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A detailed analysis is given of a 1685 graphical construction by Robert Hooke for the polygonal
path of a body moving in a periodically pulsed radial field of force. In this example the force
varies linearly with the distance from the center. Hooke’s method is based directly on his
original idea from the mid-1660s that the orbital motion of a planet is determined by
compounding its tangential velocity with a radial velocity impressed by the gravitational
attraction of the sun at the center. This hypothesis corresponds to the second law of motion, as
formulated two decades later by Newton, and its geometrical implementation constitutes the
cornerstone of Newton’s Principia. Hooke’s diagram represents the first known accurate
graphical evaluation of an orbit in a central field of force, and it gives evidence that he
demonstrated that his resulting discrete orbit is an approximate ellipse centered at the origin of
the field of force. A comparable calculation to obtain orbits for an inverse square force, which
Hooke had conjectured to be the gravitational force, has not been found among his unpublished
papers. Such a calculation is carried out here numerically with the Newton—Hooke geometrical
construction. It is shown that for orbits of comparable or larger eccentricity than Hooke’s
example, a graphical approach runs into convergence difficulties due to the singularity of the
gravitational force at the origin. This may help resolve the long-standing mystery why Hooke
never published his controversial claim that he had demonstrated that an attractive force, which

is ““: - -in a duplicate proportion to the Distance from the Center Reciprocall---”

orbits.

L. INTRODUCTION

One of the most fascinating questions in the history of
science is the role that Robert Hooke played in the devel-
opment of dynamics and the theory of gravitation during
the 17th century, whrch culminated with Newton’s mas-
terpiece the Principia.! Hooke, one of the most prolific and
inventive scientists of all times, made fundamental contri-
butions to physics, astronomy, chemistry, geology, biology,
and meteorology;> one-third of the 15 volumes of
Gunther s Early Science in Oxford® are dedicated to his
work.** However, in spite of the profound influence which
Hooke had, particularly on Newton’s work, shortly after
his death in 1703 he was nearly completely forgotten until
about the turn of this century. In an influential book enti-
tled The Science of Mechanics, a Critical and Historical
Account of its Development, first published in 1883, Ernst
Mach devoted only a few lines to Hooke, although he per-
ceptively stated that “---Hooke really approached nearest
to Newton’s conception, though he never completely
reached the latter’s altitude of view” (Ref. 6). Ten years
later, the publication of some of the correspondence be-
tween Hooke and Newton by Rouse Ball,” and the subse-
quent discovery of two additional letters published by
Pelseneer® and Koyré,” initiated a reappraisal of Hooke’s
contnbutlons to mechanics!®'® which continues to the
present time,’ although a general consensus about Hooke’ s
importance has not been reached. In contrast to Mach,®
Dugas recognized Hooke’s crucial role in his book Me-
chanics in the Seventeenth Century,!” although some recent
accounts of the development of mechanics still ignore
Hooke’s role completely.'*!* Meanwhile, most physicists
and mathematicians have remained unaware of these de-
velopments, as can be seen by reading textbooks or jour-
nals that cover classical mechanics, where Hooke is men-
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implies elliptic

tioned only in relation with the law of elasticity.?’ A
notable exception is a recent book by Amol’d entitled Huy-
gens and Barrow, Newton and Hooke.*!

Hooke’s profound physical intuition, which was guided
by his numerous experiments, thought to be on the order of
several hundred,?? led him during the middle 1660s to a
correct qualitative formulation of the principles of dynam-
ics as applied to celestial mechanics. Hooke stated that the
orbital motion of a planet is determined by compounding
its tangential velocity with the radial velocity impressed by
the gravitational attraction of the sun. Further, he formu-
lated the concept of universal gravitational attraction at a
distance and deduced the inverse square law, based on the
conjecture that the origin of gravity was due to periodic
pulses from matter, by analogy with the emission of light
and sound.?** While crediting Hooke with some of these
ideas, and acknowledging his mﬂuence on Newton, histo-
rians of science, with few exceptions,'® have generally con-
cluded that he was unable to obtain a quantitative or math-
ematical formulation of his principles. This judgment
echoes the charge made already by Newton in a June 20,
1686 letter to Haley that stated:

“--Borell did something in it and wrote modestly,

he [Hooke] has done nothing and yet written in such

a way as if he knew and had sufficiently hinted all but

what remained to be determined by the drudgery of

calculations and observations, excusing himself from
that labour by reason of his other business: whereas
he should rather have excused himself by reason of
his inability. For it is plain by his words he knew not

. how to go about it. Now is not this very fine? Math-

ematicians that find out, settle and do all the business

must content themselves with being nothing but dry
calculators and drudges and another that does noth-
ing but pretend and grasp at all things must carry

© 1994 American Association of Physics Teachers 331



away all the invention as well of those that were to

follow him as of those that went before:--For as

Borell wrote long before him that by a tendency of

the Planets towards the sun like that of gravity or

magnetism the Planets would move in Ellipses, so

Bullialdus wrote that all force respecting the sun as

its center and depending on matter must be recipro-

cally in duplicate ratio of the distance from the cen-

ter---” (Ref. 25).

In his letter, Newton was focusing his fury about accu-
sations from Hooke that he had plagiarized the discovery
of the inverse square radial dependence of the gravitational
force. In his capacity as editor of the Principia, Halley had
tactfully written

“..-that Mr Hook has some pretensions upon the

invention of the rule of the decrease of Gravity, being

reciprocally as the squares of the distances from the

Center. He sais you had the notion from him, though

he owns the Demonstrations of the Curves generated

thereby to be wholy your own---”

Newton also criticized Hooke’s claim that this radial de-
pendence of the force of gravity implied elliptic orbits for
the planets moving around the sun, pointing out that
Hooke had concluded incorrectly that the velocity varied
inversely with the distance. What Newton conveniently
forgot in his lengthy diatribe to discredit Hooke, is that in
their 1679/80 correspondence, Hooke had described cor-
rectly some of the principles of orbital motion that led
Newton to the discovery of Kepler’s area law,'* and to a
deeper understanding of orbital dynamics. 26 Later, Newton
referred to Hooke in his System of the World, the less
mathematical treatment of Book III of the Principia, lump-
ing him together with other well-known philosophers
whose speculations about the motion of the planets were
wrong:

“The later philosophers pretend to account for it ei-

ther by the action of certain vortices, as Kepler and

Descartes; or by some other principle of impulse or

attraction, as Borelli, Hooke, and others of our na-

tion---”

Actually, Hooke arrived at his remarkable physical in-
sights in dynamics by careful observation of mechanical
analogs of celestial motion, and not by just guessmg With
the notable exception of Lohne!! and Arnol’d, 2! this mis-
conception that Hooke’s discoveries of the prmc1ples of
mechanics and the law of gravitational force were pure
guesses, ot based somehow on incorrect mathematical rea-
soning, has been repeated in many accounts b?r Newtonian
scholars. To quote one typical example, Hall'® states:

“One sees his (Newton’s) point: Hooke had been

almost as vague as Borelli, and certainly could never

have produced dynamical demonstrations applicable

to planetary motion: yet we may allow that the idea

of a terrestrial projectile becoming a satellite in ellip-

tical motion was Hooke’s own, though a ‘guess’ in-
deed as Newton rightly called it---”

The sentiment by many historians of science that Hooke
did not have any sound basis for his physical principles is
often expressed by quoting the 18th century French math-
ematician Alexis-Claude Clairaut, who, although consid-
ered a supporter of Hooke, stated that
“Hooke’s examples serve to show what a distance
there is between a truth that is glimpsed and a truth
that is demonstrated---” (Refs. 7, 14, 15).
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However, from the outset, Hooke’s dynamical principles
were grounded on careful experiments and observations of
well-designed mechanical systems that could serve as ana-
logs of celestial dynamics. The best documented example is
the circular or conical pendulum,”’ but there is evidence
that he also studied the dynamics of balls rolling on various
surfaces of revolution. These serve as approximate analog
models for different central attractive forces. Indeed, for a
long time, Hooke had been applying the maxim,

‘- -that Nature seems to take similar Ways for pro-

ducing similar Effects; without granting of which we

cannot reason or make any Conclusion from similar

Operations.” (Ref. 23).

However, he cautions that?®

“Omne simile non est idem.” (Everything that looks

the same is not the same) (Ref. 23).

Recently, in an article entitled Robert Hooke and the
Dynamics of Motion in a Curved Path, Pugliese”® repro-
duced a remarkable diagram shown in Fig. 1 which is kept
among the unpublished manuscripts of Hooke in the Wren
Library at Trinity College, Cambridge.*® This diagram,
which is part of an unﬁmshed document entitled The Laws
of Circular Motion,*' shows a graphJcal construction of a
segment of an orbit for a body moving in a central field of
force. On a page of the manuscript associated with this
diagram a date is inscribed: Sept. 1, 1685. It turns out that
this date is important in relating this work to Newton’s
earliest draft of the Principia, the manuscript De Motu
Corporum Gyrum, which was registered by Edmond Hal-
ley at the Royal Society in November 1684. In Hooke’s
example of orbital dynamics, the force varies linearly with
the distance from the center, and in the handwritten text
associated with the diagram (see also the Appendix), he
states that the corresponding orbit is an ellipse. In his ar-
ticle, Pugliese analyzes Hooke’s graphical construction
only for the special case of circular motion, and then im-
plies that Hooke somehow failed in his attempt to gener-
alize the construction to noncircular motion, as shown in
the diagram, Fig. 1, concluding that ““: - -Hooke claims, but
certainly does not demonstrate [the path] to be ellipti-
cal---” Earlier in the paper, Pugliese asserted that
“...there can be no doubt- - - that [Hooke] could not have
taken his dynamical principle so far as Newton.” He ends
with the comment that Hooke “---does not seem to have
ever come to a full appreciation of the magnitude of the
step from his ideas to Newton’s achievements > These
comments and conclusions appear to reinforce the conven-
tional wisdom among historians of science about Hooke’s
mathematical limitations. However, a careful analysis of
Hooke’s diagram, Fig. 1, leads to quite opposite conclu-
sions.

In this paper I will show that Hooke’s graphical solu-
tion, Fig. 1, for the orbit of a body in a radial field of force
that varies linearly with the distance from the center, is
based on precisely the same geometrical constructton devel-
oped by Newton in Theorem 1 of De Motu,* which be-
came later Proposition I, Theorem I, Book I of the Prin-
cipia. Further, this geometrical construction is effectively
the mathematical formulation of the principles of dynamics
which Hooke had been proposing during the past 20 yr.
Contrary to Pugliese’s assertion, I will show that in his
diagram, Fig. 1, Hooke gives at least three graphical dem-

Michael Nauenberg 332



fu ha npepete o ,:..m{ﬂld:i-p(cjun m e mP0{ uﬁ&. ad o F
Ker vilocily froporfi- b5 Grasiily (Pl ,,/L‘L;, (o) Ko i
r“a_((bﬁ),;u {‘)PJ{ v{‘r‘auib Hall meess da Jvz;, al-ﬂ . wkert, Keo M ug»dt..o fce by
e Driving sl o s On M alolity By ki /”,‘mmu-‘-
o 12 e i oo toab oM betbo 0. mke 1= af ot ke g s dgucke vepnty
s Len dyue B, Mwifd“'wfu.’ Fo ra‘,"ﬁ-’ ‘“. ) * by . He o
ro 4~ N ccvile bt &u«k, K.r-’v\'[w/:l Ad s b{’-‘f"‘ m rf”rh"""* fo A\h
6AJ {;)’:;:-’kuuﬁ*%wwtb e cireln, i ’u;aa‘ “’"."'".%""( bosean ol .
;/::-‘:; Pa.v “% by oM g0t /30 by /32 for 10 o 1 3 W RA) T f"""")’";’f"k;'ﬂ ”*f"- Aﬁo.‘
ﬂqkaéa }L‘cw;ﬁdfﬁxo Lewa, Yo b AO. : “"’* of- 44 54'3) K"Lfr'rt.. |
IR 8ayeall asrag n Byt hice

//.J,kral’rmaﬂ—'hl e qzlluﬂ.(, . plD pRall B * 8

# o
~

S -y e

h’?(:k«!. ‘l"tldu;f/v/ (Mw[ ({"‘-"t"l'lz;f)‘ o-/ M Cs 7’*“”;')71 g;_ .-fklvhh . L{ol—‘

Mﬂ‘cu‘m-‘abau‘ ‘,,u% tHe 2 /. »
‘3_7 roue o o corcles 4"f¢5wu€{~/£z}, S ’({l{m"fg{“ 4

BS ;/ﬁ‘b?&ulo ower feblanes Ko au.z#~ Wt‘ 'R "/
h—v.v J mh-a:v: ) ’L‘f rm ﬁ.chﬂ‘u‘ taadt) 200 e e ;v*f"o .
qszyv-aj "ﬁl’v ﬂ-n.:’/q ﬂ-‘-g y /r‘;‘:j W:’ hT‘\f ‘WJ_ . %ﬂ’v

Fig. 1. Hooke’s September 1685 geometrical construction and graphical evaluation of orbital motion in a central field of force which varies linearly with
distance. The original copy is in the collection of Hooke’s manuscripts in the Trinity College Library, Cambridge, MS O.11a.1/16. Reproduced by
permission of the Master and Fellows of Trinity College.
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onstrations that the vertices of the resulting polygonal or-
bit lie on an ellipse. Moreover, this progerty is exact, as can
be shown by an affine transformation. ‘

While the extent to which Hooke and other members of
the Royal Society were aware of Newton’s manuscript>* is
uncertain, there are at least two letters which indicate that
Hooke may have seen the copy of the De Motu shortly after
it had been registered at the Royal Society in November
1684. A month later Flamsteed wrote to Newton? that

“--+ T am obliged by your kind concession of ye pe-

rusall of your papers, tho I believe I shall not get a

sight of them till our common friend Mr. Hooke and

the rest of the towne have been first satisfied: - -”

Later, on June 29, 1686, Halley wrote to Newton?® that
“.--it [de Motu] has been entered upon the Register
books of the Society as all this past Mr. Hook was
acquainted with it; ---”

If Hooke had indeed seen the 1684 version of De Motu,*?
he would have recognized that Newton had implemented
geometrically his dynamical principle of compounding a
tangential velocity with an impressed radial velocity due to
a center of attraction. On the first page of this manuscript,
Newton draws a diagram and describes a geometrical con-
struction (similar to Fig. 3) that embodies Hooke’s dy-
namical principles. He then applies it to prove Theorem 1,
that “all bodies circulating a centre [of force] sweep out
areas proportional to the times.” Regardless of whether
Hooke had seen De Motu, his own description of the geo-
metrical construction described in the handwritten text in
Fig. 1 (see also the Appendix and Fig. 3) is given directly
in the physical terms that he had used for the past 20 yr:

“.--let ha represent the impressed velocity in the

tangent of an ellipse and ab the velocity impressed by

Gravity- - -the puls of Gravity [Hooke’s ad hoc the-

ory of periodic gravitational pulses] driving it toward

the center- - -then draw the diagonal 8 [compounding
the two vector velocities shown as displacements in
the diagram]- -+

This is not a mere translation of Newton’s mathematical
description in Latin of the corresponding geometric con-
struction associated with Theorem 1 of De Motu (for com-
parison see Herivel’s translation)*® which later became the
cornerstone of the Principia, as Proposition 1, Theorem 1
of Book 1. Further, Hooke then proceeds in quite a differ-
ent way from Newton, applying the geometrical construc-
tion in a novel graphical manner to obtain an orbital path
in a central field of force that varies linearly with distance.

The orbital problem posed by Hooke is to add two vec-
tors, a tangential velocity, and a velocity change in the
radial direction impressed by an attractive central force,
both of which are varying continuously in time along the
orbit. Previously, Galileo had solved the corresponding
problem for the case that the change of velocity due to
gravity is along a fixed (vertical) direction in space.’® In
this special case the vertical and horizontal components of
motion are separable, but this is not the case for central
force. The new mathematical idea developed by Newton
and by Hooke was to assume that the force consisted of
pulses applied at periodic intervals of time. While Newton
considered a finite time interval between impulses to be
only an approximation, and took the limit as this interval
becomes vanishingly small, Hooke had conjectured earlier
that the gravitational force consisted of just such periodic
pulses.37 It is from this “‘supposition” that Hooke deduced
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that the gravitational force decreased as the inverse of the
square of the distance from the center, in analogy with
similar phenomena like pulsed radiation of light and
sound.?*?* This crucial idea of replacing a continuous force
by a series of short impulses varying periodically in time, in
order to treat accelerated motion mathematically, can be
traced back to the work of a Dutch Latin schoolteacher,
Isaac Beeckman.*® In collaboration with Descartes in 1618,
he succeeded in this manner to calculate accelerated mo-
tion of a body in a constant field force. Surprisingly, this
fruitful mathematical method was not generalized to cen-
tral forces until about 66 yr later by Newton in De Motu,
and by Hooke, who applied it graphically to obtain an
accurate numerical calculation of a dynamical orbit in a
central field of force. In his diagram Hooke also points out
the essential feature that this geometrical construction
leads to Kepler’s area law, although its dynamical origin
due to the restriction of forces which are central was dem-
onstrated only by Newton in the De Motu, and later in the
Principia.

Unfortunately, a comparable graphical calculation by
Hooke of the orbital path for the force of gravitational
attraction has not been found. This is particularly surpris-
ing, because such a calculation for the 1//* dependent force
is almost as easy to do by Hooke’s method as for a force
depending linearly on r. Further, from the onset Hooke’s
main goal had been precisely to calculate planetary orbits
- -to the greatest exactness and certainty that can be de-
sired- - -” (Ref. 27). Indeed in 1684, Hooke had claimed to
Edmond Halley and Christopher Wren that he had suc-
ceeded in demonstratinJ% that an inverse square law of force
implied elliptic orbits.”” However, according to his early
biographer Richard Waller,”2 many important papers of
Hooke have been lost. It is straightforward to reproduce
the inverse square calculation with Hooke’s graphical
method; the results are discussed below. In particular, I
will show that when the trajectory approaches the center of
force too closely, as is the case for orbits of high eccentric-
ity like the comets, Hooke’s graphical application runs into
a problem of convergence. It is likely that this difficulty
may have been encountered by Hooke, which would ac-
count for his reluctance to publish his results before he had
a chance to resolve the difficulty. The appearance of the
Principia shortly thereafter with a solution to his
problem—taking the limit of vanishingly small time
steps—must have been a stunning but perhaps not unex-
pected blow to Hooke. As pointed out by Lohne, after the
fall of 1686 “---we can see him feverishly active to assert
his claims of priority.” (Ref. 11).

In order to understand Hooke’s contributions to the gen-
esis of Newton’s Principia, and the origin of Hooke’s dia-
gram, Fig. 1, it is important to review certain parts of the
1679/80 correspondence of Hooke and Newton, and the
1686 correspondence between Halley and Newton. Aspects
of this correspondence acquire new significance in light of
Hooke’s diagram, which I will endeavor to explain in Sec.
IL. In Sec. III a detailed discussion is given of Hooke’s
geometrical construction and its graphical application to
the case of a radial force. An algebraic formulation of this
construction is given in Sec. IV, which leads to discrete
equations of motion for a body acted on by impulsive cen-
tral forces. In the limit of small time steps, algebraic proofs
are given for Newton’s theorems in the Principia that el-
liptic motion implies linear or inverse square radial depen-
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dence of the central force. Section V describes the numer-
ical application of these equations to the inverse square
law, for initial conditions similar to those that Hooke took
for the linear force law. A summary and conclusions are
presented in Sec. VI. The Appendix gives an annotated
version of the handwritten text describing Hooke’s 1685
diagram, Fig. 1.

II. BACKGROUND

On May 23, 1666, Hooke gave a remarkable lecture to
the members of the newly founded Royal Societ 7y entitled
Planetary Movements as a Mechanical Problem,”” in which
he proposed that the Keplerian tic orbits of planets
around the sun could be calculated"g by compounding an
inertial straight line motion with an inflection toward the
center due to an attractive property of the sun. This is the
first time that some of the essential dynamical principles of
planetary motion were publicly and unambiguously stated,
nearly two decades before they were implemented in math-
ematical form by Newton in his celebrated Principia.
Hooke’s paper, registered by the Rdyal Society, starts with
the statement that

“I have often wondered, why the planets should
move about the sun according to Copernicus’s sup-
position, being not included in any solid orbs (which
the ancients possibly for this reason might embrace)
nor tied to it, as their centre, by any visible strings;
and neither depart from it beyond such a degree, nor
yet move in a straight line, as all bodies, that have
one single impulse, ought to do---”

Hooke then dismisses a theory, partly due to Borell,*! that
the impressed force is due to a medium of variable density
acting on the planetary body, and states his own idea that

- --the second case of inflecting a direct motion into
a curve may be from an attractive body placed in the
centre; whereby it continually endeavours to attract
or draw it to itself. For if such a principle be sup-
posed, all the phenomena of the planets seem possible
to be explained by the common principle of mechanic
motions; and possibly the prosecuting of this specu-
lation may give us a true hypothesis of their motion,
and from some few observations, their motions may
be so far brought to a certainty, that we may be able
to calculate them to the greatest exactness and cer-
tainty that can be desired- - - This inflexion of a direct
motion into a curve by a supervening attractive prin-
ciple I shall endeavour to explicate from some exper-
iments with a pendulous body: not that I suppose the
attraction of the sun to be exactly according to the
same degrees as they are in the pendulum---”

Hooke had in mind that a conical or circular pendulum
could serve as a mechanical analog to demonstrate the
principles of orbital motion by projecting its motion on a
plane perpendicular to the suspension.*? This analog model
generallzes the demonstration of cu'cular motion by Des-
cartes® of a stone revolving on a sling.* Hooke discussed
the theory of the circular pendulum pointing out that the
effective radial force

*..- is greater and greater, according as it is farther

and farther removed from the center, which seems to

be otherwise in the attraction of the sun- - -But how-

ever it be, the compounding this motion with a direct
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or straight motion just crossing it, may serve to ex-

plicate this hypothesis, though all the appearances of

it are not exactly the same---”

During this time, Hooke was the Curator of the newly
founded Royal Society, and one of his main tasks was to
present weekly scientific experiments. He gave a demon-
stration to the members with

“... a pendulum fastened to the roof of the room

with a large wooden ball of lignum vitae on the end

ofit ---»

This is an impressive demonstration of nearly closed ellip-
tic orbits, projected on a plane normal to the axis of sus-
pension. Hooke carefully observed that
- the progression of the auges [apsides] are very
evident- - -”

As Hooke demonstrated mathematically, the horizontal
force in this case mcreases apprommately linearly with the
distance from the axis.*’ This axis coincides with the center
of the ellipse, while for planetary motion the center of force
is located at a focal point of the ellipse. Further the period
of the pendulum swing is nearly independent of the size of
the orbit, as he discovered later for the oscillation of
springs.?’ This is in striking contrast with the dependence
of the period of the planets on the distance of the sun,
described quantitatively by Kepler’s third law, that the
square of the period varies with the cube of the major axis
of the ellipse. Hooke also added a smaller pendulum at-
tached to the ball to demonstrate, although less success-
fully, the motion of a planet like the moon around the
earth. What is particularly interesting in this demonstra-
tion is that it shows Hooke’s understanding of the univer-
sal character of the gravitational force which he explicitly
enunciated later on. He had proposed and carried out sev-
eral experiments, which were inconclusive, to determine
experimentally how the gravitational force varies w1th dis-
tance both above and below the surface of the earth.*®

Hooke continued to present further developments of his
ideas in his Cutlerian lectures delivered at the regular
meetings of the Royal Society. The first of these lectures, in
1670, was on An Attempt to prove the motion of the Earth
by Observations (Ref. 47) by trying to observe the parallax
of stars due to the earth’s orbit around the sun, to

.+ -furnish the Learned with an experimentum crucis

to determine between the Tychonick and the Coper-

nican hypothesis- -+

He had erected a telescope vertically in his own quarters at
Gresham College,*® and was ready to start his observations
by October, 1668. At the end of his lecture, which was
published later as a short tract*® in 1674, he restated his
principles of dynamics, and formulated clearly the principle
of universal gravitational attraction. He stated that
-+ At which time also I shall explain a System of the
World differing in many particulars from any yet
known, answering in all things to the common Rules
of Mechanical Motion: This depends on three Sup-
positions. First, That all Celestial Bodies whatsoever,
have an attraction or gravitating power towards their
own Center, whereby they attract not only their own
part, and keep them from flying from them, as we
may observe the Earth to do, but that they do also
attract all the other Celestial Bodies that are within
the sphere of their activity; and consequently that not
only the Sun and Moon have an influence upon the
body and motion of the Earth, and the Earth upon
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them, but that Mercury also Venus, Mars, Saturn
and Jupiter by their attractive powers have a consid-
erable influence upon its motion as in the same man-
ner the corresponding attractive power of the Earth
hath a considerable influence upon every one of their
motions also. The second supposition is this, That all
bodies whatsoever that are put into a direct and sim-
ple motion, will so continue to move forward in a
straigth line, till they are by some other effectual
power deflected and bent into a Motion, describing a
Circle, Ellipsis, or some other more compounded
Curve Line. The third supposition is, That these at-
tractive powers are so much the more powerful in
operating by how much the neare the body wrought
upon is to their own Centers. Now what these several
degrees are I have not yet experimentally verified- - -»

Finally, he concluded his account with the prophetic re-
mark that

“..->This I only hint at present to such as have abil-

ity and opportunity of prosecuting this Inquiry, and

are not wanting of industry for observing and calcu-
lating, wishing heartily such may be found, having
myself many other things in hand which I would first
compleat and therefore cannot so well attend it. But
this I durst promise the Undertaker, that he will find
all the great Motions of the World to be influenced
by this Principle, and that the true understanding
thereof will be the true perfection of Astronomy---”

In light of Newton’s unkind description of Hooke which
is reproduced in Sec. I, it is worthwhile to remember here
that Hooke was a poorly paid employee of the Royal So-
ciety, whose aristocratic members often “ordered” him
around to do thlS or that demonstration practically every
week of the year. 3 Hooke did not have the advanta é)es of
inherited wealth like his early mentor, Robert Boyle,” or a
well paid academic chair like Newton’s, which would have
give him the leisure to follow his own intellectual pursuits.

Hooke’s fifth Cutlerian lecture was entitled Cometa,’!
and it contained observations of the comet in April 1677
and those of 1664 and 1665 showing that he tried system-
atically by observation to determine the motion and prop-
erties of comets. Hooke had suggested earlier that comets
might move in close orbits around the sun, and that there-
fore sightings of comets at different times might actually be
due to one and the same comet. This was demonstrated
more than two decades later by calculations of his younger
friend and colleague Edmond Halley. 52 Samuel Pepys re-
calls in his Diary that on March 1, 1665 he went

“..- to Gresham College where Mr. Hooke read a

second very curious lecture about the late Comet;

among other things proving very probably that this is
the very same Comet that appeared before in the year
1618, and that in such a time probably it will appear
again, which is a very new opinion; but all will be in
print-- - (Ref. 53).

Hooke, like many contemporary astronomers, was partic-
ularly interested in observing comets, which he described
in great detail, and he speculated at length about the con-
stitution and orbital motion of these celestial bodies. The
critical question was whether comets obeyed the same prin-
ciples of motion and of gravitational attraction as the plan-
ets. Hooke wavered on this point, because he could not
understand why the tail of a comet is always directed away
from the sun, and he therefore suggested that additional
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repulsive forces were acting in this case.> It appears that
up to this time, Hooke apparently did not commit himself
to the radial dependence of the gravitational attraction,
except to state that it should weaken with distance. How-
ever, he always stressed in his lectures that this dependence
should be obtained from experiments, which he tried un-
successfully to carry out.

Then in 1679/80, Hooke discussed his ideas with New-
ton in the celebrated correspondence?® which was gartially
published at the turn of the century by Rouse Ball.’ Hooke
had become secretary of the Royal Society, and the avowed
purpose in his first letter was to reestablish contact with
Newton, which had become strained during their earlier
controversy on optics, and to elicit some reaction to his
current physical hypotheses. In particular, on November
24, 1679 he writes that

“---For my own part I shall take it as a great favour
if you please to communicate by Letter your objec-
tions against any hypothesis or opinion of mine, And
particularly if you will let me know your thoughts of
that of compounding the celestiall motions of the
planetts of a direct motion by the tangent and an
attractive motion towards the centrall body---”

It appears from this and the later correspondence with
Newton, that one of the principal reasons why Hooke ini-
tiated this correspondence was that he had been unable to
make progress in expressing mathematically his physical
principles of celestial mechanics, and that he wanted to get
some help from Newton whose great mathematical abilities
had by then become known to several members of the
Royal Society. Hooke’s diary shows that he had gone to
other mathematicians for help without success.>> The dis-
cussion in the correspondence about the motion of a body
inside the earth was mostly relevant to him insofar as it
clarified issues of orbital dynamics for central forces which
he had been studying with mechanical analogs for the past
14 yrs. Therefore, when Newton sent him a letter on De-
cember 13, 1679 with a drawing of an orbit under the
assumption of a constant radial force,®> Hooke responded
within a few days that

“.--Your Calculation of the Curve by a body at-

tracted by an equall power at all Distances from the

center Such as that of a ball Rouling in an inverted

Concave Cone is right and the two auges [apsides]

will not unite for about a third of a Revolution: - -

What a revelation Newton’s letter must have been to
Hooke. He demonstrates by his comment that he knew
that the effective radial force in an inverted cone is (ap-
proximately) a constant, and he therefore realized imme-
diately that Newton evidently had a method to calculate an
orbit which he had observed previously only experimen-
tally 1n one of his mechanical analogs for celestial mo-
tlon ¢ Hooke continues
--But my supposition is that the Attraction always

is in a duplicate proportion to the Distance from the

Center Reciprocall, and Consequently that the Ve-

locity will be in a subduplicate proportion to the At-

traction and Consequently as Kepler Supposes Re-

ciprocall to the Distance---”

Here Hooke announced for the first time that he believed
that the force of gravity dependent inversely on the square
of the radial distance. However, he made an error quoting
Kepler on the incorrect dependence of the velocity on dis-
tance.’! Newton later pounced on this error, claiming that
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Hooke did not understand anything about orbital motion
due to an inverse square dependent radial force, ignoring
the fact that in this letter Hooke was correct in his suppo-
sition
*..-that with Such an attraction [inverse-square law
force] the auges [apsides] will unite in the same part
of the Circle and that the neerest point of accesse to
the center will be opposite to the furthest Distant.
Which I conceive doth very Intelligibly and truly
make out all the Appearances of the Heavens: --”

There is nowhere in this letter any evidence that Hooke

knew at that time how to demonstrate his supposition

mathematically. Instead, he goes on stating that
“(though in truth I agree with You that Explicating
the Curve in which a body Descending to the Center
of the Earth would circumgyrare were a Speculation
of noe use Yet), the finding out the proprietys of
Curve made by two such principles will be of great
Concerne to Mankind- - - This Curve truly calculated
will shew the error of those many lame shifts [ad hoc
approximations] made use of by astronomers to ap-
proach the true motion of the planets with their ta-
bles--+”

Finally, in a letter on January 17, 1679/80 Hooke states
again that

“---T doubt not but that by your excellent method

you will easily find what that Curve must be, and its

proprietys, and suggest a physicall Reason of this
proportion: - "

These remarks indicate that at the time of this corre-
spondence Hooke did not know how to calculate the gen-
eral orbital motion in a central field of force; his remark-
able physical understanding and hypothesis were based on
mechanical enalog models. However, asking Newton for
mathematical help turned out to have been his capital mis-
take. Newton solved his problem, but never acknowledged
Hooke’s semimal contributions or replied to his last letter.
This has been pointed out not only by Hooke’s defend-
ers,'®!! but also by several Newtonian scholors.”!>!413
Nevertheless, many scholars believe that Newton was jus-
tified in denying credit to Hooke because he was only
guessing instead of providing mathematical proofs. Hooke’s
often quoted error of claiming that the orbital velocity was
inverse with the distance, “---as Kepler Supposes:--”
shows that in 1679 he had not yet understood Kepler’s area
law, as was also the case with most of his contemporaries.>
Only a few historians of science seem to appreciate that
Hooke’s physical insights came primarily from observa-
tions and experiments with mechanical analog systems.'!

On November 28, 1679 Newton had written to

Hooke

*“---that I did not before the receipt of your last letter

[sent four days earlier], so much as heare (that I remem-

ber) of your Hypotheses of compounding the celestial

motion of the Planets, of a direct motion by the tangent
to the curve:-- If I were not so unhappy to be unac-
quainted with your Hypotheses above mentioned: - -

(Ref. 25).

In the same letter Newton congratulated Hooke
“.--that so considerable a discovery as you made of
the earth’s annual parallax is seconded by Mr. Flam-
stead’s Observation- -+

In his letter, Hooke had not told Newton anything about
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his own apparent discovery of the earth’s parallax, but had
commented only briefly that Flamstead
“...hath confirmed the parallax of the orb of the
earth---” :

It appears therefore that Newton was familiar with
Hooke’s tract on An Attempt to prove the motion of Earth
by Observations,*” as he later admitted in his correspon-
dence with Halley. Indeed, Hooke was not convinced of
Newton’s denials that he was acquainted with his ideas,
and he wrote later on about this affair,”’ that

“.--Newton pretends he knew not Hooke’s Hypoth.

as by his Answer to the former, dated November 28.

1679---”

In focusing primarily on the priority conflict between
Hooke and Newton concerning the discovery of the inverse
square law of gravitational attraction, it has been often
overlooked, as it conveniently was by Newton in his letters
to Halley,25 that at least since 1666 Hooke had stated cor-
rectly fundamental physical aspects of the first and second
laws of motion as these laws apply to planetary orbits with
a gravitational attraction to the sun. He had not appealed
to Cartesian vortices or to an intermediary medium or
ether, as was fashionable with his contemporaries who ap-
parently could not accept the concept of an action at a
distance, in spite of such familiar evidence as magnetism
and terrestrial gravitation.’® Further, Hooke had published
his hypotheses in 1674, which were evidently read by
some of the leading scientists at the time, like Christian
Huygens and Giovanni Domenico Cassini, who also had
sent their comments to the Philosophical Transaction,*
and he explicitly communicated his ideas directly to New-
ton in 1679/80. One can therefore understand Hooke’s
profound dismay when seven years later he first read the
statement of the second law of motion as it appears in
Newton’s Principia:

“The change of motion is proportional to the motive

force impressed; and is made in the direction of the

right line in which that force is impressed: - -if the
body moved before, is added to or subtracted from
the former motion: - -so as to produce a new motion
compounded from the determination of both---”
(Ref. 59).

In similar words, these are the principles of dynamics

which Hooke formulated in his May 1666 lecture to the

Royal Society, and restated in his book entitled An Attempt

to Prove the Motion of the Earth (Ref. 47) in 1674. Later

on Hooke noted in his diary®® on February 15, 1689, that
“---At Hallys [Halley] met Newton; vainly pre-
tended claim yet acknowledged my information. In-
terest has no conscience: A posse ad esse non valet
consequentia (It does not merit taking any
steps)--+”

In a letter to Newton written on January 6, 1679/80,
Hooke had mentioned, without giving any supporting ar-
guments, that
“---my supposition is that the Attraction always is in
a duplicate proportion to the Distance from the cen-
ter Reciprocall- - -it truly makes out all the Appear-
ances of the Heaven- : ‘not that I believe there really
is such an attraction to the very Center of the
Earth---”

In fact he had conjectured correctly on physical grounds
that
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¢..-I rather Conceive that the more the body ap-
proaches the Center, the less it will be urged by the
attraction—possible somewhat like the Gravitation
on a pendulum or a body moved in a Concave Sphere
(Ref. 61) where the power Continually Decreases
the neerer the body inclines to a horizontal mo-
tion---”

However, in spite of Hooke’s caveat these remarks were
also forgotten later by Newton,?> who incorrectly charged
- that what he (Hooke) told me of the duplicate
proportion was erroneous, namely that it reached
down from hence to the center of the earth:--”

In Newton’s letters to Halley?® in the summer of 1686,
which were intended primarily to deny Hooke any credit
for the ideas incorporated in the foundations of the Prin-
cipia, Newton nevertheless admitted that Hooke’s corre-
spondence stimulated him to consider again the fundamen-
tal problems of celestial mechanics. After he had been
calmed down (by a soothing letter from Halley?) in his
bitter invective against Hooke, apparently initiated by ru-
mors that Hooke had accused him of plagiarism, he wrote
to Halley on July 14, 1686 that

““---This is true, that his Letters occasioned my find-

ing the method of determining Figures which when I

had tried in the Ellipsis, I threw the calculation by

being upon other studies and so it rested for about 5

years till upon your request I sought for that paper,

and not finding it did it again and reduced it into the

Propositions shown you for Mr. Paget---”

and again, on July 27, 1686%

*---And tho his correcting my Spiral occasioned my
finding the Theorem by which I afterward examined
the Ellipsis; yet I am not beholden to him for any
light into that business but only for the diversion he
gave me from my other studies to think on these
things and for his domaticalnes in writing as if he had
found the motion in the Ellipsis, which inclined me
to try it after I saw by what method it was to be
done---”

On December 13, 1679 Newton had written to Hooke a

letter that ended with
“--- Your acute Letter having put me upon consid-
ering thus far the species of this curve, I might add
something about its description by points guam prox-
imé. But the thing being of no great moment I rather
beg your pardon for having troubled you thus far
with this second scribble: - -”

In this letter, Newton made a drawing for an orbit of a
body under the action of a constant central force, and he
discussed also general properties of orbits for forces which
increases toward the center. Newton’s computational
method “by points quam proximé” has been a guzzle for a
long time. It has been suggested by Westfall"> and more
recently by Erlichson® that it was based on applying the
geometrical construction in Theorem 1, Proposmon 1,
Book 1 of the Prmctpza However, 1 have given argu-
ments?® that this is not plausible, and that Newton’s
method was most likely based on his 1664-1671 work on
the calculus of curvature.®® The first time, for which there
is any documentary evidence, that Newton applied to or-
bital motion the idea of compounding a tangential velocity
with a radial velocity impressed by an attractive central
force (which we claimed that he could not remember hav-
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ing heard from Hooke), was in his manuscript De Motu
Corporem Gyrum, wntten four years after his correspon-
dence with Hooke.!* This supports the contention that
Hooke contributed in a fundamental way to Newton’s un-
derstanding of the dynamical principles® incorporated in
the Principia. Later Newton recalled that

“In the year 1679 in answer to a letter from Dr.

Hook- - I found now that whatsoever was the law of

the forces which kept the Planets in their Orbs, the

areas described by a Radius drawn from then to the

Sun would be proportional to the times in which they

were described. And by the help of these two prop-

ositions I found that their Orbs would be such el-

lipses as Kepler had described-:-” (Ref. 11).

In 1682 Hooke elaborated this theory of universal grav-
itational®’ attraction in another Cutlerian lecture entitled 4
Discourse of the Nature of Comets, which was published
only after his death.?® His theory was that bodies emitted
periodic gravitational pulses, in analogy with his vibrational
theory of matter, sound, and light. From this supposition,
he deduced that the intensity decreases with the inverse
square of the distance from the source.

“For this power Propagated, as I shall then shew,
does continually diminish according as the Orb of
Propagation does continually increase, as we find the
Propagations of the Media of Light and Sound also
to do; as also the Propagation of Undulation upon
the Superficies of Water. And from hence I conceive
the Power thereof to be always reciprocal to the Area
or Superficies of the Orb of Propagation, that is du-
plicate of the Distances (Ref. 24); as will plainly
follow and appear from the consideration of the Na-
ture thereof, and will hereafter be more plainly
evinced by the Effects it Causes at such several Dis-
tances.

This propagated Pulse I take to be the Cause of the
Descent of Bodies towards the Earth- - -Suppose for
Instance there should be a 1000 of these Pulses in a
Second of Time, then must the Grave body receive all
those thousand impressions within the space of that
Second, and a thousand more the next-- - (Ref. 66).

As I have pointed out earlier, it turned out that the notion
of a periodic pulsed force rather than a continuous force
was essential in the mathematical formulation of Hooke’s
approach to orbital motion.

Then in 1684 Hooke claimed to Christopher Wren and
to Edmond Halley, who were two of his friends at the
Royal Society, that he could demonstrate that an inverse
square law dependence of the gravitational force implied
elliptic orbits for planetary motion. However, in spite of a
challenge by Wren who offered a prize of a 40 shilling book
for such a demonstration, Hooke apparently failed to pro-
duce a cogent explanatlon Evidently he also never pub-
lished his argument. According to an account by De-
Moivre in 1727, what followed is that

--in 1684 Dr. Halley made Sir Isaac a visit at Cam-
bridge and there in a conversation the Dr. asked him
what he thought the Curve would be that would be
described by the Planets supposing the force of at-
traction towards the Sun to be reciprocal to the
square of their distances from it. Sir Isaac replied
immediately that it would be an Ellipsis. The Doctor
struck with joy and amazement asked him how he
knew it. Why saith he I have calculated it. Where-
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Hooke s Diagram

Fig. 2. Heavy lines are the result of a numerical evaluation of the orbital
path following the description given in the text of Fig. 1 (see the Appen-
dix and Sec. IV). Initial conditions where chosen to correspond approx-
imately to those in Fig. 1. Dotted lines are additional auxiliary lines which
demonstrate graphically that the orbit is an ellipse (see Sec. III).

upon Dr. Halley asked him for his calculation with-
out any further delay. Sir Isaac looked among his
papers but could not find it, but he promised him to
renew it, and then to send it to him...” (Ref. 25).

A couple of months later Newton sent Halley a manu-
script, De Motu, containing his celebrated proof of the con-
verse of the problem posed by Halley® that a body moving
on an elliptic orbit with the center of the attractive force
located at one focus implies a force with an inverse square
dependence on radial distance. Newton’s proof was based
on a geometrical construction which embodied the dynam-
ical principles which Hooke had directly communicated to
him. Partly at Halley’s urging that he publish his results,
Newton then spent thé next two years in further work
which culminated in his monumental Principia which ap-
peared in 1687.

III. HOOKE’S GRAPHICAL CONSTRUCTION

In this section, I will describe Hooke’s graphical method
for constructing an orbital path in a central field of force
which varies linearly with the distance from the center.
Following Hooke’s handwritten text describing his geomet-
rical construction, the Appendix, and transforming it into
a numerical algorithm, Sec. III, Egs. (1) and (2), I have
been able to reconstruct in detail his diagram, Fig. 1, as
shown in Fig. 2. In his figure Hooke draws fwo polygonal
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Hooke s Graphical Method

Fig. 3. Expanded version of upper right quadrant of Fig. 2 which illus-
trates Hooke’s geometrical construction. Dashed lines correspond to a
discrete circular path, and the heavy lines to a discrete elliptical path (see
Sec. III).

orbits, one which he claims to be an ellipse with its vertices
partly labeled by the letters A, a, 3, and «, and the other
one consisting of equal chords on a circumscribed circle
with unlabeled vertices.®® In addition there are several aux-
iliary lines which will be discussed below. An expanded
version of the first quadrant of his diagram is shown in Fig.
3, where for clarity I have also chosen a somewhat larger
step size ha. The long dashed lines correspond to Hooke’s
graphical construction for the polygonal path on a circle
with center at O, and vertices labeled by the capital letters
H, A, B, K, while the full lines correspond to the construc-
tion for the polygonal path on an ellipse. As we shall see,
the polygonal path on the circle serves to establish the
magnitude or strength of the central attractive force pulses.
For a force depending linearly on the distance, this gives a
direct graphical way to evaluate the magnitude of the ra-
dial velocity impressed by each pulse at the end of succes-
sive equal time intervals. It should be pointed out that this
is not described in Hooke’s text, but can be inferred from
his diagram. Further, the order in which some of the points
are obtained by a purely graphical procedure is then some-
what different from that indicated in the text, which is
describing a sequential order following the physical events,
gravity pulses, in time. ,

The physical basis for Hooke’s graphical construction is
the replacement of a continuously varying central force by
a series of instantaneous pulses varying periodically in
time. Then the velocity of a particle during each short
equal time interval can be obtained by adding a tangential
velocity due to inertia and a radial velocity due to this
impulsive central attractive force. This radial velocity is
the change of velocity during the time interval and is pro-
portional to the acceleration (see Sec. IV) due to the im-
pressed force, although Hooke does not state explicitly that
its magnitude is proportional to the time interval as well as
to the impulse force.* This is not a problem if the time
interval is the physical period of the impulsive force, which
in Hooke’s discrete dynamics is a separate parameter.
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However, if the limit of increasingly smaller time intervals
is examined, the dependence of the radial velocity on the
period as well as the strength of the pulse must also be
considered, as I will discuss later on (see Sec. IV).

To obtain the special trajectory of a polygonal orbit on a
circle, Hooke considers a circle (see Fig. 3) of radius HO
with center at O, and draws a horizontal chord from H
intersecting the circle at 4 with length HA4 small compared
to HO. This represents the (vector) distance traveled at
the end of the first time interval. Actually, in the text
Hooke calls such line segments velocities, which is valid
provided the time interval is kept fixed. For the next time
interval, he then extends this line to C with length AC
=HA, where AC represents the distance that would be
traveled during the same time interval in the absence of
external forces. The effect of the pulsed central attractive
force, considered to operate instantaneously at A, is ob-
tained by drawing CB parallel to A0, intersecting the circle
at B. Thus the chord A B is the resultant (vector) distance
traveled during the next time interval. In this case CB
=(AB)*/AO. This is similar to the celebrated construction
for centrifugal acceleration obtained by Newton®>’* in
1665, and independently derived in the continuum limit by
Christian Huygens’' in 1659. Hence, iterating this con-
struction leads to a polygonal path with vertices H,4, B,K,
etc., on a circle of radius HO, corresponding to the orbit of
a body under the action of a pulsed central force. This
construction also fixes a parameter u=CB/A0 for the
strength of the linear force (see Sec. IV).

Hooke generalizes this construction to obtain a general
polygonal path in a pulsed central force field varying lin-
early with distance. He considers a segment Aa of the
chord HA, corresponding to a smaller initial tangential
velocity, located symmetrically about the middle of HA,
and extends the line to point ¢ with length ac=ha. This
point ¢ is the position which the body would occupy during
the second time interval in the absence of external forces.
A line is drawn connecting point a to the origin o, and a
horizontal line is drawn from point B intersecting the line
ao at the point 8. This is evident from Hooke’s diagram,
Fig. 1, although this graphical construction is not de-
scribed in the associated text, where aé is introduced as
“the velocity imprest by Gravity” (see the Appendix).
However, it can be readily verified that this construction
gives ab=p(ao), where u=CB/AO is the force strength
parameter introduced above. Indeed, for linear radial
forces, the horizontal and vertical motions are completely
independent of each other, and therefore the vertical mo-
tion during equal time intervals is independent of the initial
horizontal velocity (for details see Sec. IV). The point S is
determined on the line 8 B, by setting §8=ac, and the di-
agonal af gives the resulting displacement during the sec-
ond time interval. This construction “make(s) (88) par-
allell and equall to (ac),” and gives the position B at the
end of the second time interval due to compounding the
tangential velocity ha and the radial velocity ad. The next
step is to determine the velocity By along the radial direc-
tion Bo due to the “second puls of gravity.” This can be
achieved graphically by taking Hooke’s third step first, i.e.,
extending the line af to i, with Bi=af3, and then drawing a
horizontal line through the vertex K. A line from / parallel
to Bo intersects this horizontal line at «, and a line from «
parallel to Bi intersects Bo at the desired point y. Thus, the
segment Px is the displacement during the third time in-
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terval. This is the graphical implementation of the require-
ment that the impulsive change of velocity be proportional
to the distance from the center, and that these impulses
occur at equal time intervals. In the text Hooke describes
how to evaluate « graphically assuming that ¥ has been
obtained previously by the condition that “the velocity By
has the same proportion to the radius So that a6 has to ao.”

It can been verified from this construction that the tri-
angle afo has the same proportion to the triangle 4 BO as
the triangle Bro to the triangle BKO, as Hooke stated in
the text, see the Appendix. Since the triangles 4 BO and
BKO are equal, it follows that the area aBo=area Bxo.
This is Hooke’s own proof (different from Newton’s) of
the validity of Kepler’s area law for the case of a central
force varying linearly with distance, concluding that

“---The motion of this body therefore shall be po-

lygonall in an ellipse, and shall Describe equall areas

in equall times:--”

Hooke’s diagram also shows at least three separate
graphical tests, detailed below, which demonstrate that the
vertices of this polygonal path lie on an ellipse. These tests
can be deduced from auxiliary lines in the figure which are
not directly related to the graphical construction described
in the text. The polygonal path and its associated ellipse
can also be obtained by an affine transformation of the
corresponding polygonal path associated with the circum-
scribed circle. Since the polygonal path associated with the
circle consists of equal chords of the circle, the affine trans-
formation (see Sec. IV) gives a rigorous mathematical
proof,®> that Hooke’s geometrical construction leads to a
polygonal path with vertices on an ellipse.

(1) The shortest distance from the center to a segment
on the polygonal path gives approximately the minor axes
of the ellipse. Then the major and minor axis of the ellipse
determine numerically the location of the two foci, and the
sum of the distances from the foci to .each vertex of the
path can be evaluated. Two dashed lines from a point on
the path to the foci are clearly shown in Fig. 1, which
contains also two such lines from another point on the
path. For the nine points which I calculated using Hooke’s
algorithm, I find that the sum of these distances to the foci
is a constant to one part in a thousand. These errors are
due to the errors in the location of the foci, which is evi-
dent in Hooke’s diagram, Fig. 1.2 The circles in Figs. 2
and 4 identify points on an ellipse with the calculated foci,
in excellent agreement with the vertices of the polygonal
path obtained by iterating Hooke’s graphical construction.

(2) In the upper-right-hand quadrant of Fig. 1, Hooke
extends the line connecting two adjacent vertices of the
polygonal elliptical path and the line associated with cor-
responding vertices of the polygonal circular path. He finds
graphically that all such pairs of lines intersect on the ver-
tical axis through the origin. This is an obvious conse-
quence of the affine transformation, which relates these
pairs of lines.

(3) In the lower-right-hand quadrant of Fig. 1, Hooke
draws an isosceles triangle. The upper vertex is located at
a vertex of the polygonal path, and the lower left vertex is
at the lower focus of the ellipse. The lower right vertex is
obtained by extending the line from the upper focus of the
ellipse to the upper vertex of the triangle by an amount
equal to the distance between the upper vertex of this tri-
angle and the lower focus of the ellipse. This is the start of
a graphical method, already well known in the 17th cen-
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Fig. 4. Comparison of the discrete path, in heavy lines, for a linear central
force, and the corresponding ellipse at discrete points located at the center
of the circles. The foci of the ellipse are at F and G, and two of the lines
from the foci to the path are indicated by dashed lines. For a discussion
of the isosceles triangle at the bottom of the figure see Sec. IIL

tury, to obtain the tangent line to an ellipse. The tangent is
obtained by drawing the line passing through this upper
vertex which bisects the base of the triangle (drawn poorly
by Hooke), which is then extended until it intersects the
vertical axis. A second line extended to this axis is shown
nearly tangent to the circle at the same height. If the po-
lygonal path obtained by Hooke’s geometrical construction
lies on an ellipse, the tangent line to the circle should in-
tersect the axis at the same point as the tangent line to the
ellipse. This is indeed approximately the case as shown in
Fig. 1, where the small errors in Hooke’s diagram can be
traced to his error in the graphical location of the foci of
the ellipse. A second isosceles triangle is similarly started
but not completed in the bottom of Fig. 1.

A corresponding construction for the polygonal path is
shown in Fig. 4, where the isoceles triangle FST is ob-
tained by drawing a line extending from the upper focus G
through the midpoint T between two vertices of the polyg-
onal path with 7.S=TF. The extension of the line con-
necting these vertices bisects the base F'S of the triangle at
R. As can be shown analytically, R is also the intersection
of the circle with FS, which is approximately the case in
Hooke’s diagram, Fig. 1.

It is clear that Hooke had a very sophlstlcated knowl-
edge of geometrical properties of an ellipse.” It is possible
that Hooke may have drawn the polygonal path on an
ellipse in his dxagram by effectively applying an affine
transformation® to the polygonal path on the circum-
scribed circle, rather than by following the equivalent geo-
metrical construction described in his text. However, nei-
ther in the text or elsewhere in the related pages of the
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manuscript at the Wren Library does Hooke refer explic-
itly to such a transformation. Regardiess of whether Hooke
understood fully this mathematical equivalence, his asser-
tion that “---the motion of this body therefore shall be
polygonal in an ellipse- - > is strictly valid when the pulsed
central force varies linearly with distance.

IV. DISCRETE EQUATIONS OF MOTION

The basic geometrical construction of Newton and
Hooke can be expressed in an equivalent algebraic form by
applying the analytic geometry of Descartes and Fermat,
which was fundamental to the further mathematical devel-
opment of mechanics. In modern vector notation, we de-
note the position vector by r, and the velocity vector by v
at a time ¢. Referring to Hooke’s geometric construction,
Fig. 3, r represents, e.g., the initial radius vector a0Q and v&¢
the displacement vector af, where 6t is a fixed time inter-
val. Then

r'=r+4vdt, (1)

where r’ is the displacement SO, corresponding to the po-
sition vector at the end of the first time interval 6¢. In the
absence of an external force (called power by Hooke), the
veloclty v is a constant, which i is the mathematical expres-
sion for the principle of inertia.*’ Assuming that a central
force acts by pulses applied periodically at intervals of
length 8¢, and that its effect is to compound or add to v an
impressed velocity vector in the direction of r’, the v’ after
the impulse is given by

v =v+ f(r)r'ét (2)

In the case considered by Hooke, corresponding to an at-
tractive central force which varies linearly with distance,
f(r') is a negative constant. For example, in Fig. 3
fr '8 represents the displacement ik, and v'5¢ repre-
sent the displacement Skx. More generally, the function
rf(r) determines the dependence of the periodic impulsive
force on the radial distance r, and is evaluated at the end of
a time interval ¢ (Ref. 74) to determine the change of
velocity in the subsequent time interval. This condition is
important because it leads to Kepler’s celebrated area law
(angular momentum conservation) for central forces, ap-
plied here to the discrete orbital equations of motion, Egs.
(1) and (2),

r'Xv' =rxkv. (3)

This property was demonstrated by Hooke for central
forces which vary linearly with distance in the text associ-
ated with his diagram, Fig. 1 (see the Appendix), by a
different method from Newton’s proof in the Principia.
Given initial values of r and v, iterating the discrete
equations of motion, Egs. (1) and (2), correspond pre-
cisely to the graphical method applied by Hooke, as de-
scribed in Sec. III. However, this algebraic form has the
advantage of allowing much greater numerical accuracy,
and most importantly, the analytic application of the cal-
culus, corresponding to the limit of small time steps, which
leads to the well-known differential equations of motion.
In Eq. (2), it has been assumed that the change in ve-
locity év=v’—v is not only proportional to the force, but
it is also proportional to the time interval §¢, although thls
important pomt was not explicitly stated by Hooke.®
However, it is clear from Hooke’s graphical construction
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that if the initial displacement to obtain a circular orbit is
decreased by an arbitrary factor, the change of velocity
must be decreased by this same factor. Further, the graph-
ical construction implies that the same scaling occurs for
an orbit with arbitrary initial conditions. Thus, the velocity
change 6v must also be proportional to &8¢, and in the limit
of small 8¢ the radial force is proportional to the accelera-
tion. By relating this time interval to the corresponding
increase in area according to Kepler’s area law, Newton
was able to prove theorems in the Principia in geometrical
form. In the limit of vanishing 6¢, Eq. (2) becomes the
differential equation

a=f(rr, (4)

where a=9v/6t is the acceleration. Identifying f(r)r with
the force per unit mass, Eq. (4) corresponds to Newton’s
differential equation of motion.

In the De Motu, and at the start of the Principia, Newton
proceeds to apply this geometrical construction in a man-
ner quite different from Hooke. He considers the limit
when 8¢ becomes vanishingly small. In this limit he solves
the converse of the problem treated by Hooke: given an
elliptical orbit with a force directed toward the center of
the ellipse, he proves that the radial dependence of the
force is linear with the distance from the center, Proposi-
tion X, Problem V, Book I of the Principia. Then in Section
II1, Proposition XI, Problem VI, Newton applies his
method to the central problem of celestial mechanics:

“If a body revolves in an ellipse; it is required to find

the law of the centripetal force tending to the focus of

the ellipse.”

He proves that this force is inverse to the square of the

distance to this focus.”’” Later in the Principia, in Proposi-

tion XLI, Problem XXVIII, he treats the general problem,
“Supposing a central force of any kind, and granting
the quadratures of curvilinear figures; it is required to
find as well the curves in which bodies will move, as
the times of their motions in the curves found.”

Surprisingly,?® Newton does not evaluate the integral
for the main case of interest, the gravitational force, but
instead he evaluates in corollary III the integral for an
1/7 force, leaving the grav1tat10na1 force presumably as
an exercise for the reader.” The integral for the l/r2
force was first published in 1710 by Johann Bernoulli.”
In closing this section, I will consider some applications
of the discrete equations of motion, Egs. (1) and (2),
relevant to our discussion. The first known analytic solu-
tion was carried out by Issac Beeckman®® for a force giving
rise to constant gravitational acceleration g. In one dimen-
sion, which we take to be the x axis, we have

Xpp1=Xp+0,0t (5)
and
+gdt, (6)

where x, is the position and v, is the velocity after the nth
iteration. Starting from rest, vy=0 at x,=0, one obtains
from Eq. (6) that v,=gnbt, and substituting this result in
Eq. (5), one finds that

Unt1=Vy

n(n—1)

5 g(81)%. (7

Xp=
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Setting the elapsed time ¢t=ndt gives the velocity v=g¢ and
the position x= (1/2)g(1—1/n)t2 In the limit that ¢ is
kept fixed, and the number of pulses » becomes infinitely
largtez, one recovers Galileo’s familiar result that x=(1/
2)gt.

For the special case considered by Hooke, that the force
varies linearly with the distance, f(r)=—pu, the vector
components of Eqgs. (1) and (2) are not coupled. In this
case these equations are invariant under the affine trans-
formation x'=A;x, y'=A,p, and z’'=A,z, where 4, 4, ,
and A, are constants. It follows that all the bound solutions
can be obtained by an affine transformation of the special
polygonal path with vertices on a circle. Consequently, all
bound solutions correspond to polygonal paths on an el-
lipse, because this figure is the affine transform of a circle.
This provides rigorous justification for Hooke’s assertion in
the text associated with his diagram, Fig. 1, that the po-
lygonal path lies on an ellipse, which is uniguely deter-
mined by the initial conditions, position, and velocity.
From Fig. 1, which is taken to be in the x—y plane, one
obtains A;=1/2 and A,=1.%

However, this proof cannot be generalized to other ra-
dial dependences of the force field. For this reason a math-
ematical demonstration is given here in algebraic form
which is analogous to Newton’s geometrical demonstration
that an elliptic orbit due to a force directed toward the
center of the ellipse implies that the force varies linearly
with distance. This proof is problem 2 in De Motu, which
in the Principia becomes Proposition X, Problem V, and it
is strictly valid only in the limit of vanishingly small time
steps. In Cartesian coordinates x and y, the equation for an
ellipse has the form

2 7

—z+p—1 (8)

where @ and b are the major and minor axis of the ellipse,
respectively. Considering two nearby points with coordi-
nates (x,y) and (x’,y’), where 6x=x’—x and Sy=y' —y
can be considered as small quantities, and neglecting
second-order terms in these quantities, we have

x8x yby
Zr =0 ®

The first equation of motion, Eq. (1), defines the velocities
v,=06x/6t, and v,=0y/6t, and substituting these in the
equation for the conservation of angular momentum, Eq.
(3), we have

(10)

where [ is the magnitude of the angular momentum. Solv-
ing simultaneously Egs. (9) and (10), we obtain

x8y —ybx =16t,

l
dx= vxét-— yot (1)

and

1
6y—vy6t—;7 xbt. (12)
It can be readily verified that a line in the direction of v,
Egs. (11) and (12), whlch is a tangent to the ellipse,
crosses the x axis at a*/x independently of the value of b.
This is one of the properties that Hooke checked graphi-
cally, choosing the corresponding circle b=a for compar-
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ison with his calculated orbit, Fig. 1. The change in veloc-
ity v during a time interval ¢ can be obtained from these
equations without further approximations, and we get

/

v,"—vx= —Ez 8y= —Zzszﬁt, (13)
I 2
v}',—vy=;; ox= —a—zzzytst. (14)

This expression agrees with the discrete, equation of mo-
tion, Eq. (2), for a force which depends linearly on dis-
tance for which f(») =—pu, where ,u,=12/ (a*b?).

The time dependence of the position and velocity coor-
dinates is determined by the geometrical condition, Eq.
(10), that equal areas are swept by the radius vector in
equal times. This condition can be applied in a straightfor-
ward fashion to calculate the period T of the orbit which is
related to the area A4 of the ellipse by the condition

ab
T=2r T

Substituting the relation /=ab(u), we obtain in this case

(15)

(16)

which shows that the period is a constant independent of
the parameters of the ellipse. For completeness, one can
obtain the time dependence by introducing a parametric
representation of the ellipse which satisfies automatically

Eq. (8)

x=a cos(0), (17)

(18)

where 6 is an undetermined function of time. Expanding to
first order in the change 80 of two nearby points on the
ellipse one obtains

8x= —asin(9)86, (19)
8y=> cos(6)506. (20)

Substituting Eqs. (19) and (20) in Eq. (10) for the con-
servation of angular momentum gives the familiar result

y=>bcos(0),

I}
86=— bt= Jubt

corresponding to harmonic oscillations with constant fre-

quency Ju.
The total energy E, defined by

(21)

1
=3 [+ d+u(2+7)] (22)
can be evaluated by substituting Eqs. (11) and (12) for the
velocities in Eq. (15), and we find that

£ P11
=2 (E’*‘B’) (23)
which proves that energy is conserved in this approxima-
tion.

In the case that the center of attraction is at one of the
foci of the ellipse, which is the case of interest for celestial
mechanics corresponding to Kepler’s first law, this method

343 Am. J. Phys., Vol. 62, No. 4, April 1994

of proof can be readily applied by taking the origin of the
coordinates at this focus. We then replace Eq. (8) by

(x+c)? )

—+3=1, (24)
a b

where c= J(a*—b?) is the distance of the foci to the center

of the ellipse. Considering two nearby points and neglect-

ing second-order quantities, we obtain

(x+c)v, v
—ar—x+7;§ =0. (25)
Together with Eq. (10) for the conservation of angular
momentum, Eq. (18) can be solved for the velocity com-
ponents v, and v,

a?l

U= TR (B —ex)

(26)
_ I(x+c)

vy—(—br—

“ex) (27)

From Eqs. (19) and (20) it is straightforward to evaluate
the first-order changes in velocity in terms of the corre-
sponding changes of position in the time interval &¢, and
one find that

, a*P
vx——vxz—mx& (28)
and
, a*P
Vy— Uy —m-)-gy&. (29)
Recognizing that the radial distance is
r=(b—cx)/a (30)

and substituting Eq. (23) in Egs. (21) and (22), we obtain
agreement with the discrete equation of motion, Eq. (2),
with f(r)=—a/r and a=al’*/b’. Substituting this rela-
tion in the expression for the period T, Eq. (15), gives

_ Y}

=21 \/a
which is the general form of Kepler’s law for elliptic mo-
tion. As before, to obtain the time dependence we intro-
duce a parametric representation for the ellipse, which
takes the form

(31)

x=—c+a cos(0), (32)
y=>bsin(8). (33)

In this case substituting up to first order changes in Eq.
(10) implies that

c /
(1—; cos(0))80=a—b 1. (34)
This gives an implicit solution
t
0—esin(0) =27 — (35)

T

which is known as Kepler’s problem, where e=c/a is the
eccentricity of the ellipse.
The total energy E is obtained by evaluating
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=3 (v +05) — (36)
Substituting Eqgs. (19), (20), and (23) for v,, vy, and 7,
respectively, in Eq. (24), one obtains conservation of en-
ergy in this first order approximation,

[0

E=—£. (37

V. APPLICATION TO THE GRAVITATIONAL
FORCE

Hooke’s pulsed theory of gravntatlon, which he discussed
in detail in 1682,%” implied an inverse square dependence
on the distance for the gravitational force. Further, as was
mentioned before, Halley and Wren also believed that this
was the correct form of the gravitational force, and Hooke
had been challenged to demonstrate that this force law
implied elliptic planetary orbits.*® Therefore it is hard to
believe that Hooke would not have tried to apply his
graphical method to this crucially 1mportant case. Indeed,
one finds that in Hooke’s 1685 manuscrlpt at the Wren
Library there is a brief mention of his theory of gravitation
where ““:--The power (force) in O are Reciprocall to the
squares of the Distances:--” However, I did not find a
corresponding graphical construction associated with the
inverse square law of force. It should be kept in mmd that
according to his early biographer, Richard Waller,?? many
of Hooke’s manuscripts have been lost.

It is possible to construct such a diagram by Hooke’s
graphical method. All that needs to be changed in the
geometrical construction, Figs. 1-3, is to substitute, e.g.,
for the condition that S and « lie on a horizontal line with
B and K, the requirement that ¢B=ad and ik=pPy are
proportional to the inverse square of the lengths o and Po,
respectively. The corresponding algebraic construction is
obtained by iterating Eqs. (1) and (2) with f(r)=—a/P,
where a is a constant of proportionality (see Sec. IV). I
assume initial conditions and a step size comparable to
those in Hooke’s diagram, Fig. 1. The result of this calcu-
lation for eight iterations is shown in Fig. 5. Until the sixth
iteration the agreement with an elliptic path, which is
shown at discrete points by the small open circles at the
angular coordinates corresponding to the discrete path, is
very good. However a noticeable deviation occurs after the
seventh iteration, and the discrete trajectory begins to di-
verge strongly from an elliptic path near the center of force
as shown by the result obtained at the eight iteration. If
Hooke carried out such a calculation ‘graphically, as I
strongly suspect he would have done, this result must have
presented him with a very serious dilemma. He would have
realized that his graphical method worked very well and
gave an elliptic orbit provided the path did not approach
too close to the force center where the inverse square law
force becomes divergent. This is not a problem for plane-
tary orbits which have a very small ecéentricity, like the
planets around the sun. However, it is not clear how he
could have overcome this difficuity which is present for
very eccentric orbits like those of comets. Hooke was
aware that a continuous path was obtained by taking
smaller and smaller time steps.’® For example, if he had
taken half the initial step size he would have obtained the
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Inverse Square Force

Fig. 5. Discrete orbit obtained from the geometrical construction of
Hooke and Newton (see Sec. V) for the case that the central force varies
inversely with the square of the distance from the center labeled F. The
initial conditions and step size are similar to those in Hooke’s diagram,
Fig. 1. The center of the circles locate the corresponding elliptical orbit.

improved result shown in Fig. 6, provided he scaled the
radial displacement appropriately by a factor 1/4. How-
ever by then he would have reached the limit of accuracy
which seems possible by a graphical construction. At this
point it is not clear whether he would have realized that
the only way that he could have carried the iterations fur-
ther with smaller time steps would be by transforming the
graphical construction into a numerical algorithm as indi-
cated in Eqs. (1) and (2). This step was open to him by
Descartes’ and Fermat’s introduction of analytic or alge-

Inverse Square Force

Fig. 6. The same calculation as in Fig. 5 with half the time step.
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braic geometry, but there is no evidence that he availed
himself of this important mathematical developmen.t.

VI. CONCLUSIONS

The analysis discussed here of the 1685 diagram of Rob-
ert Hooke shown in Fig. 1, describing a geometrical con-
struction and graphical evaluation of the path of a body in
a radial field of force, gives new evidence that Hooke had
come much closer to a mathematical formulation of his
principles of dynamics than has been previously thought.
He had developed these principles correctly in the middle
1660s, demonstrating them with mechanical analogs like
the conical pendulum, and balls rolling on various surfaces
of revolution. Hooke was not simply guessing these princi-
ples, as Newton and many subsequent historians of sci-
ences have assumed, but he applied precisely the same rules
of reasoning which Newton later included at the start of
Book III of the Principia. However, until the recent pub-
lication of Hooke’s diagram,”® Fig. 1, there had not been
any concrete evidence concerning the extent to which
Hooke was able to formulate his dynamical principles in
mathematical form, and to apply them to the evaluation of
orbital motion in a central field of force.

The key idea for a mathematical formulation, which had
apparently eluded Hooke for such a long time, was based
on the approximation that the forces are applied during
instantaneous impulses which occur periodically in time
rather than acting continuously in time. Hooke had con-
jectured that the gravitational attraction is a periodic g)ulse,
in analogy with the emission of light and sound,” and
applied this idea to deduce that the strength of gravity
varied with distance inversely as the square of the distance.
Newton’s letter of December 13, 1679 indicated to Hooke
that Newton was capable of evaluating, at least approxi-
mately, orbital motion in a central field of force. For a
constant force Newton’s diagram was in agreement with
his previous observations of a mechanical analog, a ball
rolling in an inverted cone. However, apart from the cryp-
tic remark that *“--- (for I here consider motion according
to the method of indivisibles)-:-”, (Refs. 8, 77) it must
have become clear to Hooke that he would not get any
mathematical help from Newton. Knowing that a solution
exists, at least for the related problem of constant radial
gravity, would have given further stimulus to Hooke to
find a mathematical formulation of his dynamical princi-
ples. In a letter dated June 29, 1686 to Newton,?® Halley,
recounting their meeting in August 1684, says that

‘- -I then learnt the good news that you had brought

this demonstration to perfection and you were

pleased, to promise me a copy thereof, which the

November following I received with a great deal of

satisfaction from Mr. Paget- - -since which time it has

been entered upon the Register books of the Society
as all this past Mr. Hook was acquainted with it; and
according to the philosophically ambitious temper he

is of, he would, had he been master of a like demon-

stration, no longer have conceald it, the reason he
. told Sr Christopher and 1 now ceasing. But now he

sais that this is but one small part of an excellent

System of Nature, which he has conceived, but has

not yet compleatly made out, so that he thinks not fit

to publish one part without the other. But I have

345 Am. J. Phys., Vol. 62, No. 4, April 1994

plainly told him, that unless he produce another dif-
fering demonstration, and let the world judge of it,
neither I nor any one else can believe it -+

Apparently Hooke never showed Halley his quite “differ-
ing demonstration,” Fig. 1, corresponding to a graphical
solution of the indirect problem, at least for the linear force,
and evidently he did not take his advice to publish it.

Whether or not Hooke had seen Newton’s manuscript
De Motu**—1 could not find any reference to De Motu
among Hooke’s unpublished manuscripts in the Trinity
library—he had indeed found a different demonstration. In
De Motu Newton had considered what in the 18th century
became known as the direct problem of mechanics, that is,
from a given orbital path, e.g., an ellipse, to deduce the
radial dependence of the force directed to either the center
or to one of the foci of the ellipse. On the other hand,
Hooke applied this geometrical construction for an itera-
tive graphical evaluation of the indirect problem corre-
sponding to the first of these two cases: calculating the
orbital path for a given force varying linearly with dis-
tance. He found that the orbit is a polygonal path with
vertices on an ellipse, which can be demonstrated to be
rigorously valid (Sec. IV) by an affine transformation,*
for finite time steps. However, to analyze the orbit for
other forces it is necessary to take the limit of vanishingly
small time steps, as was done by Newton. Only later in the
Principia, did Newton discuss the indirect problem to cal-
culate an orbit in an arbitrary central field of force, giving
the angular position and time of the motion in terms of the
quadratures of curvilinear figures, Proposition XLI, Prob-
lem XXVIII. However, Newton does not give the resultant
integral for the primary case of physical interest, the 1//
force, which was first published by Johann Bernoulli’® in
1710.

- While a great deal of heat was generated on the question
of priority concerning the discovery of the inverse square
law of gravitational force, it is interesting to note that
Hooke as well as Newton had also paid attention to the
problem of finding the radial dependence of a central force
which leads to simple closed orbits for all initial conditions.
For example, from Hooke’s experiments of a “---ball
Rouling in an inverted cone- ', corresponding approxi-
mately to a constant central gravitational force, and from
Newton’s calculations they both realized that the orbits did
not necessarily close. Historians of science have often re-
produced Newton’s drawing erroneously as a closed orbit
even though Newton had carefully avoided to commit him-
self in his figure.”® Newton realized that if the force in-
creased with the distance to the center, the point of closest
approach O “:--may fall in the line CD---”,® which b
symmetry, evidently assumed by Newton to be valid,?
would imply a simple closed orbit. Likewise, from his di-
ary’® it appears that Hooke was trying various surfaces of
revolution, to see if he could find closed orbits which would
also be ellipses. On September 7, 1677 one finds the entry
that

*“---The planetary attraction is expressd by a bullet
Descending on the back of a cubical Paraboloeid
complement- - -”

The appropriate analog surface for the gravitational force
is a hyperbolic surface of revolution, but there is no direct
evidence that Hooke discovered this important property,
except for his remarkable sketch® on the resulting orbit. He
left only the tantalizing entry in his diary on August 22,
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1677 that he “Invented planetary Line on hyperbolicall
consect the velocity about one asymptote and the planet on
the other---” (Ref. 11).

It is clear that without a systematic procedure to ap-
proach the limit of indefinitely smaller time steps, i.e., the
concept of the infinitesimal calculus which Newton and
Leibniz helped develop, Hooke could have solved the prob-
lems of mechanics by his discrete graphical method only in
an approximate manner. More importantly, he could not
apply the powerful analytic tools of the differential calcu-
lus. It is interesting that among Hooke’s unpublished
manuscripts at the library of the Royal Society in London,
one finds a portion of a handwritten translation” into En-
glish of the Marquis de I'Hospital’s 1696 treatise entitled
Analysis of infinitesimal small quantities to describe curved
lines.*® This is the first published textbook on differential
calculus, based on lectures given by Bernoulli who had
been hired by 'Hospital as his tutor.®! Assuming he re-
ceived a copy of this text, Hooke must have understood the
importance of this mathematical development which is not
discussed in much detail in Newton’s Principia. Hooke
may also have become familiar with Leibniz’s original
work®? published first in 1684. Unfortunately the diaries of
Hooke during the crucial period 1682-1687 have also been
lost. There is also no evidence of any investigation on or-
bital motion from the transcripts of the Royal Society for
this period.® Calculus was, of course, precisely the math-
ematical tool which Hooke had been missing, but unfortu-
nately for him he had gone for mathematical help to New-
ton. It is interesting to speculate on the alternative
development of orbital dynamics if in 1679 Hooke had
corresponded with Leibniz or Huygens rather than with
Newton.

Among Hooke’s unpublished manuscripts in the Wren
Library at Trinity College there is a memorandum entitled
A True state of the case and controversy between Sir Isaac
Newton and Dr. Robert Hooke as to the Priority of that
Noble Hypothesis of Motion of ye Planets about ye Sun as
their center.’’ In this document, Hooke recounts his main
published contributions on the theory of mechanics and
gravitation, and his correspondence with Newton in 1679/
80, but he does not mention his unpublished 1685 graphi-
cal computation and related work. This memorandum
makes it clear that Hooke understood quite well the extent
and the relative importance of his contributions to celestial
mechanics and to Newton’s work. Contrary to the opinion
of historians of science who claim that Hooke failed to get
acknowledgments for his contributions because he had ex-
clusively claimed priority for the discovery of the inverse
square law of the gravitational force, Hooke’s memoran-
dum indicates that it was Newton who managed to focus
the controversy on this single issue, presumably to be able
to justify denying any credit to Hooke. After Hooke’s
death, Richard Waller commented?? that

“..-Dr. Hook who was as I could prove were it a

proper time the first Inventor or if you please first

Hinter of those things about which Magni Nominis

Heroes have contested for priority--” (Ref. 84.)

This enigmatic comment suggests that there may have
been other relevant documents to Hooke’s contributions to
dynamics that are now lost.

346 Am. J. Phys,, Vol. 62, No. 4, April 1994

ACKNOWLEDGMENTS

I would like to thank in particular Professor D. T.
Whiteside, and I. B. Cohen for valuable comments and
criticism. I would also like to acknowledge conversations
concerning Newton and Hooke with my astrophysics col-
league J. Faulkner, and valuable comments on this work by
him and by my colleagues J. Deutsch, S. Flatte, and G.
Gaspari. Finally I thank the staff of the library at Trinity
College, Cambridge, and at the Royal Society, London, for
helpful access to the unpublished manuscripts of Robert
Hooke. The warm hospitality of Tali and Doug Lin made
particularly pleasant my visit to Cambridge, where part of
this work was done.

APPENDIX: HOOKE’S HANDWRITTEN TEXT

A transcription of Hooke’s handwritten text in his dia-
gram, Fig. 1, is printed below.®’ For clarity I have taken
the liberty to include punctuation and capital letters when-
ever I consider this helpful. Words shown in brackets[- - -]
have been crossed out in the text.

“Let ha represent the imprest velocity [as before] in

the tangent [subtense] of an ellipse [circle] and a6 the

velocity imprest by Gravity. Make (88) parallel and
equal to (ac), then draw the diagonall (af). The
second puls of gravity shall meet the body at 8 where
the puls againe meets it, driving it toward the center

o with the velocity By which has the same proportion

to the radius Bo that a8 has to ao. Make B i=af and

make y«x equall and parallel to it, then draw Bx. Now

if the velocity to gravity had been as ha to da, then

the body had moved in a circle, but because the ve-

locity ha is less in proportion to ad than it ought to
make it move in a circle, therefore its motion shall be

in an ellipse. For as ao is to ad, soe o to By, soe io to

ix, etc., and the same proportion that afo has to abo

the same shall Bxo have to bko. The motion of this

body therefore shall be polygonall in an ellipse, and
shall Describe equall areas in equall times.

When the velocity and direction of the motion of

Lation [translation] doth by its Receding from the

center ballance the accesse by the Ray of Gravity

then doth the body move in a circle if the gravity be

to the center of it. But if the Recesse overballance the

accesse it goeth further off: and the contrary if con-

trary. And the polygone become various according to
the differing degrees of Gravity at Differing distances
from the center.”

The substitution of the word famgent for the correct
word subtense (chord) which Hooke crossed out, indicates
that he regarded the chord as a good approximation to the
tangent. In the diagram, Fig. 1, Hooke did not label the
vertices associated with the polygon on the circular path.
However, his reference to triangles abo and bko in this text
correspond to two triangles associated with this circular
path, which are the triangles labeled 4 BO and BKO in Fig.
3. Hooke’s statement that *“---as ao is to ad, soe Bo to
By:--» follows from his graphical construction corre-
sponding to a linear force (see Sec. III). However, he con-
tinues with “soe io to ix” which is incorrect, because the
point / is an auxiliary point obtained by extending ap set-
ting Bi=ap, and therefore it does not liec on the polygonal
path.
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R. Hooke, The Sixth Cutlerian Lecture de Potentia Restitutiva (pub-
lished in 1678, Ref. 3, Vol. VIII, p. 331). In this work Hooke deciphered
his anagram presented two years earlier, ceiiinosssttuv, as ut fensio sic
vis (as the extension so the force). It is not generally recognized that
Hooke was able to obtain the correct phase space relation between
velocity and position for the harmonic oscillator, shown in a graph in a
beautiful frontispiece of his paper. He also showed that the period of the
spring was independent of amplitude, but he did not obtain the correct
dependence of amplitude and velocity on time.

2'v. I. Amol’d, Huygens and Barrow, Newton and Hooke (Birkhauser,
Basel, Boston, Berlin, 1990). Arnol’d claims that Hooke obtained his
results on orbital motion in correspondence with Newton in 1679/80 by
*“---integrating equations of motion'--.” However, no documents have
been found dated earlier than the 1685 manuscript described in this
paper, which shows that Hooke had formulated his physical ideas on
orbital motion in mathematical form. Arnold’s suggestion that Hooke
used the law of conservation of energy is insufficient to determine orbital
motion in central forces, unless Hooke had applied also the law of
conservation of angular momentum (Kepler’s area law). However, the
correspondence with Newton in 1679 shows that at that time Hooke did
not yet understand Kepler’s area law.

“Richard Waller, The Life of Robert Hooke, The Posthumous Works of
Robert Hooke, 2nd ed. (Cass, London, 1971) pp. i-xxviii.

BR. Hooke, Ref. 22, pp. 167 and 179.

*The analogy of gravity to the emission of light from a point source,
which leads to the inverse square dependence on distance, had been
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proposed earlier by Ismael Boulliau in 1645 (Ref. 12). Newton told
Halley that Hooke had plagiarized this idea from Boulliau, and should
therefore not have claimed credit for it.

H. W. Turnbull, The Correspondence of Isaac Newton (Cambridge Uni-
versity, Cambridge, 1960), Vol. II.

26M. Nauenberg, “Newton’s Early Computational Method for Dynamics,”
Archive for History of Exact Sciences 46, 221-251 (1994).

YReference 3, Vol. VI, p. 265; T. Birch The History of the Royal Society
of London (Royal Society, London, 1756-57), pp. 91-92.

284 similar dictum to Hooke’s, that

‘“-+- to the same natural effects we must, as far as possible, assign

the same causes.”
was enshrined four years later by Newton in the Principia as Rule II of
Rules of Reasoning (Ref. 1); A. Koyré (Ref. 9) has pointed out that in
the third edition of the Principia Newton added the comment “- - - quate-
nus fieri potest (as far as they can be)- - -”” While Koyré did not give any
reason for these changes which Newton made in consecutive editions of
the Principia (see also footnote 1), it seems to me that there is a pos-
sibility that meanwhile Newton had read Hooke’s 1682 remarkable pa-
per on A Discourse on the Nature of Comets (Ref. 23), where Hooke’s
philosophical statements can be found. This paper was among the post-
humous works of Hooke which Richard Waller dedicated to Newton in
1705. Given Newton’s great interest in comets, and Hooke’s excellent
article on this subject, it is likely that Newton studied it carefully.

P, 1. Pugliese, “Robert Hooke and the Dynamics of Motion in a Curved
Path,” in Ref. 5, pp. 181-205.

1 would like to thank the Master and Fellows of Trinity College, Cam-
bridge, for permission to reprint this diagram and text from the manu-
scripts of Robert Hooke, MS. O.11a.1/16.

31 Among the pages of Hooke’s 1685 manuscript in the Wren Library, one
finds a formulation of the Laws of Circular Motion which begins with
the following statement:

“The Respective velocitys of Bodys moved by any powers [forces]
are in subduplicate proportion of the said powers, that is as the
square root of the aggregate of all the powers contributing to that
motion. This is evident in all mechanical tryalls of motion as of
Falling bodys, pendulums, the Running of water or any other
liquors:-+”
In his application of this law to a constant “power” (force) and to a
power varying linearly with distance, it becomes apparent that Hooke
had in mind by an ‘““aggregate of all the powers” over distance the
modern concept of work or potential, and that he had formulated the
law of conservation of total energy. Indeed he gets the correct results that
“.--if the powers be equall the whole length then the velocitys
shall be the ordinates of a Parabola (the modern x and y axis for
a parabola were interchanged in the 17th century) - - -If the powers
be in the same proportion with the Distances the velocities shall be
as the ordinate of a quadrant of a circle.”
However, it is clear that he does not know how to evaluate the aggregate
(integral) for other force laws which he considers, and in particular for
the gravitational case where the force varies as 1/7°. He starts with the
supposition that
“If the powers shall be in Reciprocall proportion to the squares of
the Distances the velocities shall be as”
and follows this by an empty space. Elsewhere in the manuscript he
begins with the statement that
“Prove that in the access of a body to a gravitating center where
the powers increase in Reciprocall proportion to the square of the
Distance, the velocitys increase in reciprocall proportion to the
Distance.”
again followed by another empty space. It is clear that as late as 1685 he
did not know how to obtain the potential for a force that varies as 1/7,
and therefore he could not in this case determine the dependence of
velocity on distance from his law of energy conservation.

2D. T. Whiteside, The Preliminary Manuscripts for Isaac Newton’s 1687
Principia, 1684-1685 (Cambridge University, Cambridge, 1989).

33The affine transformation is x’ = Ax, y'=y, where A is a constant. From
Hooke’s diagram, Fig. 1, one finds that A=1/2. I am indebted to D. T.
Whiteside for calling to my attention that Hooke may have applied this
transformation in his diagram.

3Pugliese states that - - -The principal argument against the precise con-
tents of Newton’s track De Motu (1684) being generally known to the
members of the Royal Society prior to the appearance of the Principia is
the total lack of discussion of these contents”, Ref. 29. Lohne states that
-+ -it seems that he (Hooke) only gradually became aware of the con-
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tents of the work Newton was composing. But from the fall of the year
1686 we can see him feverishly active to assert his claims of priority- - -,”
Ref. 11, p. 36.

333, Herivel, The Background to Newton’s Principia A Study of Newton’s
Dynamical Researchers in the Years 1664-84 (Oxford, University, Ox-
ford, 1965).

%Galileo Galilei, Discourse and Mathematical Demonstrations Concerning
Two New Sciences Regarding Mechanics and Local Motion, Originally
published in Leiden in 1638, translated by H. Crew and A. di Salvio in
1914 (Dover, New York, 1954). For the special case of a central force
that varies linearly with distance, treated by Hooke, the motion is also
separable into perpendicular directions (see Sec. IV).

3Reference 23, p. 149.

381 Beeckman, Journal tenu par Isaac Beeckamn de 1604-1634 (La Haye,
1939), Vol. 1, p. 262; in 1618 Beeckman, the headmaster of the Latin
school at Dordrecht, Holland in collaboration with Descartes, suc-
ceeded in evaluating correctly the motion of a body in a constant grav-
itational field, by assuming that gravitation acted in periodic pulses, Ref.
18, p. 330. It is perhaps surprising that this very fruitful idea for a
mathematical treatment of orbital motion was apparently not general-
ized before Hooke and Newton took it up again.

H. W. Turnbull, The Correspondence of Isaac Newton (Cambridge Uni-
versity, Cambridge, 1960), Vol. II, p. 442.

“OThe concept that celestial orbits could be calculated from physical prin-
ciples was new at this time. Although Galileo had declared that “Il libro
della natura ¢ scritto in lingua matematica” (The book of nature is
written in mathematical language), he did not consider celestial me-
chanics and the mathematical problems associated with central forces.
An alternate view during that period was expressed in the remark that
“The Rules of Mathematicks, or Learning by Demonstration, do ill
square to Nature. For man doth not measure Nature: but she him,” Ref.
19, p. 22, footnote 49.

“IA. Armitage, “Borell’s hypothesis and the rise of celestial mechanics,”
Ann. Sci. 5, 342-351 (1950).

“2The idea of the circular pendulum as a model of planetary motion seems
to have originated with the astronomer J. Horrock, and it was discussed
also by C. Wren, who was a close associate of Hooke. See, for example,
J. A. Bennet, The Mathematical Science of Christopher Wren (Cam-
bridge University, Cambridge, 1982).

“3The first correct formulation of the principle of inertia was given by
Descartes. It appeared in his book Principles of Philosophy first pub-
lished in 1644, in which he states that *---all movement is, of itself,
along straight lines; and consequently, bodies which are moving in a
circle always tend to move away from the center of the circle which they
are describing- - -.”” Galileo applied the law of inertia only to local mo-
tion on the surface of the earth. Like the ancients, he believed that
planetary orbits were natural, meaning circular, and therefore one did
not need a dynamical explanation based on attractive gravitational
forces. Descartes’ work was very influential in the seventeenth century,
particularly on Newton in regard to algebraic geometry, optics, and
dynamics.

“Hooke could have considered also the similar motion of a body at the
end of an elastic string or spring, as he had discovered the law of
elasticity (Ref. 20). However, no evidence has been found that he ex-
perimented with this system.

“For the circular pendulum, the linear dependence of the force on the
distance of the suspended weight from the axis is only an approxima-
tion. This accounts for the precession of the axis of the projected ellipse
which was observed by Hooke. Hooke realized that an important inad-
equacy of this model for planetary motion was that the center of force
is at the center of the ellipse, and not at one of the foci, and experi-
mented with the motion of balls on various surfaces of revolution. Thus,
when he received Newton’s letter with a sketch of the orbit of a body in
a constant central field he immediately responded that “*: - -your calcu-
lation of the curve by a body attracted by an equall power at all dis-
tances from the center Such as that of a ball Rouling in an inverted
concave cone is right and the two auges [apsides] will not unite by about
a third of a revolution--.” Ironically, while Newton’s drawing of an
orbit in a constant field is strictly incorrect (see Ref. 6), as Pelseneer
already pointed out in Ref. 8, it is indeed a possible orbit in an inverted
cone.

46Reference 3, Vol. VI, p. 256.

4TR. Hooke, An Attempt to Prove the Motion of the Earth from Observa-
tions (London, Printed by T. R. for John Martyn Printer to the Royal
Society at the Bell in St. Pauls Church-yard, 1674). This is reprinted in
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Ref. 3, Vol. VII, pp. 1-28. The idea to demonstrate the motion of the
earth by observing the parallax of stars can be traced back to the ancient
Greeks.
43Reference 3, Vol. VI, p. 343.
%An account of Hooke’s book appeared in The Philosophical Transac-
tions, 1X, 101, 12, (1674) (published by the then foreign Secretary of
the Royal Society, H. Oldenburg). Four issues later there appeared
extracts of letters of comment by Christian Huygens, the most eminent
17th century scientist on the continent, and by the Director of the Paris
observatory, Giovanni Domenico Cassini. It is evident from Newton’s
correspondence with Hooke and Halley that he had also become famil-
iar with this book. This book has been reprinted by Gunther, Ref. 3,
Vol. VIIL, pp. 1-28.
®Hooke started his research work as an assistant to Boyle. It was Hooke
and not Boyle who first discovered or confirmed the relation between
the pressure and the volume of a gas which has become known as
Boyle’s law, a fact which even Newton acknowledged; see I. B. Cohen,
“Newton, Hooke and Boyle’s Law,” Nature 204, 618-621, (1964).
SIReference 3, Vol. VIII, pp. 217-271.
52E, Halley, Astronomical Tables (London, MDCCLII). In a Synopsis of
the astronomy of comets, Halley credits the philosopher Seneca with
placing comets *“::-amongst the celestial bodies---,” predicting that
“---there should be ages sometimes hereafter, to whom time and dili-
gence should unfold all these mysteries- - -* The prevalent opinion, until
Kepler’s observations of the comets parallax, was that these objects were
*“---below the moon---.” Although Hooke had lectured on comets sev-
eral times at meetings of the Royal Society, demonstrating great insight
into the nature of comets, he is not mentioned in this introduction.
338. Pepys, Diary (Wheatley—Bell, London, 1904), Vol. 4, p. 341.
541t turns out that Hooke conjectured correctly that the light from the sun
is responsible, through radiation pressure, for the formation of a com-
ponent of the tail of the comet which is made up of dust.
5In Hooke's diary on September 20, 1679, “---Discoursed with him
[Wren] about o [solar] Theory. He affirmed that if the motion were
reciprocall to the distance the Degree of velocity should always be as the
areas, the curve whatever it will---” This remark shows that Hooke
became aware of Kepler’s area law in his conversations with Wren.
However, it indicates also confusion with a dependence of the velocity
with the inverse of the radial distance, which is only valid at the apsides.
6At this time, Hooke’s understanding of dynamics was based on his
mechanical analogs rather than on mathematical reasoning. This impor-
tant point has been missed by historians of science as is illustrated, for
example, by Whiteside’s comment that Hooke ““ -+ could only compli-
antly answer---” Newton’s letter, The Mathematical Papers of Isaac
Newton 1684-1691, edited by D. T. Whiteside (Cambridge University,
Cambridge, 1974), Vol. VI, p. 12. Although Newton’s figure for a body
moving in a central constant force has a substantial error in the angle
between apsides, it turns out that it does correspond to a possible orbit
for a ball rolling inside an inverted cone, when projected on a plane
normal to the cone’s axis.
S'R. Hooke, A True State of the Case and Controversy Between Sir Isaac
Newton and Dr. Robert Hooke as the Priority of that Noble Hypothesis of
Motion of the Planets About the Sun as Their Centre. This is an undated
manuscript in the Trinity College library in Cambridge, which has been
reproduced by Gunther, Ref. 3, Vol. X, pp. 57-60.
8Concerning Newton’s early ideas about the cause of gravity, an example
is recorded in T. Birch, Hist. R. Soc. London, 3, 248-260 (1756-57). In
1675 Newton speculated, - -after experimenting with bits of paper
which are attracted to a piece of glass after rubbing it--* with some
rough and raking stuff---,” that
“..-the gravitating attraction of the earth be caused by the con-
tinual condensation of some other such like aethereal spirit, not of
the main body of phlegmatic aether, but to something very thinly
and subtilly diffused through it, perhaps of an unctuous or
gummy, tenacious and springy nature, and bearing much the same
relation to aether, which the vital aereal spirit, requisite for the
conservation of flame and vital motions does to air*-”

On February 28, 1678/9, Newton wrote a lengthy letter to R. Boyle

(Ref. 25), in which he mentions near the end his latest ideas about the

origins of gravity:
“] shall set down one conjecture more which came into my mind
now as I was writing this letter. It is about the cause of gravity.
For this end I will suppose ether to consist of parts differing from
one another in subtilty by indefinite degrees--”

It is worthwhile to note that this idea, attributed to Borell, had been
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discussed and dismissed by Hooke more than a decade earlier, in his
May 1666 lecture to the Royal Society, Ref. 27.

591t should be pointed out that in the Principia, Newton carefully defined
quantity of motion as “:--velocity and quantity of matter conjointly,”
which is the momentum. This important concept which introduced the
role of mass was not made by Hooke. In the Principia, Newton does not
appear to claim credit for any of the three Laws of Motion, stating in a
subsequent Scholium that

“Hitherto I have laid down such principles as have been received
by mathematicians, and are confirmed by abundance of experi-
ments. By the first two Laws and the first two Corollaries, Galileo
discovered that ‘- However, Newton was the first who under-
stood that the three laws of motion constituted the foundations of
classical dynamics on which the Principia was erected.

®Reference 3, Vol. X, p. 98

$!Here Hooke demonstrates again his considerable understanding of the
concept of an impressed force. He points out the equivalence (in the
sense of giving the same dynamical effects) of the force due to the
tension of the string suspending the weight of a circular pendulum, and
the force (always normal to the surface if one neglects friction) on a ball
rolling inside a hollow sphere.

S2H. Erlichson, “Newton’s 1679/80 solution of the constant gravity prob-
lem,” Am. J. Phys. 59, 728-733 (1991).

6 The Mathematical Papers of Isaac Newton 1664-1666, edited by D. T.
Whiteside (Cambridge University, Cambridge, 1967), Vol. I, pp. 252—
255 and 1670-1673 (Cambridge University, Cambridge, 1969), Vol.
111, pp. 151-159.

%There exists an undated manuscript, MS. VIII [see J. Herivel, The
Background to Newton’s Principia (Oxford University, Oxford, 1965),
pp. 246-256], where Newton gave a proof based on curvature ideas that
elliptic orbits with the force acting towards a focus imply the inverse
square force law. In 1690, John Locke received an altered copy of this
manuscript after he had asked Newton for help in understanding the
Principia. (It is said that eventually Locke gave up, and was content to
accept Huygen’s word that the mathematics of Newton was correct.
This was probably the earliest example of the split which has developed
between philosophy and mathematical science.) Herivel proposed that
MS. VII was the “original” 1679 proof which Newton attained imme-
diately after breaking off his correspondence with Hooke, and assertion
later taken up by Westfall, while Whiteside suggested that MS VIII is an
offspring of a variant proof of the 1684 manuscript De Motu. Recently,
J. B. Brackenridge has argued in an article entitled The Locke/Newton
Manuscripts Revisited: Conjugates, Curvatures and Conjectures, Ar-
chives Internationales D’Histoire des Sciences (to be published), that
MS VIII cannot be related to Newton’s 1679 solution. See also Ref. 26.

$5Even as late as 1684, when he composed his tract De Motu, Newton
calls inertia a force, vim corporis (which was the prevalent view in the
middle Ages before Galileo), in the same vein that he defines an im-
pressed force as vim centripetam (centripetal force), in Definition 1,
Ref. 35, pp. 257 and 277. It may be that Newton, as a mathematician,
wanted to add quantities which had the same dimensionality. However,
by the time the Principia was completed the first law of motion was
stated correctly, as it had been proposed earlier by Descartes. Newton
coined the name centripetal force after his correspondence with Hooke,
who referred to a force as impressed power. Previously, Newton had
been guided by the concept of a centrifugal force (see Ref. 26), intro-
duced also independently by Huygens, Today this is regarded as an
effective force in a rotating frame of reference. Huygens apparently did
not fully understand the concept of gravitational attraction as an exter-
nal impressed force, and for this reason he may have missed discovering
the inverse square law dependence of the gravitational force from Ke-
pler’s third law.

R. Hooke, Ref. 23, p. 185.

’Recently a controversy was initiated by R. Weinstock, “Dismantling a
centuries-old myth: Newton’s principia and inverse-square orbits,” Am.
J. Phys. 50, 610-617 (1982), who claims that Newton did not prove the
inverse problem of dynamics; for references to the literature and a care-
ful study of this question, see B. H. Pourciau, “On Newton’s Proof that
inverse-square orbits must be conics,” Ann. Sci., 48, 159-172 (1991);
“Newton’s solution of the one body problem,” Arch. Hist. Exact Sci. 44,
125-146 (1992); M. Nauenberg, “The mathematical principles under-
lying Newton’s Principia revisited” (to be published).

The vertices for the polygonal construction on the circle are not labeled
in Hooke’s diagram, Fig. 1, but are referred to in the accompanying text
by the latin letters a, b, k. Hooke is not entirely consistent in his nota-

349 Am. J. Phys., Vol. 62, No. 4, April 1994

tion, because he also uses the letters @ and 4 for two of the vertices
associated with the elliptic trajectory.

%In the corresponding fundamental construction in the Principia, Book I,
Section II, Proposition I, Theorem I, Newton likewise leaves out an
explicit statement of the proportionality of the change in momentum to
the magnitude of the time interval. However this is included later in
Proposition VI, theorem V, where the limit of small time steps is dis-
cussed, corresponding to a continuous trajectory and force.

A, R. Hall, “Newton on the calculation of central forces,” Ann. Sci. 13,
62-71 (1957).

"IC. Huygens, De Vi Centrifuga, in Ouvres Complites de Christiaan Huy-
gens XVI, (The Hague, 1929), pp. 253-301.

"This error in the graphical location of the foci is revealing as it gives
some evidence that Hooke may not have fully appreciated the affine
transformation by which the ellipse and the associated polygonal path
can be obtained from the circle. An affine transformation factor of 1/2
would have given him the exact location of the foci (at a distance from
the center O by a factor J(3)/2 of the major semiaxis of the ellipse).

According to the biography by Richard Waller (Ref. 22), written two
years after Hooke had died, he tells us that as a young boy “:- -he fell
seriously upon the study of the mathematicks, the Dr. (Busby) encour-
aging him therein, and allowing him particular times for that purpose.
In this he took the most regular Method, and first made himself Master
of Euclide’s Elements, and thence proceeded orderly from that sure
Basis to the other parts of the Mathematicks, and after to the applica-
tion thereof to Mechanicks, his first and last Mistress:*+” From his
friend Aubrey we learn that “: - -in one week’s time made himselfe mas-
ter of the first VI bookes of Euclid- -+ Later on Hooke became Profes-
sor of Geometry at Gresham College in London.

An important property of the discrete Newton-Hooke algorithm is that
it corresponds to a time dependent canonical or simplectic transforma-
tion. Therefore, even for finite 8¢, it conserves a fundamental property of
Hamiltonian dynamics. See, for example, V. 1. Arnol'd, Mathematical
Methods of Classical Mechanics (Springer, Berlin, 1984). This property
accounts for the improved convergence of this low order algorithm over
Euler’s approximation.

3The Mathematical Papers of Isaac Newton 1684-1691, edited by D. T.
Whiteside (Cambridge University, Cambridge, 1974), Vol. 6, p. 348;
Whiteside points out that the evaluation of the integral for the gravita-
tional force is contained among Newton’s results in his 1671 tract ‘Cat-
alogus posterior, Ordo octavus, problem 9, in The Mathematical Papers
of Isaac Newton, edited by D. T. Whiteside (Cambridge University,
Cambridge), p. 252.

T5Memoire de I’Academie Royale des Sciences 1710, pp. 519-533. This
calculation led to some controversy. The English mathematician John
Keill wrote to Newton in 1713 that (Ref. 12) ‘

“Since I left London I have considered Mr. Bernoulli’s solution of
the Inverse Probleme about Centripetal Forces, and I am amazed
at his impudence: - - He gives a formula for the element of the angle
at the center which seemed to be more intricate than yours, but I
find it to be only yours disguised, so that his general solution is
only taken from yours, and he has done nothing but what you had
done better before. In his application of it to the particular case (of
an inverse-square force) he has with & great deal of Labour
showed that the curve described must be a Conick Section when
the thing may be demonstrated in a few lines- -+
In the Principia Newton did not show explicitly that for an inverse
square force, the general integral for central forces, given in Proposition
XLI, Problem XXVIII corresponds to a Conick Section.

""The term indivisibles was used by Bonaventura Cavaliere in the title of
his book Geometria Indivisibilibus Continuorum published in 1635, and
later by J. Wallis in his Arithmetica Infinitorum (Oxon, 1656) which is
devoted to the integration of curves by the method of indivisibles. New-
ton’s early mathematical studies were also influenced by the work of
Wallis, see The Mathematical Work of John Wallis by J. F. Scott
(Chelsea Publishing, New York).

SH. W. Robinson and W. A. Adams, The Diary of Robert Hooke 1672-
1680 (Taylor and Francis, London, 1935).

"The handwriting is that of C. Hayes, who translated the first text on
differential calculus, written in French by I'Hospital (Ref. 80) under the
title A4 treatise on fluxions (D. T. Whiteside, private communication).

8Guillaume Frangois Marquis de 'Hospital, et du Montellier, Comte de
Saintemesme, et d’Antremontes, Signeur d’Ougues, et autres liex, Anal-
yse des Infiniment Petits, Pour P'intelligence des lignes courbes, (A Paris,
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de 'Imprimerie Royale, MDCXCVI). It was also translated and pub-
lished in 1730 by E. Stone under the title The Method of Fluxions both
Direct and Inverse (The Former being a translation from': -, and the
later supply’d by the Translator). Newton’s original work was first
published by John Colson in English in 1736, in a book entitled The
Method of Fluxions and Infinite Series with its Application to the Ge-
ometry of Curve-Lines, By the Inventor Sir Isaac Newton, Kt., Late
president of the Royal Society. Translated from the author’s Latin Orig-
inal not yet made publick. London, Printed by Henry Woodfall;
M.DCC.XXXVI.

81D, J. Struik, “The origin of I'Hospital’s rule,” Math. Teacher 56, 257—
260 (1963).

2G. W. Leibniz, Nova Methodus pro Maximis et minimis - Acta Erudi-
torum, 467-473 (Anno MDCLXXXIV).

®Hooke’s biographer Waller informs us that after about 1681/2
‘.- -From this time, or rather something before, he began to be more
reserv’d than he had been formerly, so that altho’ he often made Ex-
periments, and shew’d new Instruments and Inventions, and read his

Cutlerian Lectures, yet he seldom left any full Account of them to be
enter’d designing, as he said, to fit them himself for the Press, and then
make them publick, which he never perform’d. This is the reason that I
am oblig’d to be the shorter in the remainding part of his Life; and shall
only touch upon some few of his Performances, since the bare nameing
of them, or mentioning their Titles, will but create an uneasy Curiosity
in the Reader without any satisfaction - In the beginning of the Year
1687, his Brothers Danghter, Mrs. Grace Hooke dy’d, who had liv’d
with him several Years, the concern for whose Death he hardly ever
wore off, being observ’d from that time to grow less active, more Mel-
ancholly and Cynical---” Ref. 22, p. 24. Grace was his mistress for
some time, and her death followed shortly after the publication of the
Principia, printed on July, 1686.

84At the time these words were written, I. Newton was president of the
Royal Society, a post he accepted only after Hooke died, and Richard
Waller was the secretary of the Society.

81 am indebted to D. W. Dewhirst for help in deciphering some words in
Hooke’s text.
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Absorption and laser-induced fluorescence spectra of the iodine molecule are compared as
sources of molecular constants. The comparative simplicity of the fluorescence spectrum and the
increased precision provide a vivid and direct understanding of the iodine molecular ground

state.

1. INTRODUCTION

The iodine molecular spectrum was one of the first to be
analyzed successfully and provides an ideal case for dem-
onstrating the basic characteristics of diatomic spectra.'™
It possesses a long absorption series in the visible region
associated with the B-X states which correlate at large
separations with the well-known atomic fine structure
states, as shown in Fig. 1. This spectrum has remained
important in the development of new techniques in molec-
ular spectroscopy following the advent of lasers. Methods
of optical pumping in molecules and the development of
saturation and polarization spectroscopy were pioneered in
iodine and many of its molecular constants are known with
considerable precision.*®

The most striking element of the iodine absorption spec-
trum is the long series of the B—X bands in the visible. The
electronic potential energy curves which give rise to the
electronic~vibrational-rotational levels involved in the
bands are shown as full lines in Fig. 1. The B level is the
first member of these electronically excited levels. Levels
other than the ground X level which correlate to the
ground atomic configuration at large separation are shown
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as broken lines, although the repulsive states are not yet
well established. Both B and X states have Q=0, (i.e., zero
electronic angular momentum along the molecular axis) in
standard molecular notation as specified in Chap. IV of
Ref. 2. The visible system of B-X bands can be studied in
straightforward absorption spectroscopy and yields a great
deal of information even when studied with an instrument
of modest resolving power.

Absorption experiments on the B-X system have been
carried out in student laboratories for many years (see,
e.g., Ref. 9) and, while we summarize the information that
can be obtained by conventional spectroscopy, the aim of
this paper is to describe a laser fluorescence experiment
which gives a greatly simplified spectrum. Due to fortu-
itous coincidences with molecylar absorptions, fluores-
cence from iodine can be stimulated by light from an in-
expensive He-Ne laser. The fluorescence spectrum is
simpler to analyze than the absorption spectrum and gives
immediate evidence for the J-selection rule, anharmonicity
of the lower state, and the difference between the bond
lengths of the B and X states.

We briefly summarize the analysis of the visible absorp-
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