take the samples
where a DLA exists somewhere in the window
and trained it to predict the column density of
the DLA, regardless of its location. We found
that combining the models into one produced
better results than training each model inde-
pendently. An astute reader will note that us-
ing a single model for all 3 of these outputs
will force us to train on areas of the sightline
where no DLA exists, rendering the result of
the column density measurement irrelevant.
We side step this issue by masking the gradient
appropriate, and discuss this in detail in the
section on multi task learning V.

A visualization of the labels for each pixel
in a sightline is shown in the visualization
16. We demonstrate how the data is labeled,
classification is fairly straight forward, as longI think

some
words
are miss-
ing here

I think
some
words
are miss-
ing here

as the DLA is within 60 pixels of the 400 pixel
window it takes on a 1/true value, else 0/false.
Localization operates similarly, though instead
of a 0/1 value the output is an offset between
[�60,+60], essentially pointing to the DLA,
and column density is either the column den-
sity of a DLA if one is within 60 pixels of that
point, or 0 (we again reference the section on
multi task learning for further details here V).

A notable problem occurs at the boundary
where a valid DLA is 61 pixels from the center

of the window and the localization label skips
from ±60 to 0 suddenly. This would certainly
cause a learning algorithm trouble, and to side
step the problem we do not train the algorithm
on these cases, and during inference we do not
need the values at these edges to be accurate,
they go unused and untrained.

The figure 17 shows a sightline and the posi-
tive (green), negative (red), and ignored (grey)
regions. Notably there are far more negative
regions than positive regions of the sightline.
This is the reason that our training dataset only
contains sightlines with DLAs. In training we
sample all positive samples from the sightline,
and an equal number of negative sightlines at
chosen at random so that we maintain a 50/50
balance between positive and negative regions.

Note that we also ignore regions of the sight-
line where Lyb absorption takes place, these
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Figure 15: The sightline is broken into 400 pixel segments in a sliding window, so 1748 inference computations must
be made for each sightline. Using each of the 1748 pixels in the sightline as the center point of a 400
pixel window generates a prediction per pixel. This approach facilitates identifying overlapping DLAs and
generates a large training dataset.
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tion and outputting a predicted center point of
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we trained a third model to take the samples
where a DLA exists somewhere in the window
and trained it to predict the column density of
the DLA, regardless of its location. We found
that combining the models into one produced
better results than training each model inde-
pendently. An astute reader will note that us-
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and an equal number of negative sightlines at
chosen at random so that we maintain a 50/50
balance between positive and negative regions.

Note that we also ignore regions of the sight-
line where Lyb absorption takes place, these
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indicate no absorption exists when it does. It’s
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pute the Lyb location and mark any identified
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Related UCSC deep learning project: damped Lyα (DLA) systems in SDSS spectra
Here today: Dr. Shawfeng Dong; co-authors David Park, Prof. J. Xavier Prochaska, Dr. Zheng Cai 

DLA systems seen in quasar spectra, corresponding to at least 2x1020 hydrogen atoms/cm2,  
represent most of  the neutral hydrogen in the universe at redshifts z = 2 to 4.  About 7000 DLAs 
were identified by astronomers in about 100,000 quasar spectra.  The additional 270,000 
sightlines that recently became available from the Sloan Digital Sky Survey were scanned for 
DLAs by a deep learning code, and the resulting DLA catalog will be made publicly available.

The sightline is broken into 400 pixel 
segments in a sliding window, so 1748 
inference computations must be made for 
each sightline. Using each of  the 1748 
pixels in the sightline as the center point 
of  a 400 pixel window generates a 
prediction per pixel. This approach 
facilitates identifying overlapping DLAs 
and generates a large training dataset. 

An outline of  the neural network architecture used, three convolutional 
layers followed by a fully connected layer. These layers of  the network are 
shared components. The final layer of  the network has 3 independent 
fully connected layers. Each of  these 3 layers connects to the shared fully 
connected layer.  The network is trained using the Adam gradient descent 
optimizer in Tensor-flow. 

DLA DLA



New Insights on Galaxy Formation from 
Comparing Simulations and Observations

Joel Primack 

Distinguished Professor of Physics Emeritus, UCSC

Brief introduction to modern cosmology, based on ΛCDM: dark energy & dark matter

Cosmic large scale structure simulations and star formation in galaxies

Comparing high-resolution hydrodynamic galaxy simulations with observations

Astronomers used to think that galaxies form as disks, that forming galaxies are pretty 
smooth, and that galaxies generally grow in radius as they grow in mass — but Hubble 
Space Telescope data show that all these statements are false, and our simulations may 
explain why.  

We are using these simulations and deep learning to improve understanding of galaxy 
formation, with support from Google. 

  30 May 2017Talk at


