
THE RECEPTION OF NEWTON’S PRINCIPIA

Abstract. Newton’s Principia, when it appeared in 1687, was received with the greatest
admiration, not only by the foremost mathematicians and astronomers in Europe, but
also by philosophers like Voltaire and Locke and by members of the educated public. In
this account I describe some of the controversies that it provoked, and the impact it had
during the next century on the development of celestial mechanics, and the theory of
gravitation.

Introduction

The first edition of Newton’ s Mathematical Principles of Natural Philosophy, commonly
known as the Principia, appeared in 1687, transforming our understanding of celestial me-
chanics and gravitational theory. In his magisterial book, Newton gave a physical descrip-
tion and mathematical proof for the origin of Kepler’s three laws for planetary motion.
These laws were empirical laws based on the careful observations of the Danish astronomer
Tycho Brahe, which summarized most of the astronomical knowledge about planetary mo-
tion that was known at the time. To accomplish this feat, Newton assumed the validity of
the principle of inertia which he formulated in the Principia as the first law of motion 1,
and he introduced two fundamental concepts: that the main attractive gravitational force
acting on a planet is a central force directed towards the sun, and that the magnitude of
this force is proportional to the planet’s acceleration2. From Kepler’s third law3, and the
approximation that planets move with uniform motion in a circular orbit, Newton then
deduced that this gravitational force varied inversely with the square of the radial distance
of a planet from the sun. In addition, Newton proposed that the magnitude of the grav-
itational force between any two bodies was proportional to the product of their inertial
masses, and by applying Kepler’s third law to the motion of the moon and the satellites of
Jupiter and Saturn, he of determined the masses of these planets and the mass of the earth

1The principle of inertia was formulated in the form:

Every body perseveres in its state of being at rest or of moving uniformly
straight forward except insofar as it is compelled to change its state by
forces impressed (Cohen 1997, 416).

2These concepts had been formulated also by Robert Hooke who discussed his ideas with
Newton in a lengthy correspondence in 1679 (Turnbull 1960. 297-314) (Nauenberg 1994)
(Nauenberg 2005).

3The square of the period of the planet is proportional to the cube of its distance from
the sun.
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relative to the mass of the Sun 4. In his essay La cause de la pesanteur, the great Dutch
scientist Christiaan Huygens remarked that he was very pleased to read how Newton, by

supposing the distance from the earth to the sun to be known, had been
able to compute the gravity that the inhabitants of Jupiter and Saturn
would feel compared with what we feel here on earth, and what its measure
would be on the Sun (Cohen 1997, 219).

The importance of these developments was appreciated not only by astronomers and
mathematicians who read the Principia, but also by philosophers and by the educated
public. The French philosopher, François Marie Voltaire encapsulated this recognition
with a succinct comment,

Avant Kepler tous les hommes toient aveugles, Kepler fut borgne, et Newton
a eu deux yeux 5(Besterman 1968, 83)

and shortly after Newton’s death the English poet Alexander Pope wrote

Nature, and Nature’s Laws lay hid by night
God said, let Newton be! and all was light.

As the reputation of the Principia grew, even people who had little or no mathemat-
ical ability attempted to understand its content. The English philosopher John Locke,
who was in exile in Holland, went to see Huygens who assured him of the validity of
Newton’s propositions. He was able to follow its conclusions, and later befriended New-
ton, referring to him “ as the incomparable Mr. Newton’” in the preface of his essay
Concerning Human Understanding (Locke 2001,13). While in exile in England, Voltaire

became acquainted with Newton’s work, and after his return to France he wrote the El-
emens de la Philosophie de Neuton which popularized Newton’s ideas in France. In this
enterprise he was fortunate to have the collaboration of a gifted companion, Gabrielle
Le Tonnelier de Breteuil, better known as the Marquise du Châtelet, who translated the

4This result was found among some early papers by Newton (Herivel 1965, 196). Newton
and, independently, Christiaan Huygens, had deduced that a body moving with uniform
velocity v in a circular orbit of radius r, has a radial acceleration a towards the center
of the orbit given by a = v2/r. Since v = 2πr/T , where T is the period, he obtained
a = 4π2r/T 2. Substituting for T Kepler’s third law for planetary motion, T 2 = cr3, where
c is a constant, gives a = (4π2/c)(1/r2). In this way Newton found that the acceleration a
depends inversely on the square of the radial distance r between a planet and the sun.

In the Principia, Newton proposed that the same relations apply also to the motion
of the satellites around a planet. According to his principle of universal gravitation, a is
proportional to the mass M of the center of force, and therefore a = GM/r2, where G is a
universal constant, now called Newton’s constant. Hence M = 4π2/Gc, where c is Kepler’s
constant, and by determining the value of c for the satellites of Jupiter, Saturn and the
earth, Newton obtained the ratio of the mass of each of these planets relative to the mass
of the sun, given in Prop. 8, Book 3 of the Principia.

5Before Kepler all men were blind; Kepler was one-eyed, and Newton had two eyes (Feingold 2004,99)
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Principia into French. Francesco Algarotti, who was in communication with Voltaire, pub-
lished his Newtonianismo per le dame which became fashionable in Italy (Feingold 2004).

Initially, there was considerable reluctance to accept Newton’s general principles, par-
ticularly because an action at a distance was generally regarded as due to occult forces, in
contrast to contact forces. According to Descartes, gravitational forces were due to vortices
of unobserved celestial dust, and this explanation had been accepted by most Continental
astronomers. At the end of Book 2 of the Principia, Newton gave a proof that Cartesian
vortices were incompatible with Kepler’s second and third laws for planetary motion, but
his proof was based on somewhat arbitrary assumptions about the frictional properties
of these vortices, and in an essay, ‘Nouvelles pensée sur le système de M. Descartes’, the
Swiss mathematician Johann Bernoulli gave several objections to this proof (Aiton 1995,
17). In his Discourse sur les differentes figures des astres, Pierre-Louis Moreau de Mauper-
tuis openly defended Newton’s views, pointing out its predictive power, and remarked that
Cartesian impulsion was no more intelligible than Newtonian attraction (Aiton 1995, 19),
but that universal gravitation was “ metaphysically viable and mathematically superior” to
vortices as an explanation of celestial mechanics (Feingold 2004, 98). In a remarkable tour
de force, Newton had applied his gravitational theory to determine the shape of the earth,
and he found that the centrifugal force due to the daily rotation about its axis deformed the
earth into an oblate spheroid flattened at the poles6. This prediction was contrary to the
observations of the Italian astronomer Gian Domenico Cassini, who had joined the French
Academy of Sciences, and his son Jacques Cassini. They had obtained faulty geodetic

6Assuming that the earth can be regarded as a rotating fluid held together by its own
attractive gravitational forces, in Prop. 19, Book 3, Newton gave a proof that the shape
of the earth is an oblate spheroid corresponding to an ellipse of revolution about its short
axis. He calculated the ellipticity ε = a/b − 1, where a and b are the major and minor
axis of the ellipse, by the requirement that two channels of water to the center of the
earth, one from the pole and another from the equator would be in pressure equilibrium
at the center. Remarkably, in his calculation Newton also took into account the variation
of the gravitational force inside the earth due to the shape distortion which he discussed
in Prop. 91, Cor. 3, Book 1 (For a modern discussion see (Whiteside 1974, 225-226) and
(Chandrasekhar 1995, 313-317) . Newton obtained for the ellipticity, ε = (5.04/4)δ, where
δ, the ratio of centrifugal acceleration to the acceleration of gravity g, is δ = (4π2re/(gT 2),
re is the mean radius of the earth and T is the period of rotation ( one siderial day). This
gives δ = 1/289, and Newton found that ε = 1/229 and announced that the distance to
the center of the earth at the equator exceeds the value at the poles by εre= 17 miles.
The present observed value is 13 miles, because the actual density of the earth is not
homogeneous. A similar calculation was carried out by Huygens who included, however,
only the effect of the centrifugal forces, because he did not accept Newton’s principle of
universal gravitation. Hence, Huygens obtained ε = (1/2)δ = 1/578. Newton’s result was
first derived by Clairaut, who showed that the relation ε = (5/4)δ is correct to first order
in ε (Todhunter 1962, 204).
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measurements, indicating that the earth is a prolate spheroid 7. To resolve this conflict,
Maupertuis together with the French mathematician Alexis-Claude Clairaut led a scientific
expedition commissioned by the French Academy of Sciences that left for Lapland on April
20, 1736 to measure the length of a degree of the meridian at that latitude, in order to
compare it with the corresponding length at the latitude of Paris. Mauepertuis became
famous for confirming Newton’s prediction, and Voltaire called him the ‘ aplatisseur du
monde et de Cassini’, remarking sarcastically that

Vous avez confirmé dans des lieux pleins d ’ennui
Ce que Newton connut sans sortir de chez lui 8

Another expedition, headed by La Condamine, Bouguer and Godin, also members of the
French Academy of Sciences, went about a year earlier to Peru to measure a corresponding
arc of the meridian near the equator. But they ran into considerable difficulties and delays
due to personal animosities between the leaders of the expedition, and only ten years
later, were they able to report their results which were consistent with the conclusions
of Maupertuis’ expedition (Todhunter 1962). Subsequently, the problem of evaluating
theoretically the shape of the earth became the subject of intense efforts by Continental
mathematicians who studied Newton’s Principia, and its difficulty spurred major advances
in mathematical physics.

In his Lettres philosophiques, Voltaire reported these controversies with his characteristic
wit,

For your Cartesians everything is moved by an impulsion you don’t really
understand, while for Mr. Newton it is by gravitation, the cause of which
is hardly better known. In Paris you see the earth shaped like a melon, in
London it is flattened on two sides (Voltaire 1734)

The contrast between the methods of Descartes and Newton were neatly contrasted by
Bernard le Bovier Fontenelle, the secretary of the French Academy of Sciences, who wrote
in his Eloge de Newton,

Descartes proceeds from what he clearly understands to find the cause of
what he sees, whereas Newton proceeds from what he sees to find the cause,
whether it be clear or obscure (Fontenelle 1728)

Newton, however, left open the question of the origin of the gravitational force. During a
correspondence with the Reverend Richard Bentley, he made his reservations clear,

It is unconcievable that inanimate brute matter should ( without the me-
diation of something else which is not material) operate and affect other

7For example, Jacques Cassini found that the length of a degree of longitude in the
parallel of St. Malo, France, is 36,670 toises, but on the supposition of a spherical earth
it should be 37,707 toises (Todhunter 1962, 111) ( The length of a toise can be obtained
from Newton’s remark in Prop. 19, book 3, that 367,196 London feet, the mean radius of
the earth obtained by a Mr. Norwood, is equal 57,300 Parisian toises).

8You have confirmed in these difficult locations what Mr. Newton knew without leaving
his home.(Florian 1934, 664)
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matter without mutual contact; as it must if gravitation in the sense of
Epicurus be essential and inherent in it ... That gravity ... may act at a
distance through a vacuum ... is to me so great an absurdity that I believe
no man who has in philosophical matters any competent faculty of thinking
can ever fall into it. Gravity must be caused by an agent acting constantly
according to certain laws, but whether this agent is material or inmaterial
is a question I have left to the consideration of my readers (Westfall 1995,
505).

This view led to accusations by some readers of the Principia that Newton had left the
physics out of his mathematics.

Kepler had shown that the planets travel along elliptical orbits with the sun located
at one of the foci 9, moving with a non-uniform velocity satisfying his second law or
area law10. To account for such an orbit, Newton had to extend the rigorous geometrical
methods developed by Greek mathematicians to encompass the limit of ratios and sums of
vanishing quantities (Nauenberg 1998). In the Principia such quantities were represented

by lines and arcs of curves of arbitrarily small length, a procedure that had been introduced
by Appollonius, and applied by Ptolemy for calculations in his geocentric model of celestial
motion, and by Archimedes for calculations of lengths and areas encompassed by curves. In
the 17-century, this procedure was developed further by several mathematicians including in
particular Renè Descartes, whose work Newton had studied carefully 11 (Whiteside 1967).
Since motion occurs with the passage of time, it was necessary for Newton to express
time as a geometrical variable, but this was a major stumbling block (Nauenberg 1994a).
It was only after a lengthy correspondence with Robert Hooke (Turnbull 1960, 297-314)
(Nauenberg 1994b), that Newton was able to give a proof of the validity of Kepler’s area
law for any central force (Nauenberg 2003). Newton recalled that

In the year 1679 in answer to a letter from Dr. Hook ... I found now that
whatsoever was the law of the forces which kept the Planets in their Orbs,
the area described by a radius from them to the Sun would be proportional
to the times in which they were described. And by the help of these two

9This subtlety was not always appreciated by the general public. For example, the Bank
of England issued a two pound note, now retracted, showing incorrectly a figure from
Newton’s Principia, with the sun at the center of the ellipse.

10In the Principia, Book I, Prop. 1, Newton gave the following formulation of the area
law:

The areas which bodies made to move in orbits describe by radii drawn from
an unmoving center of forces lie in unmoving planes and are proportional
to the times (Cohen 1999).

11Newton studied Frans van Schooten’s second edition (1659) of his translation of
Descartes Geometrie from French into Latin, with appended tracts by Hudde, Heurat
and de Witt. This translation was crucial to Newton’s education because he could not
read French.



6 THE RECEPTION OF NEWTON’S PRINCIPIA

propositions I found that their Orbs would be such ellipses as Kepler had
described... (Lohne 1960)

Thus, Newton was able to geometrize the passage of time by the change of an area - a
concept without which writing the Principia would not have been possible. He emphasized
its importance by starting the Principia with a mathematical proof of the generalization
of Kepler’s second law described in Prop. 1, Book 1. (Brackenridge 1995) (Nauenberg
2003).

The style of the Principia followed the mathematical format of the Horologium Oscillatorioum
(Huygens 1673) (Nauenberg 1998) by Christiaan Huygens, who was the most prominent
scientist in the Continent during the later part of the 17-th century. In 1673, when Newton
received a copy of Huygens’ book from Henry Oldenburg, he promptly responded that

I have viewed it with great satisfaction finding it full of very subtile and
useful speculations very worthy of the Author. I am glad, we are to expect
another discourse of the Vis Centrifuga [centrifugal force ] which speculation
may prove of good use in natural Philosophy and Astronomy, as well a
Mechanicks. (Huygens 1897, 325)

In the preface of his biography, A view of Sir Isaac Newton’s Philosophy, Henry Pem-
berton, who was the editor of the the third edition of the Principia, wrote that

Sir Isaac Newton has several times particularly recommend to me Huygens’
style and manner. He thought him the most elegant of any mathematical
writer of modern times, and the most just imitator of the ancients. Of
their taste, and form of demonstration Sir Isaac always professed himself
a great admirer. I have heard him even censure himself for not following
them yet more closely than he did; and speak with regret of his mistake
at the beginning of his mathematical studies , in applying himself to the
works of Des Cartes and other algebraic writers, before he had considered
the elements of Euclide with that attention, which so excellent a writer
deserves (Pemberton 1728).

In turn Huygens greatly admired Newton’s work, and in the summer of 1689 he came to
England to meet Newton and discuss with him the current theories of gravitation. Like
Leibniz, Huygens did not accept Newton’s concept of an action at a distance which was
regarded as an occult force by followers of Descartes vortex theory of gravitation, but he
accepted the inverse square dependence on distance of the gravitational force.

In 1689 the British mathematician David Gregory visited Newton in Cambridge, and
reported that

I saw a manuscript [written] before the year 1669 ( the year when its author
Mr. Newton was made Lucasian Professor of Mathematics) where all the
foundations of his philosophy are laid: namely the gravity of the Moon to
the Earth, and of the planets to the Sun. And in fact all these even then
are subject to calculation (Herivel 1965, 192).
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This manuscript, which Newton never published, revealed that already sixteen years
before writing the Principia, Newton had carried out the “moon test”, later described in
Book 3, Prop. 4, where he compared the gravitational force of the earth on the moon to
the force of gravity on an object on the surface of the earth (Herivel 1965, 192-198)(see
Appendix). In order to make this comparison, however, Newton had to assume that the
gravitational force varied inversely proportional to the square of the distance from the
center of the earth to any distance above its surface. Previously, he had deduced the
inverse square dependence of this force from planetary motion ( see footnote 2), where
the distance between the planets and the sun is very large compared to their sizes, and
it was reasonable to treat these celestial bodies as point masses. But to assume that this
radial dependence was still valid for much shorter distances, and in particular down to the
surface of a planet had to be justified. Apparently it was only after Newton already had
started writing the Principia, that he was able to provide such a justification, by assuming
that the gravitational attractive force due a finite size body can be compounded by adding
the contribution of each of its elements. In Prop. 71, Book 1 of the Principia he gave a
remarkable proof that the gravitational force of a spherical distribution of mass acts at any
distance from its surface as if the total mass is concentrated at its centre (Chandrasekhar
1995, 269-272). Furthermore, in Prop. 91, Book 1, he considered also the force acting
along the axis of any solid of revolution, and in Cor. 2 he applied the result to evaluate
the special case of an oblate ellipsoid which he needed to determine the eccentricity of the
earth due to its daily rotation ( see footnote 6).

In Book 3 of the Principia, Newton applied his mathematical theory of orbital dynamics
to planetary and lunar motion and to the motion of comets in order to provide evidence for
the universal law of gravitation - that the attractive gravitational force between two bodies
is proportional to the product of their masses and inversely proportional to the square
of the distance between them 12. He persuaded the Royal Astronomer, John Flamsteed,

12In ‘Rules of Reasoning in Philosophy’, Principia, Book 3, in Rule 3 Newton concluded
:

Lastly, if it universally appears, by experiments and astronomical observa-
tions, that all bodies about the earth gravitate towards the earth, and that
in proportion to the quantity of matter [mass] which they severally contain;
that the moon likewise, according to the quantity of its matter, gravitates
towards the earth; that on the other hand, our sea gravitates towards the
moon; and all the planets one towards another; and the comets in like
manner towards the sun; we must in consequence of this rule, universally
allow that all bodies whatsoever are endowed with a principle of mutual
gravitation.

Compare Newton’s formulation of universal gravitation with the earlier one of Robert
Hooke, who wrote,

That all Celestial Bodies whatsoever, have an attraction or gravitating
power towards their own Centers, whereby they attract not only their own
parts, and keep them from flying from them, as we may observe the Earth
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to provide him with the best available observational data at the time for the periods and
major axis of the planets, and for the Jovian and Saturnian satellites. Then he showed that
these observations were in good agreement with Keplers third law, Book 3, Phenomenon
2 - 4, which for circular motion he had considered some 20 years earlier as formulated in
Cor.6 of Prop.4, Book 1, (see Appendix)

If the periodic times are as the three half powers of the radii, the centripetal
force will be inversely as the squares of the radii.

In Prop. 15, Book 3, he extended this proof to elliptical motion, applying Cor.1 of
Prop.45, Book I, to show that the near immobility of the aphelia of the planets, Book 3,
Prop. 14, implied that the gravitational force between the planets and the sun satisfied the
inverse square law. This was Newton’s best proof for the inverse square law, because he
had shown that the smallest deviation from this law would give rise to a precession of the
planetary aphelia which over the centuries would have accumulated to give an observable
effect.

Newton was aware, however, that astronomical observations had shown that there were
deviations from Kepler’s laws in the motion of the planets and the moon. In the preface
to the Principia, he wrote:

But after I began to work on the inequalities of the motion of the moon,
and ...the motions of several bodies with respect to one another ...I thought
that publication should be put to another time so that I might investigate
these other things...

Remarkably, a large part of these investigations apparently took place during the time that
Newton was composing his book, when he developed methods to calculate the perturbation
of the solar gravitational force on the lunar motion around the earth, and the effects due
to the interplanetary gravitational forces on the motion of the planets around the sun.
In Prop. 45 he presented his simplest perturbation approximation for the lunar orbit by
assuming that it was a Keplerian elliptic orbit, but with its major axis rotating uniformly.
In characteristic fashion, first he solved the problem of obtaining the exact law of force
which would give rise to such an orbit, and found that this force was a linear combination
of inverse square and inverse cube forces . Then he determined the rotation rate of the
lunar apse by considering the effect of the component of the solar gravitational force along
the earth-moon radial distance averaged over a period. But this approximation gave a

to do, but that they do also attract all the other Celestial Bodies that
are within the sphere of their activity; and consequently that not only the
Sun and Moon have an influence upon the body and motion of the Earth,
and the Earth upon them, but that Mercury, also Venus, Mars Saturn and
Jupiter by their attractive powers, have a considerable influence upon its
motion as in the same manner the corresponding attractive power of the
Earth hath a considerable influence upon every one of their motions also
(Hooke 1674) (Nauenberg 1994a).
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precession of the major axis of the lunar ellipse of only half the observed rate. In the
first two editions of the Principia Newton was somewhat ambivalent about this large
discrepancy, and only in the third edition, which appeared in 1726, did he add a remark, in
Corollary 2 of Prop. 45, that “ the apse of the Moon is about twice as swift ” as the value
that he had calculated. This discrepancy became one the first major challenges for the
mathematicians and astronomers who studied the Principia, and it took another 20 years
before a solution to this problem was first found by Clairaut and the French mathematician
Jean le Rond d’Alembert.

The Reception of the Principia by the Mathematicians in the Continent

When Continental mathematicians and astronomers, primarily from Holland, Germany,
Switzerland, and France, first read the Principia, they had some difficulties understanding
Newton’s novel mathematical concepts, with its combination of geometrical quantities in
the tradition of Greek mathematics and his concept of limits of ratios and sums of infinites-
imals - quantities which become vanishingly small (Nauenberg 2010). After introducing
three “Laws of Motion”, Newton presented ten mathematical “Lemmas” on his geometrical
differential method of “ first and last ratios”. These lemmas constitute the basis for his
calculus, and he referred to them in the proof of his propositions. Except for Lemma 2 in
Book 2 of the Principia, Newton did not explain his analytic differential calculus in much
detail, and European mathematicians, who already had been introduced to an equivalent
calculus 13 by the German philosopher and mathematician, Gottfried Wilhelm Leibniz,
first had to translate Newton’s mathematical language into Leibniz’s language before they
could make further progress. Indeed, Leibniz was the first to express Newton’s formalism
for orbital motion in the form of a differential equation based on his calculus (Nauenberg
2010). Leibniz claimed to have achieved his results having only read a review of Newton’s
Principia, but in 1969 E.A. Fellman (1973) obtained a copy of Newton’s work which con-
tained abundant Marginalia by Leibniz, indicating that he had carefully studied the text
before undertaking his own work. Moreover, recently discovered manuscripts show Leibniz
preparatory work for his 1689 essay Tentamen de motuum coelestium causis based on a
reading of the Principia (Aiton 1995), 10) (Bertoloni Meli, 1991). But Leibniz obtained a
differential equation of motion for celestial objects that was remarkably original 14

13In 1696 the Marquis de l’ Hospital published Analyse des infiniment petits, based on
lectures about the calculus of Leibniz, given to him by Johann Bernoulli who he had hired
as his private tutor in mathematics.

14Applying Prop. 1 in Book 1 of the Principia, Leibniz derived an expression for the
second order differential ddr for the radial distance. This led him to a genuine discovery
which is not found in the Principia: that this differential is proportional to an effective
centrifugal force minus the central attractive force f(r). In modern notation Leibniz’s
result corresponds to the equation d2r/dt2 = h2/r3−f(r), where h = r2dθ/dt is a constant
corresponding to the angular momentum. For the case that the orbit is an ellipse he
found that f(r) = µ/r2, where µ is the strength of the gravitational interaction (Aiton
1960) (Aiton1995) (Bertoloni Meli 1991) (Guicciardini 1999). Leibniz, however, assumed
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Another mathematician who appied Leibniz’s version of the differential calculus was
Jacob Hermann, a member of a group around Jacob and Johann Bernoulli, two of Europe’s
leading mathematicians who had formed a school in Basel (Guicciardini 1999). Expressing
Prop. 1 and Prop. 2 in Book 1 of Newton’s Principia in the language of this calculus,
he obtained a differential equation for the motion of a body under the action of central
force. Then he gave a proof that conic sections where the only solutions for the case that
the central force varied inversely with the square of the distance from the center of force
(Herman 1710), (Nauenberg 2010) This was an important result, because in the first edition
of the Principia, in Cor. 1 to Prop. 13, Newton had asserted, without proof, that conic
sections curves were the unique solutions to orbital motion under inverse square forces.
Johann Bernoulli criticized Hermann’s solution for being incomplete( Hermann had left
out a constant of the motion), and then derived the elliptic orbit by solving, via a suitable
transformation of variables, the general integral for orbital motion in a central field force
given in Prop. 41 Book 1 of the Principia, for the special case of an inverse square force
(Bernoulli 1710), (Nauenberg 2010) Remarkably, Newton did not include this fundamental
solution in the Principia, giving rise to a gap that has caused considerable confusion in
the literature that remains up to the present time. Instead, Newton gave as an example
the orbit for an inverse cube force 15 16.

Bernoulli also communicated to Newton an error he had found in Prop. 10 of Book
2. In both cases Newton made corrections in the next edition of the Principia (1713)
without, however, acknowledging Bernoullis important contributions (Guicciardini 1999).
Some British mathematicians like David Gregory were able to contact Newton, and get
help from him to overcome obstacles in understanding the Principia, but this appears not
to have been possible for Continental mathematicians.

After Leibniz, the first Continental mathematician who undertook the reformulation
of Newton’s mathematical concepts into the language of Leibniz’s calculus, was Pierre
Varignon (Aiton 1960, 1955) (Bertoloni-Meli 1991) (Guicciardini 1999) . Varignon intro-
duced an alternative expression for a central force in terms of the curvature of the orbit18,
without being aware that Newton’s earliest understanding of non-circular orbital motion
was also based on curvature (Nauenberg 1994). In a cryptic note written in his 1664 Waste
book, Newton remarked that

without justification that h = µ= latus rectum of the ellipse, and he incorrectly attributed
Kepler’s area law to a property of celestial vortices which leads to a physically inconsistent
interpretation of his equation.

15Prop. 41, Cor. 3
16In Prop. 11-13 Newton gave a proof that if the orbit for a central force is a conic section, then the

force varies inversely as the square of the radial distance. Johann Bernoulli criticized the incompleteness of
Cor. 1 of Prop. 13, Book 1, where Newton claimed to give a proof to the solution of the inverse problem:
given the gravitational force to show that the resulting orbit is a conic section17

18Varignon (1701) called the radius of curvature ‘le rayon de Développé’, and obtained
his expression for the central force by recognizing that a small arc of the orbit corresponds
to that of a circle with this radius, called the osculating circle by Leibniz but originating
in the work of Huygens (Kline 1972) (Nauenberg 1996),
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If the body b moved in an ellipse, then its force in each point (if its motion in
that point be given) [can] be found by a tangent circle of equal crookedness
with that point of the ellipse (Herivel 1965, 130)

Here the word “crookedness” refers to curvature which is measured locally by the inverse
radius ρ of the tangent or osculating circle (as it was named later by Leibniz) at any
point on an ellipse. Curvature was also a mathematical concept that had been introduced
earlier by Huygens in his Horologium Oscillatorum (Huygens 1673) , (Nauenberg 1996)
Evidently, Newton was aware that the central force or acceleration a for non-uniform orbital
motion can be obtained from a generalization of the relation for uniform circular motion,
ac = v2/ρ, where v is the velocity, which he, and independently Huygens, had obtained
earlier (see Appendix). Then a = ac/cos(α) where α is the angle between the direction of
the central force and that of the radius of curvature. The problem, however, is that the
motion or velocity v, which is a variable along the orbit for non-circular motion because
then there is a tangential component of the central force, had to be known (Brackenridge
1995) , Brackenridge 2002 ). But 15 years later, Newton found a proof for the area law,
which implies that for any central force, the area swept by the radial line per unit time,
(1/2)vrcos(α) is a constant (proportional to the conserved angular momentum) and r
is the radial distance. By substituting this expression for v, Newton had an explicitly
expression for the central acceleration a ∝ 1/ρr2cos3(α). Indeed, for conical sections, the
quantity ρcos3(α) is a constant (the semi-latus rectum of an ellipse) which provided Newton
with a succint proof that for such orbits the force depends inversely on the square of the
radial distance (Nauenberg 1994a). This relation was also found by Abraham DeMoivre19

(Guicciardini 1999, 226), and applied by John Keill and Roger Cotes who were members
of the school of British mathematicians 20. In the first edition of the Principia, however,
the curvature expression for the force does not appear explicitly, although Newton applied
it in a few instance without any explanation 21, while in the second edition curvature is
discussed in a new Lemma, Lemma 11, and the curvature measure for force is derived as
corollaries to Prop. 6. Subsequently, Newton applied it to obtain “another solution” to
the fundamendal problem formulated in Prop. 11, Book 1,

Let a body revolve in an ellipse, it is required to find the law of the cen-
tripetal [central] force tending towards a focus of the ellipse.

According to Newton’s recollections, as told to DeMoivre in 1727,

19

After having found this theorem, I showed it to M. Newton and I was
proud to believe that it would have appeared new to him, but M. Newton
had arrived at it before me; he showed this theorem to me among his papers
that he is preparing for a second edition of his Principia Mathematica ...

20For a brief history of this important development see (Whiteside 1974, 548-549)
21Prop. 15, Book 2, and Prop. 26-29 Book 3.



12 THE RECEPTION OF NEWTON’S PRINCIPIA

In 1684 Dr. Halley came to visit him at Cambridge and after they had
been some time together, the Dr. asked him what the thought the Curve
would be that would be described by the Planets supposing the force of
attraction towards the Sun to be reciprocal to the square of their distance
from it. Sir Isaac replied immediately that it would be an Ellipsis, the Dr.
struck with joy and amazement asked him how he knew it, why said he,
I have calculated it, whereupon Dr. Halley asked him for his calculation
without delay. Sir Isaac looked among his papers but could not find it, but
he promised him to renew it, and then to send it to him. (Westfall 1995 ).

However, the solution which Newton eventually sent to Edmund Halley in a manuscript
entitled De Motu (Whiteside 1974), and that three years later he presented in the same
form in Prop. 11 of the Principia, treated instead the inverse to the problem posed by
Halley, namely given that the orbit is an ellipse, to prove that the central force obeys the
inverse square law, or as Newton formulated in 1687,

Let a body revolve in an ellipse; it is required to find the law of the cen-
tripetal force tending towards a focus of the ellipse (Cohen 1999, 462)

Relations with Bernoulli and his school were further aggravated when the notorious
priority dispute on the invention of the calculus erupted between Newton and Leibniz in
1711. By the 1740’s, serious reservations arouse regarding the general validity of the inverse
square law for gravitational force because of the failure of Newtons approximation of the
solar perturbation to account for the rate of precession of the lunar apside. One of the first
to question on this ground the validity of this law was the great mathematician Leonhard
Euler. He remarked that,

having first supposed that the force acting on the Moon from both the
Earth and the Sun are perfectly proportional reciprocal to the squares of
the distances, I have always found the motion of the apogee to be almost
two times slower than the observations make it: and although several small
terms that I have been obliged to neglect in the calculation may be able
to accelerate the motion of the apogee, I have ascertained after several
investigations that they would be far from sufficient to make up for this
lack, and that it is absolutely necessary that the forces by which the Moon
is at present solicited are a little different from the ones I supposed. (Waff
1995, 37).

He concluded that
all these reason joined together appear therefore to prove invincibly that the
centripetal force in the Heavens do not follow exactly the law established
by Newton (Waff 1995, 37).

Clairaut had reached similar conclusions and was delighted to find that he was in agreement
with Euler. He had also found

that the period of the apogee [i.e. the time it takes for the lunar apogee to
return to the same point in the heavens] that follows from the attraction
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reciprocally proportional to the squares of the distances, would be about
19 years, instead of a little less than 9 years which it is in fact (Waff 1995,
39)

a result that Newton had mentioned earlier in Prop. 45, Book 1. To account for this
discrepancy, Clairaut proposed that an additional force was also in effect which varied
with distance inversely as the fourth power, possible due to Cartesian vortices. Actually,
suggestions for possible correction to the inverse square gravitational law had been con-
sidered by Newton in Query 31 of his Opticks , but he did not want to publicize them.
Another mathematician, Jean le Rond d’ Alembert, arrived at the same discrepancy for the
motion of the lunar apogee, but in contrast to Euler and Clairaut, he did not questioned
the mathematical form of Newton’s gravitational law because of its successes in describing
other inequalities of the lunar motion. Ultimately, the French Academy of Sciences propose
a prize for the solution of this problem, and in 1749 Clairaut finally obtained a solution
without altering the inverse square force, by considering higher order contributions to the
solar perturbation, followed by d’ Alembert with a more careful analysis which gave the
same result. 22 (Waff 1995). Previously, similar solution had been obtained by Newton,
but it contained some errors (Nauenberg 2001a), and in a Scholium to Prop. 35, Book 3,
inserted only in the first edition of the Principia, he declared that

...These computations, however, excessively complicated and clogged with
approximations as they are, and insufficiently accurate we have not seen fit
to set out .

The details of Newton’s computations remained unknown until 1872 when they were found
among his papers in the Portsmouth Collection (Whiteside 1974, 508-538) (Nauenberg
2000) (Nauenberg 2001a)

The importance of Clairaut’s result can hardly be overestimated. In admiration Euler
declared in a letter to Clairaut that

. . . the more I consider this happily discovery, the more important it seems
to me. For it is very certain that it is only since this discovery that one
can regard the law of attraction reciprocally proportional to the squares of
the distance as solidly established, and on this depends the entire theory of
astronomy (Waff 1995, 46)

In 1748 the French academy of sciences chose for its prize contest a theory that would ex-
plain the inequalities in the motion of Jupiter and Saturn due to their mutual gravitational
interaction, which Newton had considered only semi-quantitatively in Prop. 13, Book 3 23

22The title that Clairaut chose for his winning essay was ‘Theory of the Moon Deduced
from the Single Principle of Attraction Reciprocally Proportional to the Squares of the
Distances’

23From the action of Jupiter upon Saturn “...arises a perturbation of the orbit of Saturn
at every conjuction of this planet with Jupiter , so sensible, that astronomers have been at
a loss concerning it” ( Cohen 1999, 818).
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This problem was much more difficult than the lunar case, and Euler was the first to deal
with it (Euler 1769), and now he declared that

... because Clairaut has made the important discovery that the movement of
the apogee of the Moon is perfectly in accord with the Newtonian hypothe-
ses ..., there no longer remains the least doubt about its proportions... One
can now maintain boldly that the two planets Jupiter and Saturn attract
each other mutually in the inverse ratio of the squares of their distance,
and that all the irregularities that can be discovered in their movement are
infallibly caused by their mutual action... and if the calculations that one
claims to have drawn from the theory are not found to be in good agree-
ment with the observations, one will always be justified to doubting the
correctness of the calculations, rather than the truth of the theory (Waff
1995, 46)

After missing an expected lunar eclipse, Tycho Brahe had discovered a bi-montly vari-
ation in the lunar speed, and Newton was able to account for this variation as an effect
of the solar gravitational force. In Prop. 28, Book 3, Newton introduced a novel frame
of reference where the earth is fixed at the center of a rotating frame with the period of
one year. In this frame the sun stands still when the eccentricity of the earth-sun orbit
is neglected. Then taking into account the solar gravitational force, Newton found an
approximate periodic orbit of the moon which accounted for the periodic of the variation
discovered by Brahe. In Prop. 29, Book 3, appropriately entitled ‘To find the variation of
the moon’, he calculated the amplitude of this variation, and found it in very good agree-
ment with Brahe’s observation. In his review of Newton’s work on lunar theory the great
French mathematician and astronomer, Pierre-Simon Laplace, singled out this result, and
remarked admiringly at Newton’s insightful approximations,

Such hypothesis in calculations ... are permitted to inventors during such
difficult researches 24

Reception of Newton’s gravitational theory for planetary and lunar
motion

Inspired by Newton’s work, Leohnard Euler introduced his rotating frame to calculate
the solar perturbation to the lunar motion (Euler 1772). Likewise, in 1836 this frame was
considered also by Gustaf Carl Jacobi, who gave a proof for the existence of a constant
of the motion in what became known as the restricted three body problem. Later, the
American astronomer George Hill also obtained periodic solutions in this rotating frame
(Hill 1783), and his work was extended by Henri Poincaré, which led him eventually to
his profound discovery of chaotic orbital motion in Newtonian dynamics (Poincare 1892
), (Barrow-Green 1991 ), (Nauenberg 2003b ).

24Ces hypothèses de calcul... sont permises aus inventeurs dans des reserches aussi
difficiles (Laplace 1825, 391)
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In twenty two corollaries to Proposition 66, Book 1, Newton described entirely in prose
his perturbations methods, but his detailed calculations remained unpublished (Nauenberg
2000) (Nauenberg 2001a). Here Newton considered gravitational perturbations to the
elliptical motion of a planet around the sun or the moon around the earth as a sequence of
impulses, equally spaced in time, which instantaneously alters the velocity of the celestial
body in its orbit without, however, changing its position when these impulses occur. In
Prop. 17, Book 1, Newton had shown how the orbital parameters - the eccentricity, and
the magnitude and direction of the principal axis of the ellipse - can be determined given
the velocity and position at a given time (initial conditions). Hence, these impulses lead
to periodic changes in the orbital parameters which are determined by the discontinuous
change in velocity after the impulse has taken place. In corollaries 3 and 4 of Proposition
17, Newton gave a succint description of his method of variation of orbital parameters .
These corollaries were added to later drafts of the Principia 25. indicating that Newton
had developed this method during the period when he was writing his book. In the limit
that the time interval between impulses is made vanishingly small, Newton’s perturbation
methods corresponds to the method of variational parameters developed much later by
Euler 26, Joseph Louis Lagrange and Pierre-Simon Laplace 27. Now this method is usually
credit to them.

Unpublished manuscript in the Porstmouth collection of Newton’s papers, first examined
in 1872 by a syndicate appointed by the University of Cambridge (Brackanbridge 1999)
reveal that Newton had intended to include a more detailed description of his perturbation

25In the initial revisions of the early manucript for the Principia, Prop. 17 contained
only Corollaries 1 and 2 (Whiteside 1974, 160–161)

26Starting with the equations of motion as second order differential equations in polar
coordinates, Euler assumes that the solution for the orbit is described by an ellipse with
time varying orbital parameters p,e and ω, where p is the semilatus rectum of the ellipse,
e is the eccentricity, and ω is the angle of the major axis. Then he obtained first order
differential equations for e and ω by imposing two constraints: that p = h2/µ, where h is
the angular momentuma, and that E = µ(e2 − 1)/2p where E is the time varying Kepler
energy of the orbit. In modern notation µ = GM where M is the sum of the mass of the
earth, and the moon and G is Newton’s gravitational constant (Euler 1769). It can be
readily shown that Euler’s constraints lead to the same definition of the ellipse described
geometrically by Newton in the Portsmouth manuscript ( Nauenberg 2000) (Nauenberg
2001a).

27Laplace obtained the differential equations for the time dependence of the orbital
parameters by evaluating the time derivate of the vector ~f = ~v × ~h − µ~r/r, where ~f is
a vector along the major axis of the ellipse with magnitude f = µe. The construction
of this vector was first given in geometrical form by Newton in Book 1, Prop. 17, and
in analytic form by Jacob Hermann and Johann Bernoulli (Bernoulli,1710) (Nauenberg
2010). Laplace’s derivation(Laplace 1822, 357-390) of the variation of orbital parameter
is in effect the analytic equivalent of Newton’s geometrical approach in the Portsmouth
manuscript (Nauenberg 2000) (Nauenberg 2001a)
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methods in the Principia, but neither the propositions and lemmas in these manuscripts
nor the resulting equations, which in effect are non-linear coupled differential equations for
the orbital parameters, appeared in any of its three editions (Nauenberg 2000) Nauenberg
2001a). But some of his results for the inequalities of the lunar motion appeared in a
lengthy Scholium after Prop. 35, Book 3, which includes numerical results obtained by
approximate solutions to his equations. In this Scholium, for example, Newton stated that

By the same theory of gravity, the moon’s apogee goes forwards at the
greatest rate when it is either in conjunction with or in opposition to the sun,
but in its quadratures with the sun it goes backwards; and the eccentricity
comes, in the former case to its greatest quantity; in the latter to its least by
Cor. 7,8 and 9 , Prop. 66, Book 1. And those inequalities by the Corollaries
we have named, are very great, and generate the principle which I call the
semiannual equation of the apogee; and this semiannual equation in its
greatest quantity comes to about 12o18′, as nearly as I could determine
from the phenomena 28 29.

28In Cor. 7 and 8, Prop. 66, Newton gave a qualitative explanation for this motion of
the moon’s apogee due to the perturbation of the sun, stating it was based on results given
in Book 1, Prop. 45, Cor. 1. However, these results were obtained for the case of radial
forces only, and are therefore strictly not applicable to the solar perturbation which is not
a purely radial force with respect to the earth as a center, and which depends also on the
angle ψ . According to the differential equation for the motion of the lunar apogee which
appears in the Portsmouth manuscript, ,his rate depends on the relative angle between
the moon’s apogee ω and the longitude θ of the sun, where ω − θ = ψ − φ. It reaches
a maximum value when ω − θ = nπ where n is an integer. and a minimum when n is
an odd integer divided by 2, in accordance with Cor. 8. In fact, substituting Newton’s
numerical values β = 11/2, one finds that the maximum rate of advance is 21.57′, and of
retardation 14.83′. This is in reasonable agreement with the values 23′ and 16 1/3′ given in
the original (1687) Scholium to Prop. 35 corresponding to β ≈ 6. In Cor. 9 Newton gave
a qualitative argument for the variability of the eccentricity, but there is no evidence that
he obtained this quantitative result from his “theory of gravity” . According to his theory
the maximum variability of the apogee is 15m/8 = 802′ instead of 12018′ as quoted in the
Scholium to Prop. 35. Although the lunar model of Horrocks was probably the inspiration
for his Portsmouth method, in the end Newton was able to account partially for this model
from his dynamical principles.

29These anomalies in the orbit of the moon around the earth had been a major challenge
to astronomers since Antiquity. Already by the second century B.C., Hipparchus had found
that the moon’s motion at quadrature deviated in longitude by over two and a half degree
from the predictions of the Greek model of epicyclic motion, although this model accounted
for the moon’s position at conjunction and opposition from the sun. Subsequently, Ptolemy
proposed the first mechanism to account for this anomaly, known as the evection, but his
mechanism also predicted a near doubling of the apparent size of the moon during its orbit
which is not observed. Nevertheless, Ptolemy’s lunar model was not challenged until the
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Newton’s lunar work was received with immense admiration by those who were able to
understand the profound mathematical innovations in his theory. An early reviewer of the
second edition of the Principia stated that

the computations made of the lunar motions from their own causes, by
using the theory of gravity, the phenomena being in accord, proves the
divine force of intellect and the outstanding sagacity of the discoverer

Laplace asserted that the sections of the Principia dealing with the motion of the moon are
one of the most profound parts of this admirable work 30, and the British Astronomer Royal,
George Airy, declared “that it was the most valuable chapter that has ever been written on
physical science” (Cohen 1972) . The French mathematician and astronomer François Fèlix
Tisserand in his Traité de Mécanique Céleste (Tisserand 1894) carefully reviewed Newton’s
lunar theory as it appeared in the Principia, and also compared some of Newton’s results
in the Portsmouth manuscript with the results of the variation of parameters perturbation
theory of Euler, Laplace and Lagrange. For an arbitrary perturbing force, Tisserand found
that Newton’s equation for the rotation of the major axis of the ellipse was correct to
lowest order in the eccentricity of the orbit, while his application to the lunar case differed
only in the numerical value of one parameter, which Newton gave as 11/2, instead of the
correct value of 5 (Nauenberg 2001a) In particular, Tisserand concluded that

Newton derives entirely correctly that the average annual movement of
the apogee is 38051′51”, while the one given in the astronomical tables
is 40041′5” 31

D’Alembert, however, doubted whether some of Newton’s derivation were really sound,
and complained that

there are some that M. Newton said to have calculated with the theory of
gravitation, but without letting us know the road that he took to obtain

15-th century when the Arab astronomer Ibn-al Shatir develop and alternative mechanism
for the lunar motion which was later adopted by Copernicus. Their model accounted
for the evection without introducing the large unobserved variations of the lunar size in
Ptolemy’s model. In the 17-th century alternative models where developed by Tycho Brahe
and Kepler who incorporated his law of areas for planetary motion into his lunar model. In
1640, Jermy Horrocks refined Kepler’s model further predicting correctly the inequalities
in the distance of the moon from the earth. These are some of the additional inequalities
that Newton was also able to demonstrate to be caused by the gravitational force of the
sun acting on the moon (Nauenberg 2001b)

30Parmi les inégalités da mouvement de la Lune en longitude, Newton n‘a développé que
la variation. La mèthode qu’ il suivie me parait être une des choses le plus remarquables
de l’Ouvrage des Principes (Laplace 825, 409)

31Newton dèduit, tout à fait correctement ...que le mouvement moyen annuel de l’apogèe
est de 38051′51”, tandis que celui qui est donne dans les Tables astronomiques es de 40041′5”
(Tisserand 1894, 45)
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them. Those are the the ones like 11′49” that depend on the equation of
the sun’s center 32.

Here, d’Alembert was referring to Newton’s calculation, in the Scholium mentioned previ-
ously, of the annual equation of the mean motion of the moon which depends on the earth’s
eccentricity ε in its orbit around the sun. Newton had taken ε equal to 16 7/8 divided by
1000, and D’Alembert may have been aware that the amplitude of this perturbation is
3εm = 13′ where m is the ratio of the lunar sidereal period to a period of one year.478
Hence, although in this Scholium Newton had stated that his results had been obtained by
“his theory of gravity”, it appears that he adjusted some of the perturbation amplitudes
to fit the observational data .

For the next two centuries after the publication of the Principia, Newton’s approach to
what became known as the three body problem33 in dynamical astronomy stimulated the
work of mathematicians and astronomers, and this problem remains a challenge up to the
present time 34 . By the late 1700’s Lagrange and Laplace had written major treatises
on analytic mechanics (Lagrange 1811), and celestial mechanics (Laplace 1878) containing
the mathematical progress that had been made. There is an often repeated tale 35 that
Napoleon once asked Laplace why God did not appear in his work, and that Laplace
famously responded “I didn’t need that hypotheses”, but in print he declared that

These phenomena and some others similarly explained, lead us to believe
that everything depends on these laws [the primordial laws of nature] by
relations more or less hidden, but of which it is wiser to admit ignorance,
rather than to substitute imaginary causes solely in order to quiet our un-
easiness about the origin of the things that interest us (Morando 1995,
144)36.

32en est quelques-unes que M. Newton did avoir calculées par la Theorie de la gravitation,
mais nous apprendre le chemin qu’il a pris pour y parvenir. Telle son celles de 11’ 49” qui
dépend de l’ équation du centre du soleil.

33Given the initial conditions (position and velocities ) for three celestial bodies moving
under the action of their mutual gravitational attraction, to determine their motion at all
times in the future.

34For example, in 1772 Lagrange discovered an exact solution of the three body problem
where each of the celestial bodies move in elliptic orbits with the same period, and with a
common focus located at their center of mass. The stability of these orbits, however, was
not examined fully until much later, first by Routh (1875) for the special case of circular
orbits, and later for elliptic orbits by Danby (1964). These studies were restricted to
linear instabilities, and a non-linear instability analysis has been undertaken only recently
(Nauenberg 2002).

35Se non è vero, è ben trovato.
36Ces phènoménes et quelques autres semblablement expliqués autorisent à penser que

tous dépendent de ces lois, par des rapport plus ou moin cachés, mais dont il es plus sage
d’avouer l’ignorance que d’y substituer des cause imaginées par le seul besoin de calmer
notre inquiétude sur l’origine des choses qui nous intéresent (Laplace 1835, 478).
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Newton claimed God needed to interfere from time to time in order to maintain the stability
of the solar system, but Laplace asserted that he had been able to give a mathematical
proof of this stability. Later, however, this proof was shown to be flawed 37 by the work of
Henri Poincarè (1892).

The overall impact of Newton’s Principia in astronomy was best summarized by Laplace’s
conclusion,

This admirable work contains the germs of all the great discoveries that
have been made since about the system of the world: the history of its
development by the followers of that great geometer will be at the same
time the most useful comment on his work, as well as the best guide to
arrive at knew discoveries 38

Acknowledgements. I would like to thank Niccolo Guicciardini for many valuable com-
ments. For the Introduction, I am particularly indebted to M. Feingold’s account in
The Newtonian Moment, Isaac Newton and the making of modern culture (Feingold, 2004).

Appendix, Newton’s moon test. Newton’s assumption that the inverse square law
for gravitational forces applies on the surface on the earth, requires the relation am/g =
(re/rm)2 , where am is the radial acceleration of the moon towards the earth, g is the
gravitational acceleration at the surface of the earth, rm is the radius of the moon’s orbit,
and re is the radius of the earth. Since Newton had found that am = 4π2rm/T

2
m, he

tested the inverse square law by calculating the ratio (g/2)/dm, where g/2 is the distance
a body falls in one second on the surface of the earth, and dm = am/2 = 2π2rm/Tm is
the corresponding distance that the moon “ descends towards the earth in one second”.
Pendulum experiments had established that g = 32 feet/ sec2, but to obtain dm, Newton
first had to calculate de = 2π2re/T

2
e , which is the corresponding distance of fall for a body

on the surface of the earth co-rotating with the earth’s period Te of one day.
Taking for the earth’s radius re = 3500 miles, and assuming that a mile is 5000 feet, he

obtained de = 5/9 inches, and (g/2)/de = 345.6 which he rounded to 350. Huygens had
carried out a similar calculation, but taking a different value of the earth’s radius, re = 3711
miles, and g = 27.33 feet/ sec2. he obtained for this ratio the value 265 (Huygens 1929),
while the correct value is 290. This result answered the long standing question why, if the
earth was spining about its axis once a day, objects on its surface do not fly off:

The force of gravity is many times greater that what would prevent the
rotation of the earth from causing bodies to recede from it and raise into
the air (Herivel 1965, 196)

37Laplace’s proof that secular variations of the mean solar distances of the planets do
not occur were based on perturbation expansions up to third order in the eccentricities,
but these expansion were shown not to be convergent.

38Cet admirable Ouvrage contient les germes de toutes les gandes dècouvertes qui ont ètès
faits depuis sur le système de monde: l’histoire de leur développement par les successeurs
de ce grand géometrè serait à la fois le plus utile commentaire de son Ouvrage, ce le meilleur
guide pur arriver à de novelles dècouvertes.
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Since de/dm = (re/rm)(Tm/Te)2, where Tm/Te = 27.3216, and rm/re ≈ 60 which was
already measurd by Greek astronomers, one obtains de/dm=12.44 ( Newton rounded it to
12.5). Hence, (g/2)/dm = 16(9/5)12.5 = 4320 which differs appreciable from the expected
value (rm/re)2 ≈ 3600. Newton’s only comment about this discrepancy was that the force
of gravity at the surface of the Earth

is 4000 and more times greater than he endeavor of the Moon to recede
from the Earth,

but he must have been gravely disappointed with this result. The reason for the failure
of Newton’s early moon test is that in his calculations he had used an incorrect value
for the radius of the earth based on a value of about 61 English miles per degree of
latitude, and also that he had assumed that a mile corresponds to 5000 feet instead of
the correct value 5280 ( in this manuscript Newton stated that “ 1/30 of a mile is 500/3
feet”). Apparently he did not become aware of his errors until 1683, when he substituted
in his relation a much better value for the earth’s radius re obtained in 1669 by Picard
from his measurement for a degree of latitude of 69.2 English miles (see Prop. 19, Book
3). This measurement gives re = 3965 miles, close to the modern value. In this case
(g/2)/dm = 4320(61/69.2)(5000/5280) = 3606, in excellent agreement with the result
predicted by Newton’s theory.
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