Physics 5D - Heat, Thermodynamics, and Kinetic Theory

Homework will be posted at the Phys5D website http://physics.ucsc.edu/~joel/Phys5D.
Solutions are due at the beginning of class. Late homework will not be accepted since solutions will be posted on the class website (password: Entropy) just after the homework is due, so that you can see how to do the problems while they are still fresh in your mind.

Course Schedule

Date	Topic	Readings
1. Sept 30	Temperature, Thermal Expansion, Ideal Gas Law	$17.1-17.10$
2. Oct 7	Kinetic Theory of Gases, Changes of Phase	$18.1-18.5$
3. Oct 14	Mean Free Path, Internal Energy of Gases	$18.6-19.3$
4. Oct 21	Heat and the 1 ${ }^{\text {st }}$ Law of Thermodynamics	$19.4-19.9$
5. Oct 28	Heat Transfer; Heat Engines, Carnot Cycle	$19.10-20.2$
6. Nov 4	Midterm Exam (in class, one page of notes allowed)	
7. Nov 18	The 2 ${ }^{\text {nd }}$ Law of Thermodynamics, Heat Pumps	$20.3-20.5$
8. Nov 25	Entropy, Disorder, Statistical Interpretation of 2 ${ }^{\text {nd }}$ Law	$20.6-20.10$
9. Dec 2	Thermodynamics of Earth and Cosmos; Overview of the Course	
10. Dec 11	Final Exam (5-8 pm, in class, two pages of notes allowed)	

Website for homeworks: http://physics.ucsc.edu/~joel/Phys5D
Physics 5D Homework Set \#1 Fall 2013
DUE at the beginning of class Monday October 7
To earn full credit on homework problems, you must exhibit the steps that lead to your final result. The homework grades will be based on the clarity of your method of solution as well as on your final answer.

Problems:

1. Giancoli, Chapter 17, problem 21.
2. Giancoli, Chapter 17, problem 28.
3. Giancoli, Chapter 17, problem 32. (Assume that air is an ideal gas.)
4. Giancoli, Chapter 17, problem 54.
5. Giancoli, Chapter 17, problem 56. (Note: ℓ_{0} is the diameter of the molecules.)

General Problems:

6. Giancoli, Chapter 17, problem 62.
7. Giancoli, Chapter 17, problem 73. (The force $=$ pressure \times area of the air is equal to its weight $\approx M g$, where M is the mass of all the air and $g \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}$. Assume that air is about 80% nitrogen molecules and 20% oxygen molecules.)
8. Giancoli, Chapter 17, problem 80. (Assume that helium is an ideal gas.)

Giancoli - Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law

17-1 Atomic Theory of Matter

Atomic and molecular masses are measured in unified atomic mass units (u). This unit is defined so that the carbon-12 atom has a mass of exactly 12.0000 u. Expressed in kilograms:

$$
1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg} .
$$

Brownian motion is the jittery motion of tiny flecks in water. Einstein showed in 1905 that this is the result of collisions with individual water molecules.

17-1 Atomic Theory of Matter

On a microscopic scale, molecules in solids are held in place by chemical bonds, in liquids there are bonds but molecules are able to move, while in gases there are only weak forces between molecules.
solids
liquids
gases

Thermometers are instruments designed to measure temperature. In order to do this, they take advantage of some property of matter that changes with temperature.

Early thermometers:

Thermometer chronology:
Galileo thermoscope 1593
Daniel Fahrenheit's alcohol thermometer 1709 mercury thermometer 1714

Anders Celsius
1742
Lord Kelvin's absolute scale

17-2 Temperature and Thermometers

Common thermometers used today include the liquid-in-glass type and the bimetallic strip.

Greater expansion with increased T

17-2 Temperature and Thermometers

Temperature is generally measured using either the Fahrenheit or the Celsius / Kelvin scales.

The freezing point of water is $0^{\circ} \mathrm{C}$, or $32^{\circ} \mathrm{F}$; the boiling point of water is $100^{\circ} \mathrm{C}$, or $212^{\circ} \mathrm{F}$

$$
\mathrm{T}_{\mathrm{F}}{ }^{\circ} \mathrm{F}=32{ }^{\circ} \mathrm{F}+1.8 \mathrm{Tc}
$$

$$
T_{K}=T_{C}+273.15 K
$$

Absolute zero $=0 \mathrm{~K}$

$$
=-273.15^{\circ} \mathrm{C}
$$

17-3 Thermal Equilibrium and the Zeroth Law of Thermodynamics

Two objects placed in thermal contact will eventually come to the same temperature. When they do, we say they are in thermal equilibrium.

The zeroth law of thermodynamics says that if two objects are each in equilibrium with a third object, they are also in thermal equilibrium with each other.

17-4 Thermal Expansion

Linear expansion occurs when an object is heated.
at T

Here, $\boldsymbol{\alpha}$ is the coefficient of linear expansion.
Example: $\alpha_{\mathrm{AI}}=25 \times 10^{-6}$, so if $\Delta T=100 \mathrm{C}$, an aluminum bar grows in length by a factor 1.0025

17-4 Thermal Expansion

Volume expansion is similar, except that it is relevant for liquids and gases as well as solids:

$$
\Delta V=\beta V_{0} \Delta T
$$

Here, $\boldsymbol{\beta}$ is the coefficient of volume expansion.
For uniform solids, $\beta \approx 3 \alpha$ because each of the 3 dimensions expands by the same factor α :
$\Delta V=\ell_{0}{ }^{3}\left[(1+\alpha \Delta T)^{3}-1\right]=\ell 0^{3} 3 \alpha \Delta T$
neglecting terms of order $(\alpha \Delta T)^{2}$.

17-4 Thermal Expansion

Material	Coefficient of Linear Expansion, $\alpha\left(\mathbf{C}^{\circ}\right)^{-1}$	Coefficient of Volume Expansion, $\boldsymbol{\beta}\left(\mathbf{C}^{\circ}\right)^{-1}$	
Solids			
Aluminum	25×10^{-6}	75×10^{-6}	
Brass	19×10^{-6}	56×10^{-6}	
Copper	17×10^{-6}	50×10^{-6}	
Gold	14×10^{-6}	42×10^{-6}	
Iron or steel	12×10^{-6}	35×10^{-6}	
Lead	29×10^{-6}	87×10^{-6}	
Glass (Pyrex ${ }^{\text {® }}$)	3×10^{-6}	9×10^{-6}	
Glass (ordinary)	9×10^{-6}	27×10^{-6}	
Quartz	0.4×10^{-6}	1×10^{-6}	
Concrete and brick	$\approx 12 \times 10^{-6}$	$\approx 36 \times 10^{-6}$	
Marble	$1.4-3.5 \times 10^{-6}$	$4-10 \times 10^{-6}$	
Liquids			
Gasoline		950×10^{-6}	
Mercury		180×10^{-6}	Larger
Ethyl alcohol		1100×10^{-6}	than for
Glycerin		500×10^{-6}	
Water		$210 \times 10^{-6} \mathrm{~J}$	SOlidS
Gases			
Air (and most other gases at atmospheric pressure)		3400×10^{-6}	

Does a hole in a piece of metal get bigger or smaller when the metal is heated?

A. Bigger, because the distance between every two points expands.
B. Smaller, because the surrounding metal expands into the hole.

Does a hole in a piece of metal get bigger or smaller when the metal is heated?

A. Bigger, because the distance between every two points expands
B. Smaller, because the surrounding metal expands into the hole.

17-4 Thermal Expansion

Example 17-7: Gas tank in the Sun.

The 70-liter (L) steel gas tank of a car is filled to the top with gasoline at $20^{\circ} \mathrm{C}$. The car sits in the Sun and the tank reaches a temperature of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. How much gasoline do you expect to overflow from the tank?

17-4 Thermal Expansion

Example 17-7: Gas tank in the Sun.
The 70-liter (L) steel gas tank of a car is filled to the top with gasoline at $20^{\circ} \mathrm{C}$. The car sits in the Sun and the tank reaches a temperature of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. How much gasoline do you expect to overflow from the tank?

Answer: The coefficient of volume expansion of gasoline is $\beta=0.00095 /{ }^{\circ} \mathrm{C}$, so the expansion of the gasoline is

$$
\begin{aligned}
\Delta \mathrm{V}=\beta \mathrm{V}_{0} \Delta \mathrm{~T} & =\left(0.00095 /^{\circ} \mathrm{C}\right)(70 \mathrm{~L}) 20^{\circ} \mathrm{C} \\
& =1.3 \mathrm{~L}
\end{aligned}
$$

17-4 Thermal Expansion

Water behaves differently from most other solids-its minimum volume occurs when its temperature is $4^{\circ} \mathrm{C}$. As it cools further, it expands, as anyone who leaves a bottle in the freezer to cool and then forgets about it can testify.

Copyright © 2009 Pearson Education, Inc.

When water above $4^{\circ} \mathrm{C}$ is heated, the buoyant force on an object of constant volume immersed in it

- A. increases.
- B. is unchanged.
- C. decreases.

When water above $4^{\circ} \mathrm{C}$ is heated, the buoyant force on an object of constant volume immersed in it

- A. increases.
- B. is unchanged.

Galileo

Thermo meter

17-6 The Gas Laws and Absolute Temperature

The relationship between the volume, pressure, temperature, and mass of a gas is called an equation of state.

Boyle's law: the volume of a given amount of gas is inversely proportional to pressure as long as the temperature is constant.

Robert Boyle (1627-1691) Founder of modern chemistry

17-6 The Gas Laws and Absolute Temperature

The volume is linearly proportional to the temperature, as long as the temperature is somewhat above the condensation point and the pressure is constant. Extrapolating, the volume becomes zero at $-273.15^{\circ} \mathrm{C}$; this temperature is called absolute zero

Guillaume Amontons, 1702 Jacques Charles, 1787 Joseph Gay-Lussac, 1808

17-6 The Gas Laws and Absolute Temperature

The concept of absolute zero allows us to define a third temperature scale-the absolute, or Kelvin, scale. This scale starts with 0 K at absolute zero, but otherwise is the same as the Celsius scale. Therefore, the freezing point of water is 273.15 K , and the boiling point is 373.15 K.

Finally, when the volume is constant, the pressure is directly proportional to the temperature.

$$
P \propto T
$$

Gay-Lussac's Law

17-7 The Ideal Gas Law

We can combine the three relations just stated into a single relation:

$$
P V \propto T
$$

What about the amount of gas present? If the temperature and pressure are constant, the volume is proportional to the mass m of gas:

$$
P V \propto m T
$$

17-7 The Ideal Gas Law

A mole (mol) is defined as the number of grams of a substance that is numerically equal to the molecular mass of the substance:
$1 \mathrm{~mol}_{\mathrm{H}}$ has a mass of 2 g .
1 mol Ne has a mass of 20 g .
$1 \mathrm{~mol} \mathrm{CO}_{2}$ has a mass of 44 g .
The number of moles (mol) in a certain mass of material:

$$
n(\text { mole })=\frac{\text { mass }(\text { grams })}{\text { molecular mass }(\mathrm{g} / \mathrm{mol})} .
$$

17-7 The Ideal Gas Law

We can now write the ideal gas law:

$$
P V=n R T \text {, }
$$

Amadeo
where n is the number of moles and Avogadro R is the universal gas constant.

$$
\begin{aligned}
R & =8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) \\
& =0.0821(\mathrm{~L} \cdot \mathrm{~atm}) /(\mathrm{mol} \cdot \mathrm{~K}) \\
& =1.99 \text { calories } /(\mathrm{mol} \cdot \mathrm{~K})
\end{aligned}
$$

Note: $P V$ has units of Force x Distance = Energy

ConcepTest Nitrogen and Oxygen I

Which has more molecules-a mole of nitrogen $\left(\mathrm{N}_{2}\right)$ gas or a mole of oxygen $\left(\mathrm{O}_{2}\right)$ gas?

1) oxygen
2) nitrogen
3) both the same

ConcepTest Nitrogen and Oxygen I

Which has more molecules-a mole of nitrogen $\left(\mathrm{N}_{2}\right)$ gas or a mole of oxygen $\left(\mathrm{O}_{2}\right)$ gas?

1) oxygen
2) nitrogen
3) both the same

A mole is defined as a quantity of gas molecules equal to Avogadro's number $\left(6.02 \times 10^{23}\right)$. This value is independent of the type of gas.

ConcepTest Nitrogen and Oxygen II

Which weighs more-a mole of nitrogen (N_{2}) gas or a mole of oxygen $\left(\mathrm{O}_{2}\right)$ gas?

1) oxygen
2) nitrogen
3) both the same

ConcepTest Nitrogen and Oxygen II

Which weighs more-a mole of nitrogen (N_{2}) gas or a mole of oxygen $\left(\mathrm{O}_{2}\right)$ gas?

1) oxygen
2) nitrogen
3) both the same

The oxygen molecules have a molecular mass of 32, and the nitrogen molecules have a molecular mass of 28.

Follow-up: Which one will take up more space?

17-8 Problem Solving with the Ideal Gas Law

Standard temperature and pressure (STP):

$$
\begin{gathered}
T=273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right) \\
P=1.00 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=101.3 \mathrm{kPa} .
\end{gathered}
$$

Determine the volume of 1.00 mol of any gas, assuming it behaves like an ideal gas, at STP.

$$
\begin{aligned}
V & =R T / P=(8.314 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(273 \mathrm{~K}) /\left(1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right) \\
& =22.4 \times 10^{-2} \mathrm{~m}^{3}=22.4 \mathrm{~L}
\end{aligned}
$$

17-8 Problem Solving with the Ideal Gas Law

Example 17-12: Mass of air in a room.
Estimate the mass of air in a room whose dimensions are $5 \mathrm{~m} \times 3 \mathrm{~m} \times 2.5 \mathrm{~m}$ high, at STP.

17-8 Problem Solving with the Ideal Gas Law

Example 17-12: Mass of air in a room.
Estimate the mass of air in a room whose dimensions are $5 \mathrm{~m} \times 3 \mathrm{~m} \times 2.5 \mathrm{~m}$ high, at STP.

Answer: The volume is $5 \times 3 \times 2.5 \mathrm{~m}^{3}=37.5 \mathrm{~m}^{3}$
= 37500 L
Since 22.4 L is one mole at STP, there are 37500/22.4 = 1700 moles in the room. Since air is about $20 \% \mathrm{O}_{2}$ and $80 \% \mathrm{~N}_{2}$, its average molecular mass is $0.2(32)+0.8(28)=28.8$. Thus the mass of air in the room is 1700 x $28.8 \mathrm{~g}=48900 \mathrm{~g}=49 \mathrm{~kg}$

ConcepTest Ideal Gas Law

Two cylinders at the same temperature contain the same gas. If B has twice the volume and half the number of moles as A, how does the pressure in B compare with the pressure in A?

1) $P_{B}=\frac{1}{2} P_{A}$
2) $P_{B}=2 P_{A}$
3) $P_{\mathrm{B}}=\frac{1}{4} P_{\mathrm{A}}$
4) $P_{B}=4 P_{A}$
5) $P_{B}=P_{A}$

ConcepTest Ideal Gas Law

Two cylinders at the same temperature contain the same gas. If B has twice the volume and half the number of moles as A, how does the pressure in B compare with the pressure in A?

1) $P_{B}=\frac{1}{2} P_{A}$
2) $P_{B}=2 P_{A}$
3) $P_{B}=\frac{1}{4} P_{A}$
4) $P_{B}=4 P_{A}$
5) $P_{B}=P_{A}$

Ideal gas law: $P V=n R^{T}$ of $P=n R^{\top} / \mathbb{V}$
Because B has a factor of twice the volume, it has a factor of two less the pressure. But B also has half the amount of gas, so that is another factor of two reduction in pressure. Thus, B must have only one-quarter the pressure of A.

17-8 Problem Solving with the Ideal Gas Law

- Volume of 1 mol of an ideal gas is 22.4 L
- If the amount of gas does not change:

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} .
$$

- Always measure T in kelvins
- P must be the absolute pressure

Note: absolute pressure = gauge pressure +1 Atm
$1 \mathrm{Atm}=101 \mathrm{kPa}=14.7 \mathrm{psi}=760 \mathrm{mmHg}$ (torr)

17-8 Problem Solving with the Ideal Gas Law

 Example 17-13: Check tires cold.An automobile tire is filled to a gauge pressure of 200 kPa ($=29 \mathrm{psi}$) at $10^{\circ} \mathrm{C}$. After a drive of 100 km , the temperature within the tire rises to $40^{\circ} \mathrm{C}$. What is the pressure within the tire now?

$$
\begin{aligned}
& \mathrm{P}_{1}=(200+101) \mathrm{kPa}=301 \mathrm{kPa} \\
& \mathrm{~T}_{1}=283 \mathrm{~K}, \mathrm{~T}_{2}=313 \mathrm{~K} . \\
& \text { Assume } \mathrm{V}=\text { constant. Then } \\
& \mathrm{P}_{2} \mathrm{~V}_{1} / \mathrm{T}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1} \text { or } \\
& \begin{aligned}
\mathrm{P}_{2} & =\mathrm{P}_{1}\left(\mathrm{~T}_{2} / \mathrm{T}_{1}\right)=301 \mathrm{kPa}(313 / 283) \\
& =333 \mathrm{kPa} \text { absolute pressure } \\
& =233 \mathrm{kPa} \text { gauge pressure } \\
& =34 \mathrm{psi}
\end{aligned}
\end{aligned}
$$

17-9 Ideal Gas Law in Terms of Molecules: Avogadro's Number

Since the gas constant is universal, the number of molecules in one mole is the same for all gases. That number is called Avogadro's number:

$$
N_{\mathrm{A}}=6.02 \times 10^{23}
$$

This was first measured (and named) by Jean Babtiste Perrin in 1909, using Einstein's 1905 analysis of Brownian motion.

Amadeo Avogadro

Perrin

17-9 Ideal Gas Law in Terms of Molecules: Avogadro's Number

Therefore we can write:

$$
P V=n R T=\frac{N}{N_{\mathrm{A}}} R T
$$

or

$$
P V=N k T,
$$

where \boldsymbol{k} is called Boltzmann's constant.

$$
k=\frac{R}{N_{\mathrm{A}}}=\frac{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}}{6.02 \times 10^{23} / \mathrm{mol}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

$$
\begin{array}{r}
V \propto \frac{1}{P} \\
V \propto T
\end{array}
$$

1702 Amontons' Experiment

1734 Bernoulli's KMT
$P \propto T \quad 1787$ Charles' Law 1801 Dalton's Law of Partial Pressure 1802 Gay-Lussac's Balloon Ride

1811 Avogadro's Principle Published
where n is the number of moles and R is the universal gas constant $R=8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
$=0.0821(\mathrm{~L} \cdot \mathrm{~atm}) /(\mathrm{mol} \cdot \mathrm{K})$
$=1.99$ calories $/(\mathrm{mol} \cdot \mathrm{K})$.
or $P V=N k T$ where k is Boltzmann's constant N is the number of molecules, and N_{A} is Avogadro's number

$$
k=\frac{R}{N_{\mathrm{A}}}=\frac{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}}{6.02 \times 10^{23} / \mathrm{mol}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} .
$$

17-9 Ideal Gas Law in Terms of Molecules: Avogadro's Number

Example 17-14: Hydrogen atom mass.
Use Avogadro's number to determine the mass of a hydrogen atom.

17-9 Ideal Gas Law in Terms of Molecules: Avogadro's Number

Example 17-14: Hydrogen atom mass.
Use Avogadro's number to determine the mass of a hydrogen atom.
Answer: $1.008 \mathrm{~g} / 6.02 \times 10^{23}=1.67 \times 10^{-24} \mathrm{~g}$

17-9 Ideal Gas Law in Terms of Molecules: Avogadro's Number

Example 17-14: Hydrogen atom mass.
Use Avogadro's number to determine the mass of a hydrogen atom.
Answer: $1 \mathrm{~g} / 6.02 \times 10^{23}=1.7 \times 10^{-24} \mathrm{~g}$
Example 17-15: How many molecules in one breath?

Estimate how many molecules you breathe in with a $1.0-\mathrm{L}$ breath of air.

17-9 Ideal Gas Law in Terms of Molecules: Avogadro's Number

Example 17-14: Hydrogen atom mass.
Use Avogadro's number to determine the mass of a hydrogen atom.
Answer: $1 \mathrm{~g} / 6.02 \times 10^{23}=1.7 \times 10^{-24} \mathrm{~g}$
Example 17-15: How many molecules in one breath?

Estimate how many molecules you breathe in with a 1.0-L breath of air.
Answer: $6.02 \times 10^{23} / 22.4=2.7 \times 10^{22}$ molecules

17-10 Ideal Gas Temperature Scalea Standard

This standard uses the constant-volume gas thermometer and the ideal gas law. There are two fixed points:

Absolute zero-the pressure is zero here
The triple point of water (where all three phases coexist), is defined to be 273.16 K—the pressure there is 4.58 torr.

18-3 Real Gases and Changes of Phase

A PT diagram is called a phase diagram; it shows all three phases of matter. The solidliquid transition is melting or freezing; the liquid-vapor one is boiling or condensing; and the solid-vapor one is sublimation.

Phase diagram of water (note nonlinear axes).

$$
\begin{aligned}
P_{\mathrm{tp}} & =4.58 \text { torr } \\
& =0.0604 \mathrm{~atm} \\
T_{\mathrm{tp}} & =273.16 \mathrm{~K}
\end{aligned}
$$

17-10 Ideal Gas Temperature Scalea Standard

Then the temperature is defined as:

$$
T=(273.16 \mathrm{~K})\left(\frac{P}{P_{\mathrm{tp}}}\right), \text { where } P_{\mathrm{tp}}=4.58 \text { torr }
$$

In order to determine temperature using a real gas, the pressure must be as low as possible so it behaves like an ideal gas.
constant-volume gas thermometer

Example: Carbon Dioxide in the Atmosphere Amount of CO_{2} in Atmosphere: about 400 ppm by volume, 600 ppm by mass $\left(6 \times 10^{-4}\right)\left(5 \times 10^{18} \mathrm{~kg}\right)=3 \times 10^{15} \mathrm{~kg}=3000 \mathrm{GT}$ Human production $=30 \mathrm{GT} / \mathrm{yr}=1 \%$ of atm !

Human production $=30 \mathrm{GT} / \mathrm{yr}=1 \%$ of atm $=4 \mathrm{ppm}$ Annual increase is now about 2 ppm, so about $1 / 2$ of human production stays in the atmosphere.

If we continue with business as usual, we will continue to double CO_{2} production every 30 years, leading to over 500 ppm in the atmosphere by 2040, almost double the preindustrial level. The corresponding rise in temperature is $\mathbf{\sim}$ 2 to 3K, about 2 to $3 x$ what we have seen so far.

