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Cosmic Microwave Background
Early History
Although Penzias and Wilson discovered the CMB in 1965, Weinberg (p. 104) points out 
that Adams and McKellar had shown that the rotational spectra of cyanogen (CN) 
molecules observed in 1941 suggested that the background temperature is about 3K.   
!
The COBE FIRAS measurements showed that the spectrum is that of thermal radiation 
with T = 2.73K.  John Mather, the FIRAS PI, shared the 2006 Nobel Prize with George 
Smoot, the COBE/DMR PI. 
!
The earth’s motion (including that of the sun and the Milky Way) produces a CMB dipole 
anisotropy.

The CMB dipole anisotropy was discovered by 
Paul Henry (1971) and Edward Conklin (1972),  
and confirmed by Conklin and Wilkinson (1977) 
and Smoot, Gorenstein, and Muller (1977) -- 
see http://www.astro.ucla.edu/~wright/CMB-dipole-history.html

The upper panel of the figure shows the CMB 
dipole anisotropy in the COBE data.  It is 
usually subtracted when the temperature 
anisotropy map is displayed (lower panel).
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http://www.astro.ucla.edu/~wright/CMB-dipole-history.html


CMB Temperature Anisotropy
Sachs & Wolfe (1967, ApJ, 147, 73) showed that on large angular scales the 
temperature anisotropy is ΔT/T = φ/3c2 .  White & Hu give a pedagogical derivation 
in http://background.uchicago.edu/~whu/Papers/sw.pdf

This was first convincingly seen by the COBE DMR experiment, reported by George 
Smoot on April 27, 1992.  Their result ΔT/T = 10-5  had been predicted by the CDM 
model (Blumenthal, Faber, Primack, & Rees 1984).  The search then began for smaller-
angular-scale CMB anisotropies.

http://background.uchicago.edu/~whu/Papers/sw.pdf
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This and the next several slides are from a talk by Wayne Hu; see 
http://background.uchicago.edu/~whu/beginners/introduction.html



See also Annual Rev. Astron. and Astrophys. 2002 
Cosmic Microwave Background Anisotropies 
by Wayne Hu  and Scott Dodelson 
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~whu/Presentations/
warnerprint.pdf

From Wayne Hu’s Warner Prize 
Lecture, AAS meeting Jan 2001
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Annu. Rev. Astron. and 
Astrophys. 2002 
Cosmic Microwave Background 
Anisotropies by Wayne Hu  and 
Scott Dodelson 



For animation of the effects of changes in 
cosmological parameters on the CMB angular 
power spectrum and the matter power spectrum, 
plus links to many CMB websites, see Max 
Tegmark’s and Wayne Hu’s websites:

http://background.uchicago.edu/~whu/physics/
physics.html

http://space.mit.edu/home/tegmark/movies.html

http://background.uchicago.edu/~whu/physics/physics.html
http://livepage.apple.com/
http://space.mit.edu/home/tegmark/movies.html
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Fig. 12. The foreground-reduced Internal Linear Combination (ILC) map.

WMAP 5-year data and papers are at http://lambda.gsfc.nasa.gov/ 
ApJS, 180, 225 (2009)

http://lambda.gsfc.nasa.gov


     Considering a range of extended models, we continue to find that the 
standard ΛCDM model is consistently preferred by the data. The 
improved measurement of the third peak now requires the existence of 
light relativistic species, assumed to be neutrinos, at high confidence. 
The standard scenario has three neutrino species, but the three-year 
WMAP data could not rule out models with none. The CDM model also 
continues to succeed in fitting a substantial array of other 
observations. Certain tensions between other observations and those of 
WMAP, such as the amplitude of matter fluctuations measured by weak 
lensing surveys and using the Ly-α forest, and the primordial lithium 
abundance, have either been resolved with improved understanding of 
systematics, or show promise of being explained by recent observations. 
With further WMAP observations we will better probe both the universe at 
a range of epochs, measuring fluctuation characteristics to probe the 
initial inflationary process, or other non-inflationary scenario, improving 
measurements of the composition of the universe at the recombination 
era, and characterizing the reionization process in the universe.

J. Dunkley, et.al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) 
Observations: Likelihoods and Parameters from WMAP Data (2008)!!
Final paragraph of Conclusions:



WMAP Internal Linear Combination Map 

The WMAP 7-Year Internal Linear Combination Map is a weighted 
linear combination of the five WMAP frequency maps. The weights are computed 
using criteria which minimize the Galactic foreground contribution to the sky signal. 
The resultant map provides a low-contamination image of the CMB anisotropy.



Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: 
Sky Maps, Systematic Errors, and Basic Results  -  N. Jarosik et al. -  January 2010

http://lambda.gsfc.nasa.gov/product/space/

http://lambda.gsfc.nasa.gov/product/space/




Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: 
Sky Maps, Systematic Errors, and Basic Results  -  N. Jarosik et al. -  January 2010

http://lambda.gsfc.nasa.gov/product/space/

Fig. 9.— The temperature 
(TT) and temperature-
polarization (TE) power 
spectra for the seven-year 
WMAP data set. The solid 
lines show the predicted 
spectrum for the best-fit 
flat ΛCDM model. The 
error bars on the data 
points represent 
measurement errors while 
the shaded region 
indicates the uncertainty in 
the model spectrum 
arising from cosmic 
variance.

1st peak at 10  
⇒ space is flat

TE anti-correlation 
constrains non- 

adiabatic fluctuations

http://lambda.gsfc.nasa.gov/product/space/


Successes: CMB, Expansion History, Large Scale Structure

CONCLUSION: We have used the final, nine-year WMAP temperature and polarization data in conjunction with high-l 
CMB power spectrum data and a new H0 measurement (Riess et al. 2011) to place stringent constraints on the six 
parameters of the minimal ΛCDM model, and on parameters beyond the minimal set. The six-parameter model 
continues to describe all the data remarkably well, and we find no convincing evidence for deviations from this 
model: the geometry of the observable universe is flat and dark energy is consistent with a cosmological constant. 
The amplitude of matter fluctuations derived from WMAP data alone, assuming the minimal model, σ8 = 0.821 ± 0.023 
(68% CL), is consistent with all the existing data on matter fluctuations, including cluster abundances, peculiar velocities, 
and gravitational lensing. The combined (WMAP+eCMB+BAO+H0) data set gives σ8 = 0.820+0.013 (68% CL).−0.014

NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: 
COSMOLOGICAL PARAMETER RESULTS - Hinshaw+13 - ApJS 208, 19 
ABSTRACT: The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter 
ΛCDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background 
anisotropy, the baryon acoustic oscillation scale, and the Hubble constant, the matter and energy densities, Ωbh2, Ωch2, and 
ΩΛ, are each determined to a precision of ∼1.5%. New limits on deviations from the six-parameter model are presented, 
for example: the fractional contribution of tensor modes is limited to r < 0.13 (95% CL); ∑mν < 0.44 eV (95% CL); and 
the number of relativistic species is found to lie within Neff = 3.84 ± 0.40.

The Astrophysical Journal Supplement Series, 208:19 (25pp), 2013 October Hinshaw et al.

initial fluctuations adiabatic? Tightening the limits on these pa-
rameters is as important as measuring the standard ones. Over
the past decade WMAP has provided a wealth of cosmologi-
cal information which can be used to address the above ques-
tions. In this paper, we present the final, nine-year constraints on
cosmological parameters from WMAP.

The paper is organized as follows. In Section 2, we briefly
describe the nine-year WMAP likelihood code, the external
data sets used to complement WMAP data, and we update
our parameter estimation methodology. Section 3 presents
nine-year constraints on the minimal six-parameter ΛCDM
model. Section 4 presents constraints on parameters beyond
the standard model, such as the tensor-to-scalar ratio, the
running spectral index, the amplitude of isocurvature modes,
the number of relativistic species, the mass of neutrinos, spatial
curvature, the equation of state parameters of dark energy, and
cosmological birefringence. In Section 5, we discuss constraints
on the amplitude of matter fluctuations, σ8, derived from other
astrophysical data sets. Section 6 compares WMAP’s seven-
year measurements of the Sunyaev–Zel’dovich (SZ) effect with
recent measurements by Planck. In Section 7, we update our
analysis of polarization patterns around temperature extrema,
and we conclude in Section 8.

2. METHODOLOGY UPDATE

Before discussing cosmological parameter fits in the remain-
ing part of the paper, we summarize changes in our parameter
estimation methodology and our choice of input data sets. In
Section 2.1 we review changes to the WMAP likelihood code.
In Section 2.2 we discuss our choice of external data sets used
to complement WMAP data in various tests. Most of these data
sets are new since the seven-year data release. We conclude with
some updates on our implementation of Markov Chains.

2.1. WMAP Likelihood Code

For the most part, the structure of the likelihood code remains
as it was in the seven-year WMAP data release. However,
instead of using the Monte Carlo Apodised Spherical Transform
EstimatoR (MASTER) estimate (Hivon et al. 2002) for the
l > 32 TT spectrum, we now use an optimally estimated
power spectrum and errors based on the quadratic estimator
from Tegmark et al. (1997), as discussed in detail in Bennett
et al. (2013). This l > 32 TT spectrum is based on the template-
cleaned V- and W-band data, and the KQ85y9 sky mask (see
Bennett et al. (2013) for an update on the analysis masks). The
likelihood function for l > 32 continues to use the Gaussian
plus log-normal approximation described in Bond et al. (1998)
and Verde et al. (2003).

The l ! 32 TT spectrum uses the Blackwell–Rao estimator,
as before. This is based on Gibbs samples obtained from a nine-
year one-region bias-corrected Internal Linear Combination
map described in (Bennett et al. 2013) and sampled outside
the KQ85y9 sky mask. The map and mask were degraded to
HEALPix r5,18 and 2 µK of random noise was added to each
pixel in the map.

The form of the polarization likelihood is unchanged. The
l > 23 TE spectrum is based on a MASTER estimate and
uses the template-cleaned Q-, V-, and W-band maps, evaluated
outside the KQ85y9 temperature and polarization masks. The

18 The map resolution levels refer to the HEALPix pixelization scheme
(Gorski et al. 2005) where r4, r5, r9, and r10 refer to Nside values of 16, 32,
512, and 1024, respectively.

Figure 1. Compilation of the CMB data used in the nine-year WMAP analysis.
The WMAP data are shown in black, the extended CMB data set—denoted
“eCMB” throughout—includes SPT data in blue (Keisler et al. 2011) and
ACT data in orange, (Das et al. 2011b). We also incorporate constraints from
CMB lensing published by the SPT and ACT groups (not shown). The ΛCDM
model fit to the WMAP data alone (shown in gray) successfully predicts the
higher-resolution data.
(A color version of this figure is available in the online journal.)

l ! 23 TE, EE, and BB likelihood retains the pixel-space form
described in Appendix D of Page et al. (2007). The inputs are
template-cleaned Ka-, Q-, and V-band maps and the HEALPix
r3 polarization mask used previously.

As before, the likelihood code accounts for several important
effects: mode coupling due to sky masking and non-uniform
pixel weighting (due to non-uniform noise), beam window
function uncertainty, which is correlated across the entire
spectrum, and residual point source subtraction uncertainty,
which is also highly correlated. The treatment of these effects is
described in Verde et al. (2003), Nolta et al. (2009), and Dunkley
et al. (2009).

2.2. External Data Sets

2.2.1. Small-scale CMB Measurements

Since the time when the seven-year WMAP analyses were
published, there have been new measurements of small-scale
CMB fluctuations by the Atacama Cosmology Telescope (ACT;
Fowler et al. 2010; Das et al. 2011b) and the South Pole
Telescope (SPT; Keisler et al. 2011; Reichardt et al. 2012).
They have reported the angular power spectrum at 148 and
217 GHz for ACT, and at 95, 150, and 220 GHz for SPT, to 1′

resolution, over ∼1000 deg2 of sky. At least seven acoustic peaks
are observed in the angular power spectrum, and the results are
in remarkable agreement with the model predicted by the WMAP
seven-year data (Keisler et al. 2011).

Figure 1 shows data from ACT and SPT at 150 GHz, which
constitutes the extended CMB data set used extensively in
this paper (subsequently denoted “eCMB”). We incorporate
the SPT data from Keisler et al. (2011), using 47 band-
powers in the range 600 < l < 3000. The likelihood is
assumed to be Gaussian, and we use the published band-power
window functions and covariance matrix, the latter of which
accounts for noise, beam, and calibration uncertainty. Following
the treatment of the ACT and SPT teams, we account for

2
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Table 10
Dark Energy Constraintsa

Parameter WMAP +eCMB +eCMB+BAO+H0 +eCMB+BAO+H0+SNe

Constant equation of state; flat universe

w −1.71 < w < −0.34 (95% CL) −1.07+0.38
−0.41 −1.073+0.090

−0.089 −1.084 ± 0.063

H0 >50 (95% CL) >55 (95% CL) 70.7+1.8
−1.9 71.0+1.4

−1.3

Constant equation of state; non-flat universe

w >−2.1 (95% CL) · · · −1.19 ± 0.12 −1.122+0.068
−0.067

Ωk −0.052+0.051
−0.054 · · · −0.0072+0.0042

−0.0043 −0.0059+0.0038
−0.0039

H0 37 < H0 < 84 (95% CL) · · · 71.7 ± 2.0 70.7 ± 1.3

Non-constant equation of state; flat universe

w0 · · · · · · −1.34 ± 0.18 −1.17+0.13
−0.12

wa · · · · · · 0.85 ± 0.47b 0.35+0.50
−0.49

H0 · · · · · · 72.3 ± 2.0 71.0 ± 1.3

Notes.
a A complete list of parameter values for these models, with additional data combinations, may be found at
http://lambda.gsfc.nasa.gov/.
b The quoted error on wa from WMAP+eCMB+BAO+H0 is smaller than that from WMAP+eCMB+BAO+H0+SNe.
This is due to the imposition of a hard prior, wa < 0.2–1.1w0, depicted in Figure 10. Without this prior, the upper
limit on wa for WMAP+eCMB+BAO+H0 would extend to larger values.

Figure 10. Joint, marginalized constraint on w0 and wa , assuming a flat universe.
A cosmological constant (w0 = −1, wa = 0) is at the boundary of the 68% CL
region allowed by theWMAP+eCMB+BAO+H0+SNe data, indicating that the
current data are consistent with a non-evolving dark energy density. The shaded
region is excluded by a hard prior, wa < 0.2 − 1.1w0, in our fits.
(A color version of this figure is available in the online journal.)

Figure 10 shows the joint, marginalized constraint on w0 and
wa . A cosmological constant (w0 = −1 and wa = 0) is at
the boundary of the 68% CL region, indicating that the current
data are consistent with a time-independent dark energy density.
Comparing this measurement with the seven-year result in
Figure 13 of Komatsu et al. (2011), we note that adding the new
BAO and H0 data significantly reduces the allowed parameter
space by eliminating wa ! −1.

Figure 11. Compilation of the (Ωm, σ8) constraints from large scale struc-
ture observations, discussed in Section 5, compared to the constraints ob-
tained from CMB, BAO, and H0 data. The various large scale structure
probes do not separately constrain the two parameters, and have some-
what different degeneracy slopes among them, but these independent mea-
surements are quite consistent. The following 1σ regions are plotted:
(a) σ8Ω0.5

m = 0.465±0.026 from Tinker et al. (2012); (b) σ8(Ωm/0.325)0.501 =
0.828 ± 0.049 from Zu et al. (2012); (c) σ8(Ωm/0.25)0.47 = 0.813 ± 0.032
from Vikhlinin et al. (2009b); (d) σ8(Ωm/0.25)0.3 = 0.785 ± 0.037 from
Benson et al. (2013); (e) σ8(Ωm/0.3)0.67 = 0.70+0.11

−0.14 from Semboloni et al.
(2011); (f) σ8Ω0.7

m = 0.252+0.032
−0.052 from Lin et al. (2012); (g) WMAP only;

(h) WMAP+eCMB+BAO+H0; (i) ellipse whose major and minor axes are given
by Ωm = 0.259 ± 0.045 and σ8 = 0.748 ± 0.035 from Hudson & Turnbull
(2012).
(A color version of this figure is available in the online journal.)

4.6.1. WMAP Nine-year Distance Posterior

The “WMAP distance posterior” gives the likelihood of three
variables: the acoustic scale, lA, the shift parameter, R, and
the decoupling redshift, z∗. This likelihood is based on, and
extends, the original idea put forward by several authors (Wang
& Mukherjee 2007; Wright 2007; Elgarøy & Multamäki 2007).
It allows one to quickly evaluate the likelihood of various dark
energy models given the WMAP data, without the need to run a
full MCMC exploration of the likelihood.
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initial fluctuations adiabatic? Tightening the limits on these pa-
rameters is as important as measuring the standard ones. Over
the past decade WMAP has provided a wealth of cosmologi-
cal information which can be used to address the above ques-
tions. In this paper, we present the final, nine-year constraints on
cosmological parameters from WMAP.

The paper is organized as follows. In Section 2, we briefly
describe the nine-year WMAP likelihood code, the external
data sets used to complement WMAP data, and we update
our parameter estimation methodology. Section 3 presents
nine-year constraints on the minimal six-parameter ΛCDM
model. Section 4 presents constraints on parameters beyond
the standard model, such as the tensor-to-scalar ratio, the
running spectral index, the amplitude of isocurvature modes,
the number of relativistic species, the mass of neutrinos, spatial
curvature, the equation of state parameters of dark energy, and
cosmological birefringence. In Section 5, we discuss constraints
on the amplitude of matter fluctuations, σ8, derived from other
astrophysical data sets. Section 6 compares WMAP’s seven-
year measurements of the Sunyaev–Zel’dovich (SZ) effect with
recent measurements by Planck. In Section 7, we update our
analysis of polarization patterns around temperature extrema,
and we conclude in Section 8.

2. METHODOLOGY UPDATE

Before discussing cosmological parameter fits in the remain-
ing part of the paper, we summarize changes in our parameter
estimation methodology and our choice of input data sets. In
Section 2.1 we review changes to the WMAP likelihood code.
In Section 2.2 we discuss our choice of external data sets used
to complement WMAP data in various tests. Most of these data
sets are new since the seven-year data release. We conclude with
some updates on our implementation of Markov Chains.

2.1. WMAP Likelihood Code

For the most part, the structure of the likelihood code remains
as it was in the seven-year WMAP data release. However,
instead of using the Monte Carlo Apodised Spherical Transform
EstimatoR (MASTER) estimate (Hivon et al. 2002) for the
l > 32 TT spectrum, we now use an optimally estimated
power spectrum and errors based on the quadratic estimator
from Tegmark et al. (1997), as discussed in detail in Bennett
et al. (2013). This l > 32 TT spectrum is based on the template-
cleaned V- and W-band data, and the KQ85y9 sky mask (see
Bennett et al. (2013) for an update on the analysis masks). The
likelihood function for l > 32 continues to use the Gaussian
plus log-normal approximation described in Bond et al. (1998)
and Verde et al. (2003).

The l ! 32 TT spectrum uses the Blackwell–Rao estimator,
as before. This is based on Gibbs samples obtained from a nine-
year one-region bias-corrected Internal Linear Combination
map described in (Bennett et al. 2013) and sampled outside
the KQ85y9 sky mask. The map and mask were degraded to
HEALPix r5,18 and 2 µK of random noise was added to each
pixel in the map.

The form of the polarization likelihood is unchanged. The
l > 23 TE spectrum is based on a MASTER estimate and
uses the template-cleaned Q-, V-, and W-band maps, evaluated
outside the KQ85y9 temperature and polarization masks. The

18 The map resolution levels refer to the HEALPix pixelization scheme
(Gorski et al. 2005) where r4, r5, r9, and r10 refer to Nside values of 16, 32,
512, and 1024, respectively.

Figure 1. Compilation of the CMB data used in the nine-year WMAP analysis.
The WMAP data are shown in black, the extended CMB data set—denoted
“eCMB” throughout—includes SPT data in blue (Keisler et al. 2011) and
ACT data in orange, (Das et al. 2011b). We also incorporate constraints from
CMB lensing published by the SPT and ACT groups (not shown). The ΛCDM
model fit to the WMAP data alone (shown in gray) successfully predicts the
higher-resolution data.
(A color version of this figure is available in the online journal.)

l ! 23 TE, EE, and BB likelihood retains the pixel-space form
described in Appendix D of Page et al. (2007). The inputs are
template-cleaned Ka-, Q-, and V-band maps and the HEALPix
r3 polarization mask used previously.

As before, the likelihood code accounts for several important
effects: mode coupling due to sky masking and non-uniform
pixel weighting (due to non-uniform noise), beam window
function uncertainty, which is correlated across the entire
spectrum, and residual point source subtraction uncertainty,
which is also highly correlated. The treatment of these effects is
described in Verde et al. (2003), Nolta et al. (2009), and Dunkley
et al. (2009).

2.2. External Data Sets

2.2.1. Small-scale CMB Measurements

Since the time when the seven-year WMAP analyses were
published, there have been new measurements of small-scale
CMB fluctuations by the Atacama Cosmology Telescope (ACT;
Fowler et al. 2010; Das et al. 2011b) and the South Pole
Telescope (SPT; Keisler et al. 2011; Reichardt et al. 2012).
They have reported the angular power spectrum at 148 and
217 GHz for ACT, and at 95, 150, and 220 GHz for SPT, to 1′

resolution, over ∼1000 deg2 of sky. At least seven acoustic peaks
are observed in the angular power spectrum, and the results are
in remarkable agreement with the model predicted by the WMAP
seven-year data (Keisler et al. 2011).

Figure 1 shows data from ACT and SPT at 150 GHz, which
constitutes the extended CMB data set used extensively in
this paper (subsequently denoted “eCMB”). We incorporate
the SPT data from Keisler et al. (2011), using 47 band-
powers in the range 600 < l < 3000. The likelihood is
assumed to be Gaussian, and we use the published band-power
window functions and covariance matrix, the latter of which
accounts for noise, beam, and calibration uncertainty. Following
the treatment of the ACT and SPT teams, we account for
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Planck Collaboration: The Planck mission
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter⇤CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ` = 50, and linear beyond. The vertical scale is `(`+ 1)Cl/2⇡. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-` region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ` = 50,
and linear beyond. The vertical scale is `(` + 1)Cl/2⇡. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di↵ers from the ERCSC in its extraction philosophy: more e↵ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di↵erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di↵erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the
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Planck Collaboration: Cosmological parameters

Fig. 10. Planck TT power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB
spectrum computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed
in Table 5. The red line shows the best-fit base ⇤CDM spectrum. The lower panel shows the residuals with respect to the theoretical
model. The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and
36b), and include beam uncertainties and uncertainties in the foreground model parameters.

Fig. 11. Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from
the base ⇤CDM Planck+WP+highL model, which is fitted to the TT data only.
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Successes: CMB, Expansion History, Large Scale Structure
Planck 2013 results. XVI. Cosmological parameters
ABSTRACT: We find that the Planck spectra at high multipoles (l > 40) are extremely well described by the 
standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar 
perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high 
precision: the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be Ωbh2 = 
0.02205±0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively (68% errors). For this cosmology, we 
find a low value of the Hubble constant, H0 = 67.3 ± 1.2 km/s/Mpc , and a high value of the matter density parameter, Ωm 
= 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for 
Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) 
surveys.  We present selected results from a large grid of cosmological models, using a range of additional astrophysical 
data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard 
six-parameter ΛCDM cosmology. Using BAO and CMB data, we find Neff = 3.30±0.27 for the effective number of 
relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses.  We find no evidence for 
dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be          
w = 1.13+0.13.  Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, 
we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual 
shape of the spectrum in the multipole range 20 < l < 40 was seen previously in the WMAP data and is a real feature of 
the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an 
“anomaly” in an otherwise self-consistent analysis of the Planck temperature data.
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Table 8. Approximate constraints with 68% errors on ⌦m and
H0 (in units of km s�1 Mpc�1) from BAO, with !m and !b fixed
to the best-fit Planck+WP+highL values for the base ⇤CDM
cosmology.

Sample ⌦m H0

6dF . . . . . . . . . . . . . . . . . . . . . . . . . 0.305+0.032
�0.026 68.3+3.2

�3.2
SDSS . . . . . . . . . . . . . . . . . . . . . . . 0.295+0.019

�0.017 69.5+2.2
�2.1

SDSS(R) . . . . . . . . . . . . . . . . . . . . . 0.293+0.015
�0.013 69.6+1.7

�1.5
WiggleZ . . . . . . . . . . . . . . . . . . . . . 0.309+0.041

�0.035 67.8+4.1
�2.8

BOSS . . . . . . . . . . . . . . . . . . . . . . . 0.315+0.015
�0.015 67.2+1.6

�1.5
6dF+SDSS+BOSS+WiggleZ . . . . . . 0.307+0.010

�0.011 68.1+1.1
�1.1

6dF+SDSS(R)+BOSS . . . . . . . . . . . 0.305+0.009
�0.010 68.4+1.0

�1.0
6dF+SDSS(R)+BOSS+WiggleZ . . . . 0.305+0.009

�0.008 68.4+1.0
�1.0

surements constrain parameters in the base ⇤CDM model, we
form �2,

�2
BAO = (x � x

⇤CDM)T C�1
BAO(x � x

⇤CDM), (50)

where x is the data vector, x

⇤CDM denotes the theoretical pre-
diction for the ⇤CDM model and C�1

BAO is the inverse covari-
ance matrix for the data vector x. The data vector is as fol-
lows: DV(0.106) = (457 ± 27) Mpc (6dF); rs/DV(0.20) =
0.1905 ± 0.0061, rs/DV(0.35) = 0.1097 ± 0.0036 (SDSS);
A(0.44) = 0.474 ± 0.034, A(0.60) = 0.442 ± 0.020, A(0.73) =
0.424±0.021 (WiggleZ); DV(0.35)/rs = 8.88±0.17 (SDSS(R));
and DV(0.57)/rs = 13.67±0.22, (BOSS). The o↵-diagonal com-
ponents of C�1

BAO for the SDSS and WiggleZ results are given
in Percival et al. (2010) and Blake et al. (2011). We ignore any
covariances between surveys. Since the SDSS and SDSS(R) re-
sults are based on the same survey, we include either one set of
results or the other in the analysis described below, but not both
together.

The Eisenstein-Hu values of rs for the Planck and WMAP-9
base ⇤CDM parameters di↵er by only 0.9%, significantly
smaller than the errors in the BAO measurements. We can obtain
an approximate idea of the complementary information provided
by BAO measurements by minimizing Eq. (50) with respect to
either ⌦m or H0, fixing !m and !b to the CMB best-fit parame-
ters. (We use the Planck+WP+highL parameters from Table 5.)
The results are listed in Table 819.

As can be seen, the results are very stable from survey to
survey and are in excellent agreement with the base ⇤CDM
parameters listed in Tables 2 and 5. The values of �2

BAO are
also reasonable. For example, for the six data points of the
6dF+SDSS(R)+BOSS+WiggleZ combination, we find �2

BAO =
4.3, evaluated for the Planck+WP+highL best-fit⇤CDM param-
eters.

The high value of ⌦m is consistent with the parameter anal-
ysis described by Blake et al. (2011) and with the “tension” dis-
cussed by Anderson et al. (2013) between BAO distance mea-
surements and direct determinations of H0 (Riess et al. 2011;
Freedman et al. 2012). Furthermore, if the errors on the BAO
measurements are accurate, the constraints on ⌦m and H0 (for
fixed !m and !b) are of comparable accuracy to those from
Planck.

19As an indication of the accuracy of Table 8, the full likelihood
results for the Planck+WP+6dF+SDSS(R)+BOSS BAO data sets give
⌦m = 0.308 ± 0.010 and H0 = 67.8 ± 0.8 km s�1 Mpc�1, for the base
⇤CDM model.

Fig. 16. Comparison of H0 measurements, with estimates of
±1� errors, from a number of techniques (see text for details).
These are compared with the spatially-flat ⇤CDM model con-
straints from Planck and WMAP-9.

The results of this section show that BAO measurements are
an extremely valuable complementary data set to Planck. The
measurements are basically geometrical and free from complex
systematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to Planck. In addition, BAO
measurements can be used to break parameter degeneracies that
limit analyses based purely on CMB data. For example, from
the excellent agreement with the base ⇤CDM model evident in
Fig. 15, we can infer that the combination of Planck and BAO
measurements will lead to tight constraints favouring ⌦K = 0
(Sect. 6.2) and a dark energy equation-of-state parameter, w =
�1 (Sect. 6.5).

Finally, we note that we choose to use the
6dF+SDSS(R)+BOSS data combination in the likelihood
analysis of Sect. 6. This choice includes the two most accu-
rate BAO measurements and, since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble constant

A striking result from the fits of the base⇤CDM model to Planck
power spectra is the low value of the Hubble constant, which is
tightly constrained by CMB data alone in this model. From the
Planck+WP+highL analysis we find

H0 = (67.3±1.2) km s�1 Mpc�1 (68%; Planck+WP+highL).(51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP-9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012) find

H0 = (70.0 ± 2.2) km s�1 Mpc�1 (68%; WMAP-9), (52)

consistent with Eq. (51) to within 1�. We emphasize here that
the CMB estimates are highly model dependent. It is important
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Fig. 39. Left: Planck TT spectrum at low multipoles with 68% ranges on the posteriors. The “rainbow” band show the best fits to
the entire Planck+WP likelihood for the base ⇤CDM cosmology, colour-coded according to the value of the scalar spectral index
ns. Right: Limits (68% and 95%) on the relative amplitude of the base ⇤CDM fits to the Planck+WP likelihood fitted only to the
Planck TT likelihood over the multipole range 2  `  `max.

We find the following notable results using CMB data alone:

– The deviation of the scalar spectral index from unity is ro-
bust to the addition of tensor modes and to changes in the
matter content of the Universe. For example, adding a tensor
component we find ns = 0.9600 ± 0.0072, a 5.5� departure
from ns = 1.

– A 95% upper limit on the tensor-to-scalar ratio of r0.002 <
0.11. The combined contraints on ns and r0.002 are on the
borderline of compatibility with single-field inflation with a
quadratic potential (Fig. 23).

– A 95% upper limit on the summed neutrino mass of
P

m⌫ <
0.66 eV.

– A determination of the e↵ective number of neutrino-like rel-
ativistic degrees of freedom of Ne↵ = 3.36±0.34, compatible
with the standard value of 3.046.

– The results from Planck are consistent with the results of
standard big bang nucleosynthesis. In fact, combining the
CMB data with the most recent results on the deuterium
abundance, leads to the constraint Ne↵ = 3.02 ± 0.27, again
compatible with the standard value of 3.046.

– New limits on a possible variation of the fine-structure
constant, dark matter annihilation and primordial magnetic
fields.

We also find a number of marginal (around 2�) results,
perhaps indicative of internal tension within the Planck data.
Examples include the preference of the (phenomenological)
lensing parameter for values greater than unity (AL = 1.23±0.11;
Eq. 44) and for negative running (dns/d ln k = �0.015±0.09; Eq.
62b). In Planck Collaboration XXII (2013), the Planck data indi-
cate a preference for anti-correlated isocurvature modes and for
models with a truncated power spectrum on large scales. None
of these results have a decisive level of statistical significance,
but they can all be traced to an unusual aspect of the tempera-
ture power spectrum at low multipoles. As can be seen in Fig.
1, and on an expanded scale in the left-hand panel of Fig. 39,
the measured power spectrum shows a dip relative to the best-fit
base ⇤CDM cosmology in the multipole range 20 <⇠ ` <⇠ 30 and
an excess at ` = 40. The existence of “glitches” in the power
spectrum at low multipoles was noted by the WMAP team in the

first-year papers (Hinshaw et al. 2003; Spergel et al. 2003) and
acted as motivation to fit an inflation model with a step-like fea-
ture (Peiris et al. 2003). Similar investigations have been carried
out by a number of authors, (see e.g., Mortonson et al. 2009, and
references therein). At these low multipoles, the Planck spec-
trum is in excellent agreement with the WMAP nine-year spec-
trum (Planck Collaboration XV 2013), so it is unlikely that any
of the features such as the low quadrupole or “dip” in the multi-
pole range 20–30 are caused by instrumental e↵ects or Galactic
foregrounds. These are real features of the CMB anisotropies.

The Planck data, however, constrain the parameters of the
base ⇤CDM model to such high precision that there is little re-
maining flexibility to fit the low-multipole part of the spectrum.
To illustrate this point, the right-hand panel of Fig. 39 shows the
68% and 95% limits on the relative amplitude of the base⇤CDM
model (sampling the chains constrained by the full likelihood)
fitted only to the Planck TT likelihood over the multipole range
2  `  `max. From multipoles `max ⇡ 25 to multipoles `max ⇡
35, we see more than a 2� departure from values of unity. (The
maximum deviation from unity is 2.7� at ` = 30.) It is di�cult
to know what to make of this result, and we present it here as a
“curiosity” that needs further investigation. The Planck temper-
ature data are remarkably consistent with the predictions of the
base ⇤CDM model at high multipoles, but it is also conceivable
that the ⇤CDM cosmology fails at low multipoles. There are
other indications, from both WMAP and Planck data for “anoma-
lies” at low multipoles (Planck Collaboration XXIII 2013), that
may be indicative of new physics operating on the largest scales
in our Universe. Interpretation of large-scale anomalies (includ-
ing the results shown in Fig. 39) is di�cult in the absence of a
theoretical framework. The problem here is assessing the role of
a posteriori choices, i.e., that inconsistencies attract our atten-
tion and influence our choice of statistical test. Nevertheless, we
know so little about the physics of the early Universe that we
should be open to the possibility that there is new physics be-
yond that assumed in the base ⇤CDM model. Irrespective of the
interpretation, the unusual shape of the low multipole spectrum
is at least partly responsible for some of the 2� e↵ects seen in
the analysis of extensions to the⇤CDM model discussed in Sect.
6.

54

The main Planck 
anomaly is the low 
amplitudes at    l 
≈ 21-27

Planck errors are small 
and Planck’s values for 

H0 and Ωm are 
somewhat different from 

WMAP’s

See also Efstathiou 
H0 revisited  
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But: WMAP9 vs. Planck, Planck Clusters vs. CMB?

There is a systematic offset between WMAP9 and Planck! 

These plots are from a Planck paper in prep. (Kris Gorski, private communication, 2/16/14)



But: WMAP9 vs. Planck, Planck Clusters vs. CMB?
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But: Planck Clusters vs. CMB?
Planck 2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts - arXiv:1303.5080

Assuming a bias between the X-ray determined mass and the true mass of 20%, motivated by comparison of the 
observed mass scaling relations to those from a set of numerical simulations, we find that ... σ8 = 0.77 ± 0.02 and   
Ωm = 0.29 ± 0.02. The values of the cosmological parameters are degenerate with the mass bias, and it is found that 
the larger values of σ8 and Ωm preferred by the Planck’s measurements of the primary CMB anisotropies can be 
accommodated by a mass bias of about 45%. Alternatively, consistency with the primary CMB constraints can be 
achieved by inclusion of processes that suppress power on small scales, such as a component of massive neutrinos.

This has led to papers proposing ∑mν > 0.23 eV such as Hamann & Hasenkamp JCAP 2013

Relative cluster masses can be determined accurately cluster-by-cluster using X-rays as was 
done by Vikhlinin+09, Mantz+10, and Planck paper XX, but the absolute masses should be calibrated 
using gravitational lensing, say Rozo+13,14 and van der Linden+14.  The Arnaud+07,10 X-ray cluster masses 
used in Planck paper XX are the lowest of all.  Using gravitational lensing mass calibration raises the 
cluster masses and thus predicts fewer expected clusters.  This lessens the tension between 
the CMB and cluster observations.

Robust weak-lensing mass calibration of Planck galaxy cluster masses - von der Linden+14
Planck cluster masses 3

Figure 1. The ratio of cluster masses measured by Planck and by WtG, for
the clusters common to both projects. Solid symbols denote clusters which
were included in the Planck cluster cosmology analysis (22 clusters) and
open symbols additional clusters in the Planck cluster catalog (16 clusters).
The red, solid line indicates a ratio of unity (no bias). The dashed red line
indicates (1 � b) = 0.8, the default value assumed throughout most of P16.
The blue line and shaded regions show our best-fit mass ratio along with
the 1- and 2-� confidence intervals. Since the weak-lensing masses are
expected to be unbiased on average, the ratio of Planck masses to weak-
lensing masses is a measure of the bias (1 � b) = MPlanck/Mtrue of the
Planck cluster masses as used in P20.

Figure 2. The direct comparison between M500 cluster masses measured by
Planck and by WtG. The symbols are the same as in Fig. 1. The green line
and shaded regions show the best-fit linear relation between the logarithmic
masses and its 1- and 2-� confidence intervals (the fit was performed with
log(MWtG) as function of log(MPlanck)).

The systematic uncertainty quoted here expresses the systematic
uncertainty on the weak-lensing masses, i.e. it includes all entries
in Table 4 of Applegate et al. (2014) with the exception of the scat-
ter due to triaxiality, which is accounted for here in the statistical
uncertainty. Extending the sample to all 38 clusters yields a consis-
tent result:

�all = 0.698+0.039
�0.037 (stat) ± 0.049 (syst) .

The weak-lensing masses are expected to yield the true cluster
mass on average, and thereby enable a robust calibration of other
mass proxies (see discussion in von der Linden et al. 2014; Apple-
gate et al. 2014). Therefore, by identifying � = (1 � b), these re-
sults suggest that the mass calibration adopted by the Planck team,
(1 � b) ⌘ 0.8, underestimates the true cluster masses by between 5
and 25 per cent on average.

3.2 Evidence for a mass-dependent calibration problem

By eye, Fig. 1 suggests that the ratio between the WtG weak-
lensing and Planck mass estimates depends on the cluster mass:
at masses . 6⇥1014 M�, the mass estimates roughly agree, whereas
the discrepancy appears significant for more massive clusters. To
quantify the evidence for such a mass-dependent bias, we use the
Bayesian linear regression method developed by Kelly (2007) to fit
log(MWtG) as function of log(MPlanck) (fitting the masses directly
avoids the correlated errors in the mass ratios one would have to
account for if fitting the data as shown in Fig. 1). While we show
MPlanck as function of MWtG in Fig. 2 to reflect that the weak-lensing
masses are our proxy for true cluster masses, we assign the Planck
mass estimates to be the independent variable to reduce the e↵ects
of Malmquist bias: MPlanck scales with the survey observable, and
by choosing it as the independent variable, we provide a mass esti-
mate for each data point which is to first order independent of other
selection e↵ects (as X-ray selection to first order does not correlate
with SZ selection biases, and the lensing data are a subsample of
an X-ray selected catalog). The Kelly (2007) method accounts for
measurement errors in both variables, as well as for intrinsic scat-
ter in the dependent variable. Rephrasing the results as a power-law,
the best-fit relation for the 22 clusters in the cosmology sample is:
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where the systematic uncertainty on the weak-lensing mass cali-
bration is accounted for in the uncertainty on the coe�cient. In 24
per cent of the Monte Carlo samples, the slope (of log(MPlanck) vs.
log(MWtG)) is unity or larger; i.e. the evidence for a mass-dependent
bias is at the ⇠ 1� level for these 22 clusters.

To further test for a mass-dependent bias, it is instructive to
include the additional 16 clusters in common between Planck and
WtG that are not used in the Planck cluster cosmology analysis, as
these slightly extend the mass range probed. For all 38 clusters, we
find a consistent and more precise result:
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In 4.9 per cent of the Monte Carlo samples, the slope is unity or
larger; i.e. the confidence level for a slope less than unity is 95 per
cent3.

3 We note that when using bootstrap realizations of an unweighted simple
linear regression as a more agnostic fit statistic, we recover the same slope,
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Figure 1. The ratio of cluster masses measured by Planck and by WtG, for
the clusters common to both projects. Solid symbols denote clusters which
were included in the Planck cluster cosmology analysis (22 clusters) and
open symbols additional clusters in the Planck cluster catalog (16 clusters).
The red, solid line indicates a ratio of unity (no bias). The dashed red line
indicates (1 � b) = 0.8, the default value assumed throughout most of P16.
The blue line and shaded regions show our best-fit mass ratio along with
the 1- and 2-� confidence intervals. Since the weak-lensing masses are
expected to be unbiased on average, the ratio of Planck masses to weak-
lensing masses is a measure of the bias (1 � b) = MPlanck/Mtrue of the
Planck cluster masses as used in P20.

Figure 2. The direct comparison between M500 cluster masses measured by
Planck and by WtG. The symbols are the same as in Fig. 1. The green line
and shaded regions show the best-fit linear relation between the logarithmic
masses and its 1- and 2-� confidence intervals (the fit was performed with
log(MWtG) as function of log(MPlanck)).

The systematic uncertainty quoted here expresses the systematic
uncertainty on the weak-lensing masses, i.e. it includes all entries
in Table 4 of Applegate et al. (2014) with the exception of the scat-
ter due to triaxiality, which is accounted for here in the statistical
uncertainty. Extending the sample to all 38 clusters yields a consis-
tent result:

�all = 0.698+0.039
�0.037 (stat) ± 0.049 (syst) .

The weak-lensing masses are expected to yield the true cluster
mass on average, and thereby enable a robust calibration of other
mass proxies (see discussion in von der Linden et al. 2014; Apple-
gate et al. 2014). Therefore, by identifying � = (1 � b), these re-
sults suggest that the mass calibration adopted by the Planck team,
(1 � b) ⌘ 0.8, underestimates the true cluster masses by between 5
and 25 per cent on average.

3.2 Evidence for a mass-dependent calibration problem

By eye, Fig. 1 suggests that the ratio between the WtG weak-
lensing and Planck mass estimates depends on the cluster mass:
at masses . 6⇥1014 M�, the mass estimates roughly agree, whereas
the discrepancy appears significant for more massive clusters. To
quantify the evidence for such a mass-dependent bias, we use the
Bayesian linear regression method developed by Kelly (2007) to fit
log(MWtG) as function of log(MPlanck) (fitting the masses directly
avoids the correlated errors in the mass ratios one would have to
account for if fitting the data as shown in Fig. 1). While we show
MPlanck as function of MWtG in Fig. 2 to reflect that the weak-lensing
masses are our proxy for true cluster masses, we assign the Planck
mass estimates to be the independent variable to reduce the e↵ects
of Malmquist bias: MPlanck scales with the survey observable, and
by choosing it as the independent variable, we provide a mass esti-
mate for each data point which is to first order independent of other
selection e↵ects (as X-ray selection to first order does not correlate
with SZ selection biases, and the lensing data are a subsample of
an X-ray selected catalog). The Kelly (2007) method accounts for
measurement errors in both variables, as well as for intrinsic scat-
ter in the dependent variable. Rephrasing the results as a power-law,
the best-fit relation for the 22 clusters in the cosmology sample is:
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where the systematic uncertainty on the weak-lensing mass cali-
bration is accounted for in the uncertainty on the coe�cient. In 24
per cent of the Monte Carlo samples, the slope (of log(MPlanck) vs.
log(MWtG)) is unity or larger; i.e. the evidence for a mass-dependent
bias is at the ⇠ 1� level for these 22 clusters.

To further test for a mass-dependent bias, it is instructive to
include the additional 16 clusters in common between Planck and
WtG that are not used in the Planck cluster cosmology analysis, as
these slightly extend the mass range probed. For all 38 clusters, we
find a consistent and more precise result:

 
MPlanck

1015 M�

!
=

⇣
0.699+0.059

�0.060

⌘
⇥

 
MWtG

1015 M�

!0.68+0.15
�0.11

.

In 4.9 per cent of the Monte Carlo samples, the slope is unity or
larger; i.e. the confidence level for a slope less than unity is 95 per
cent3.

3 We note that when using bootstrap realizations of an unweighted simple
linear regression as a more agnostic fit statistic, we recover the same slope,
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FLUCTUATIONS: LINEAR THEORY

“TOP HAT” MODEL

GROWING MODE

Recall: (here a = R, Λ=0)

“TOP HAT MODEL”
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The Initial Fluctuations 

rms perturbation:  

At Inflation:  Gaussian, adiabatic  

Fourier transform:
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Gravitational Instability: Dark Matter

Small fluctuations:  

Continuity:  

Euler:  

Poisson:  

comoving coordinates 

matter era  

growing mode:  

irrotational, potential flow:  

Linear approximation:  



       Thus far, we have considered only the evolution of fluctuations in the dark matter.  But of 
course we have to consider also the ordinary matter, known in cosmology as 
“baryons” (implicitly including the electrons).  See Madau’s lectures “The Astrophysics of 
Early Galaxy Formation” (http://arxiv.org/abs/0706.0123v1 ) for a summary.  We have already seen 
that the baryons are primarily in the form of atoms after z ~ 1000, with a residual ionization 
fraction of a few x 10-4.  They become fully reionized by z ~ 6, but they were not reionized at 
z~20 since the COBE satellite found that “Compton parameter” y ≤ 1.5 x 10-5, where 

This implies that Thus, for example, a universe that 
was reionized and reheated at z = 20 to (xe, Te) = (1, > 4×105 K) would violate the COBE 
y-limit.

The figure at right shows the 
evolution of the radiation (dashed 
line, labeled CMB) and matter 
(solid line, labeled GAS) 
temperatures after recombination, in 
the absence of any reheating 
mechanism.  
(From Madau’s lectures, at  
physics.ucsc.edu/~joel/Phys224 .)

8 Piero Madau: Early Galaxy Formation

Figure 3. Evolution of the radiation (dashed line, labeled CMB) and matter (solid line,
labeled GAS) temperatures after recombination, in the absence of any reheating mechanism.

The coefficient of the fractional temperature difference reaches unity at the “thermaliza-
tion redshift” zth ≈ 130. That is, the residual ionization is enough to keep the matter in
temperature equilibrium with the CMB well after decoupling. At redshift lower than zth

the temperature of intergalactic gas falls adiabatically faster than that of the radiation,
Te ∝ a−2. From the analysis above, the rate of change of the radiation energy density
due to Compton scattering can be written as
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Compton scattering causes a distorsion of the CMB spectrum, depopulating the Rayleigh-
Jeans regime in favor of photons in the Wien tail. The “Compton-parameter”

y =

∫ z

0

kBTe

mec2

dτe

dz
dz (2.31)

is a dimensionless measure of this distorsion, and is proportional to the pressure of the
electron gas nekBTe. The COBE satellite has shown the CMB to be thermal to high
accuracy, setting a limit y ≤ 1.5×10−5 (Fixsen et al. 1996). This can be shown to imply

⟨xeTe⟩[(1 + z)3/2 − 1] < 4× 107 K. (2.32)

A universe that was reionized and reheated at z = 20 to (xe, Te) = (1, > 4 × 105 K), for
example, would violate the COBE y-limit.
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with , σT = (8π/3)(e2/mc2)2

http://arxiv.org/abs/0706.0123v1


The linear evolution of sub-horizon density perturbations in the dark matter-baryon	


fluid is governed in the matter-dominated era by two second-order differential equations:

for the dark matter, and

for the baryons, where δdm(k) and δb(k) are the Fourier components of the density	


fluctuations in the dark matter and baryons,† fdm and fb are the corresponding mass	


fractions, cs is the gas sound speed, k is the (comoving) wavenumber, and the derivatives are 
taken with respect to cosmic time.  Here

† For each fluid component (i = b, dm) the real space fluctuation in the density field,
can be written as a sum over Fourier modes,

is the time-dependent matter density parameter, and ρ(t) is the total background	


matter density. Because there is ~5 times more dark matter than baryons, it is the former	


that defines the pattern of gravitational wells in which structure formation occurs.  In	


the case where fb ≃ 0 and the universe is static (H = 0), equation (1) above becomes

(1)

(2)

“Hubble friction”



After a few dynamical times, only the exponentially growing term is significant: gravity tends 
to make small density fluctuations in a static pressureless medium grow exponentially with 
time.  Sir James Jeans (1902) was the first to discuss this.	


!
   The additional term ∝ H        present in an expanding universe can be thought as a “Hubble 
friction” term that acts to slow down the growth of density perturbations.  Equation (1) admits 
the general solution for the growing mode:

where tdyn denotes the dynamical timescale. This equation has the solution

so that an Einstein-de Sitter universe gives the familiar scaling δdm(a) = a with coefficient 
unity.  The right-hand side of equation (3) is called the linear growth factor D(a) = D+(a). 
Different values of Ωm, ΩΛ lead to different linear growth factors.  	


    Growing modes actually decrease in density, but not as fast as the average universe. Note 
how, in contrast to the exponential growth found in the static case, the growth of 
perturbations even in the case of an Einstein-de Sitter (Ωm =1) universe is just algebraic 
rather than exponential.  This was discovered by the Russian physicist Lifshitz (1946).

(3)





   The consequence is that dark matter 
fluctuations grow proportionally to the 
scale factor a(t) when matter is the 
dominant component of the universe, but 
only logarithmically when radiation is 
dominant.  Thus there is not much 
difference in the amplitudes of fluctuations 
of mass M < 1015 Msun, which enter the 
horizon before zmr ~ 4 ×103, while there is 
a stronger dependance on M for 
fluctuations with M > 1015 Msun.

  There is a similar suppression of the growth of matter fluctuations once the gravitationally 
dominant component of the universe is the dark energy, for example a cosmological constant.  
Lahav, Lilje, Primack, & Rees (1991) showed that the growth factor in this case is well 
approximated by 

Here is again given by

inside horizon
outside horizon

Primack & Blumenthal 1983



≈

The Linear Transfer Function T(k)



An approximate fitting function for T(k) in a ΛCDM universe is (Bardeen et al. 1986)

where (Sugayama 1995)

For accurate work, for example for starting high-resolution N-body simulations, it is best to 
use instead of fitting functions the numerical output of highly accurate integration of the 
Boltzmann equations, for example from CMBFast, which is available at 	


http://lambda.gsfc.nasa.gov/toolbox/  which points to 	


http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm 

W e l c o m e to the CMBFAST Website!!
This is the most extensively used code for computing cosmic microwave background anisotropy, 
polarization and matter power spectra. The code has been tested over a wide range of cosmological 
parameters. We are continuously testing and updating the code based on suggestions from the 
cosmological community. Do not hesitate to contact us if you have any questions or suggestions.!
!
U. Seljak & M. Zaldarriaga

http://lambda.gsfc.nasa.gov/toolbox/
http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm




Scale-Invariant Spectrum (Harrison-Zel’dovich)
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Formation of Large-Scale Structure
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From Peter Schneider, Extragalactic Astronomy 
and Cosmology (Springer, 2006)

Einstein-de Sitter

Open universe

Benchmark model

Structure forms	


earliest in Open,	


next in Benchmark,	


latest in EdS model.

Open

Benchmark

EdS



Linear Growth Rate Function D(a)

From Klypin, Trujillo-Gomez, Primack - Bolshoi paper 1 (2011, ApJ 740, 102) - Appendix A



From Peter Schneider, 
Extragalactic Astronomy and 
Cosmology (Springer, 2006)

(σ8, Γ)

P(k) 
!
nonlinear 
!
!
linear



On large scales (k small), the gravity of the dark matter dominates.  But on small scales, 
pressure dominates and growth of baryonic fluctuations is prevented.  Gravity and 
pressure are equal at the Jeans scale

The Jeans mass is the dark matter + baryon mass enclosed within a sphere of radius 
πa/kJ, 

where µ is the mean molecular weight.  The evolution of MJ is shown below, assuming that 
reionization occurs at z=15:



Jeans-type analysis for HDM, WDM, and CDM

Hot Dark Matter

Warm Dark Matter

Cold Dark Matter



GRAVITY – The Ultimate Capitalist Principle

The early universe expands 
almost perfectly uniformly.  
But there are small 
differences in density from 
place to place (about 30 
parts per million).   Because 
of gravity, denser regions 
expand more slowly, less 
dense regions more rapidly.  
Thus gravity amplifies the 
contrast between them, 
until…

Astronomers say that a region of the universe with more matter is “richer.” 
Gravity magnifies differences—if one region is slightly denser than average, it 
will expand slightly more slowly and grow relatively denser than its 
surroundings, while regions with less than average density will become 
increasingly less dense. The rich always get richer, and the poor poorer.

Temperature map at 380,000 years after the Big 
Bang.  Blue (cooler) regions are slightly denser.  
From NASA’s WMAP satellite, 2003.  



Structure Formation by Gravitational Collapse

When any region 
becomes about 
twice as dense as 
typical regions its 
size, it reaches a 
maximum radius, 
stops expanding, 

and starts falling 
together. The forces 
between the 
subregions generate 
velocities which 
prevent the material 
from all falling 
toward the center.

Through Violent 
Relaxation the dark 
matter quickly reaches a 
stable configuration 
that’s about half the 
maximum radius but 
denser in the center.

Simulation of top-hat collapse: 
P.J.E. Peebles 1970, ApJ, 75, 13.

Used in my 1984 summer school lectures “Dark matter, Galaxies, 
and Large Scale Structure,”  http://tinyurl.com/3bjknb3

http://tinyurl.com/3bjknb3


TOP HAT             VIOLENT          VIRIALIZED
Max Expansion         RELAXATION

rmax rvirrm rv



Growth and Collapse of 
Fluctuations

Schematic sketches of radius, density, and density 
contrast of an overdense fluctuation.  It initially expands 
with the Hubble expansion, reaches a maximum radius 
(solid vertical line), and undergoes violent relaxation 
during collapse (dashed vertical line), which results in 
the dissipationless matter forming a stable halo.  
Meanwhile the ordinary matter ρb continues to dissipate 
kinetic energy and contract, thereby becoming more 
tightly bound, until dissipation is halted by star or disk 
formation, explaining the origin of galactic spheroids 
and disks.   !
(This was the simplified discussion of BFPR84; the 
figure is from my 1984 lectures at the Varenna school. 
Now we take into account halo growth by accretion, 
and the usual assumption is that large stellar spheroids 
form mostly as a result of galaxy mergers Toomre 1977.  
Now we think that the most intermediate mass stellar 
spheroids form because of disk instability.)


