
1

Robert Hooke’s Seminal Contribution 
to Orbital Dynamics 

Michael Nauenberg*

During the second half of the seventeenth century, the outstanding problem in astronomy was to
understand the physical basis for Kepler’s laws describing the observed orbital motion of a planet
around the Sun. Robert Hooke (1635–1703) proposed in the middle 1660s that a planet’s motion
is determined by compounding its tangential velocity with its radial velocity as impressed by the
gravitational attraction of the Sun, and he described his physical concept to Isaac Newton
(1642–1726) in correspondence in 1679. Newton denied having heard of Hooke’s novel concept of
orbital motion,but shortly after their correspondence he implemented it by a geometric construction
from which he deduced the physical origin of Kepler’s area law, which later became Proposition
I, Book I, of his Principia in 1687. Three years earlier, Newton had deposited a preliminary draft
of it, his De Motu Corporum in Gyrum (On the Motion of Bodies), at the Royal Society of Lon-
don, which Hooke apparently was able to examine a few months later, since shortly thereafter he
applied Newton’s construction in a novel way to obtain the path of a body under the action of an
attractive central force that varies linearly with the distance from its center of motion (Hooke’s
law). I show that Hooke’s construction corresponds to Newton’s for his proof of Kepler’s area law
in his De Motu. Hooke’s understanding of planetary motion was based on his observations with
mechanical analogs. I repeated two of his experiments and demonstrated the accuracy of his obser-
vations. My results thus cast new light on the significance of Hooke’s contributions to the devel-
opment of orbital dynamics, which in the past have either been neglected or misunderstood.
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Introduction

One of the most fascinating questions in the history of science concerns the role that
Robert Hooke (1635–1703) played in the development of dynamics and the theory of
gravitation during the seventeenth century, which culminated in Isaac Newton’s mas-
terpiece, the Principia in 1687.1 Hooke was one of the most prolific and inventive sci-
entists of all times, and he made fundamental contributions to virtual all branches of
science;2 one third of the fifteen volumes of Robert T. Gunther’s Early Science in
Oxford are dedicated to his work.3

Despite Hooke’s profound influence, however, particularly on Newton’s develop-
ment of orbital dynamics, he was nearly completely forgotten after his death in 1703,
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and remained unknown until around the turn of the 20th century.* Ernst Mach, in his
influential book of 1883, The Science of Mechanics, devoted only a few lines to Hooke,
although he perceptively stated that “Hooke really approached nearest to Newton’s
conception, though he never completely reached the latter’s altitude of view.”4 Ten
years later, W.W. Rouse Ball published some of the correspondence between Hooke
and Newton (1642–1726),5 and the subsequent discovery of two additional letters of
Hooke, which were published by Jean Pelseneer and Alexandre Koyré,6 initiated a
reappraisal of Hooke’s contributions to mechanics that continues to the present time.7

René Dugas, in contrast to Mach, recognized Hooke’s crucial role in his book of 1958,
Mechanics in the Seventeenth Century,8 but some recent accounts of the development
of mechanics still ignore Hooke’s significant contributions. Most physicists and mathe-
maticians still remain unaware of them, as can be seen by reading modern textbooks
or journals that cover classical mechanics, where Hooke is mentioned only in connec-
tion with his eponymous law of elasticity.9

During the past few years, however, a number of books and articles have appeared
that describe Hooke’s many contributions to science, and also his major role in the
reconstruction of London after the Great Fire of 1666.10 There now appears to be con-
sensus among historians of science that Hooke’s physical explanation for the orbital
motion of planets – “compounding the celestiall motions of the planetts of a direct
motion by the tangent & an attractive motion towards the centrall body”11 – had an
influence on Newton’s work that culminated in the publication of his Principia. Hooke
communicated his ideas on orbital motion to Newton in a letter in 1679 and, according
to one of Newton’s most outstanding biographers, Richard S. Westfall:

Newton’s papers reveal no similar understanding of circular motion before this let-
ter. Every time he had considered it, he had spoken of a tendency to recede from the
center, what [Christiaan] Huygens [1629–1695] called centrifugal force; and like oth-
ers who spoke in such terms, he had looked upon circular motion as a state of equi-
librium between two equal and opposing forces, one away from the center and one
toward it. Hooke’s statement treated circular motion as a disequilibrium in which an
unbalanced force deflects a body that would otherwise continue in a straight line. It
was not an inconsiderable lesson for Newton to learn.12

But there is considerable confusion in the literature as to exactly what the “lesson” was
that Newton learned from Hooke. In a letter to Edmond Halley (1656–1742) on June
20, 1679,13 Newton vehemently denied that he had learned anything form Hooke,
although he admitted, in one of his unpublished autobiographical manuscripts, that:

In the end of the year 1679 in answer to a Letter from Dr Hook … I found now that
whatsoever was the law of the forces wch kept the Planets in their Orbs, the areas
described by a Radius drawn from them to the Sun would be proportional to the
times in wch they were described. And by the help of these two Propositions I found
that their Orbs would be such Ellipses as Kepler had described.14

* Symtomatic of the neglect of Hooke and his legacy is that he is virtually alone among the great
scientists of the past for whom no extant portrait exists.

Nauenberg 226  7.11.2004  11:53 Uhr  Seite 2



Vol. 7 (2005)   Hooke’s Contribution to Orbital Dynamics 3

To understand the influence of Hooke’s concept of orbital motion on Newton, we
must know how Newton viewed orbital dynamics prior to Hooke’s letter to him in
1679. Newtonian scholars commonly conclude that Newton’s crucial step thereafter
was to switch from a traditional view of circular motion as giving rise to a centrifugal
force or tendency to recede from the center, to the concept of a centripetal force
directed toward the center.* As I have shown, however, this is misleading in view of
Newton’s already profound albeit incomplete understanding of orbital motion at that
time.15

In the following sections, I first describe Newton’s early development of orbital
dynamics as based on his “Waste Book” of 1664 and on his letter of December 13, 1679,
to Hooke. I then present Hooke’s formulation of the physical principles of orbital
motion for central forces and analyze his recently discovered diagram of 1685 for the
motion of a body under the action of a central force that varies linearly with the dis-
tance.16 I show graphically that it implements his dynamical principles in a way very
similar to Newton’s description of his proof of Kepler’s area law in his De Motu Cor-
porum in Gyrum (On the Motion of Bodies) of 1684,17 the preliminary draft of his Prin-
cipia. I next present further background on the development of Hooke’s physical ideas,
which were based on mechanical analogs. I repeated Hooke’s experiments on a coni-
cal pendulum and on a ball rolling inside an inverted cone, finding both to agree with
Hooke’s observations. I close with a summary and conclusions.

Newton’s Theory of Orbital Motion Prior to Hooke’s Letter of 1679 

René Descartes (1596–1650) illustrated the traditional view of circular motion in 1644
by considering a stone rotating in a sling (figure 1).18 If the stone is freed at point A,
then it would move along the tangent to the circle from point A to point C, but instead
the sling constrains it to move along a circular path to point B. The “tendency” of the
stone to recede radially is felt by the person’s hand at the center, since the stone exerts
a force that depends on its weight and velocity and on the length of the sling. The mag-
nitude of this force was not known quantitatively until Huygens and somewhat later
Newton showed that it is proportional to the radial acceleration,19 which is equal to the
square of the velocity of the stone divided by the length of the sling.

Prior to 1679, Newton based his description of the orbital motion of a body under
the action of a central force on a generalization of the properties of circular motion,20

compounding its orbital velocity along the tangent with a change of velocity perpen-
dicular to this direction, whereas Hooke considered its total change in velocity direct-
ed toward the center of force. Newton thought of orbital motion in this way at least as
early as 1664, when he wrote in his “Waste Book” that, “If the body … moved in an

* For example, I. Bernard Cohen claims that, “With regard to circular or general curved orbital
motion,… Newton was still [in 1679] under the spell of Cartesian physics and was thinking about
centrifugal rather than centripetal forces,or rather endeavors.Thus, in the case of orbital motion,
he was contemplating a radial displacement that was tangentially directed outward, away from
the center, rather than the more fruitful concept of a radial displacement inward.” See Cohen
and Whitman, The Principia (ref. 1), pp. 76–77.
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Ellipsis, then its force in each point (if its motion [velocity] in that point bee given) may
bee found by a tangent circle of Equall crookednesse with that point of the Ellipsis.”21

Newton equated force with acceleration, and by a “circle of equal crookednesse”
(his word for curvature) he meant the osculating circle (as Gottfried Leibniz
[1646–1716] called it thirty years later) at a point on the ellipse. Newton evidently was
applying his concept of radial acceleration for circular motion, with the radius being
the radius of curvature at a point on the ellipse. For noncircular motion, there is a com-
ponent of acceleration perpendicular to the orbit, but then the center of curvature and
the center of force do not coincide and the velocity along the orbit is not constant,
because there is a component of the force tangential to the orbit that produces a tan-
gential acceleration. Thus, Newton required, as he stated, that the motion or velocity at
a point on the ellipse “bee given.” Newton discovered how to calculate this velocity by
Kepler’s area law (or what we now call conservation of angular momentum), which was
the essential missing link in his analysis, only after he received Hooke’s letter of 1679.

Further evidence that the lesson that Newton learned from Hooke was not simply
to switch from a centrifugal to a centripetal representation of force, as some Newton-
ian scholars have claimed, can be found in a letter that Newton wrote to Hooke on
December 13, 1679.22 In its corner he drew a diagram (figure 2) that shows he was able
to compute “by points quam proximè” (approximately) the orbit of a body under the
action of a constant central force (see Appendix). His text indicates that he also under-
stood very well the changes that would occur in this orbit if the force increases toward
the center, as I have discussed in detail elsewhere.23 Moreover, Newton continued to
argue in terms of his concept of centrifugal force long after 1679. For example, follow-
ing some arguments with John Flamsteed (1646–1719), the first Astronomer Royal,

Fig. 1. Descartes’s illustration of 1644 of the traditional view of circular motion as a “tendency to
recede from the center.” Source: Descartes, Principles of Philosophy (ref. 16), plate ii, p. 290.
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Newton explained in a letter to James Crompton* in April 1681 that the orbit of a
comet around the Sun is determined by “the vis centrifuga [centrifugal force] at C [per-
ihelium] overpow’ring the attraction & forcing the Comet there notwithstanding the
attraction, to begin to recede from ye Sun.”24 In fact, Newton never abandoned his con-
cept of orbital dynamics based upon his curvature approach,25 and in Book 3, Proposi-
tion 28, of his Principia he applied it in combination with Kepler’s area law to obtain a
remarkable solution of the effect of solar perturbation on the motion of the Moon
around the Earth.26 But he did not explain his curvature approach in the first edition
of his Principia of 1687; it appeared as an alternate method for solving this problem
only in the second and third editions of 1713 and 1726. As a consequence, his early cur-
vature approach has been regarded erroneously as his more mature development of
orbital dynamics.27

In Newton’s curvature approach, Kepler’s area law (or conservation of angular
momentum) had remained hidden;28 he discovered its physical origin – that the acting

Fig. 2. Newton’s diagram in his letter to Hooke of December 13, 1679, showing the orbit of a body
moving under the action of a constant attractive force directed toward the center C. The body is
launched at A with a velocity in the direction Am and moves along the trajectory AFOGHIKL. There
is an error in this diagram in the magnitude of the angle between the successive “apogees” A, H, and
K, leading historians of science to believe that Newton did not know how to calculate this orbit at this
time, but I have shown that Newton made this error inadvertendly when he drew this diagram and did
not err in his actual computation of the orbit; see Nauenberg,“Newton’s Early Computational Method”
(ref. 14). Courtesy of the British Library.

* James Crompton (1648–1694), an astronomer who was elected as a Fellow of Jesus College,
Cambridge, in 1672.
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force must be directed toward a fixed center – only after implementing Hooke’s way
of “compounding” velocities geometrically for a general orbit.29 Newton had consid-
ered an approach similar to Hooke’s in his earliest work on dynamics, as shown in his
“Waste Book” of 1664 (figure 3),30 but he evidently did not consider extending it to
arbitrary motion until after Hooke prompted him to do so. Kepler’s area law was cru-
cial to Newton’s development of orbital dynamics, because it permitted him to express
the time variable in purely geometrical terms, since “The areas which bodies [planets]
made to move in orbits describe by radii drawn to an unmoving center of force lie in
unmoving planes and are proportional to the times.”31 Newton’s proof of Kepler’s area
law is one of the cornerstones of his Principia, which he presented in Book 1, Proposi-
tion 1, Theorem I.

Hooke’s Formulation of the Principles of Orbital Dynamics

Hooke’s profound physical intuition, which was guided by his numerous experiments
(thought to be on the order of several hundred), led him during the middle 1660s to a
correct qualitative formulation of the principles of dynamics as applied to celestial
mechanics. He stated that the orbital motion of a planet is determined by “compound-
ing” its inertial motion along a straight line with an attractive motion toward the Sun
impressed by the gravitational attraction of the Sun. Furthermore, in 1674 he formu-

Fig. 3. Newton’s impulse diagram for circular motion, showing his polygonal approximation of circu-
lar motion for a body under the action of a series of periodic impulses directed toward a fixed center
at n. Each tangential displacement af, bg, and ch between impulses of length vδt, where v is the initial
velocity and δt is the time bewteen impulses, is compounded with a corresponding perpendicular dis-
placements fb, gc, and hd due to the impulses, to obtain a polygonal trajectory abcd … with vertices on
a circle with center at n and radius bn. It is then straightforward to show that in the limit of vanishing
δt the acceleration toward the center n is 2fb/(δt)2, where v = ab/δt is the velocity of the body and r =
bn is the radius of the circular orbit. Source: Whiteside, “Prehistory” (ref. 17), p. 13.
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lated a concept of universal gravitational attraction,33 and he later deduced the
inverse-square law based on his conjecture that gravity originates in periodic pulses
from matter, in analogy to the emission of light and sound.34 While crediting Hooke
with some of these ideas and acknowledging his influence on Newton, historians of sci-
ence generally have concluded, with few exceptions,35 that Hooke was unable to obtain
a quantitative or mathematical formulation of his principles of dynamics.

This judgment echoes the charges that Newton leveled against Hooke in a letter to
Halley of June 20, 1686, that:

Borel* did something in it & wrote modestly, he [Hooke] has done nothing & yet
written in such a way as if he knew & had sufficiently hinted all but what remained
to be determined by ye drudgery of calculations & observations, excusing himself
from that labour by reason of his other business: whereas he should rather have
excused himself by reason of his inability. For tis plain by his words he knew not how
to go about it. Now is not this very fine? Mathematicians that find out, settle & do
all the business must content themselves with being nothing but dry calculators &
drudges & another that does nothing but pretend & grasp at all things must carry
away all the invention as well of those that were to follow him as of those that went
before.… For as Borell wrote long before him that by a tendency of ye Planets
towards ye sun like that of gravity or magnetism the Planets would move in Ellipses,
so Bullialdus** wrote that all force respecting ye Sun as its center & depending on
matter must be reciprocally in a duplicate ratio of ye distance from ye center.…36

Newton’s diatribe followed after he had heard that Hooke had claimed that Newton
had plagiarized from him the discovery of the inverse-square law of the gravitational
force. Halley, in his capacity as editor of the Principia, had tactfully written to Newton
on May 22, 1686, that:

Mr Hook has some pretensions upon the invention of ye rule of the decrease of
Gravity, being reciprocally as the squares of the distances from the Center. He sais
you had the notion from him, though he owns the Demonstration of the Curves gen-
erated therby to be wholly your own; how much of this is so, you know best.…37

Newton also had criticized Hooke’s claim that the inverse-square law implied that the
planets move in elliptical orbits around the Sun, pointing out that Hooke had conclud-
ed incorrectly that their velocities in such orbits vary inversely with their distances
from the Sun. What Newton conveniently forgot in his effort to discredit Hooke is that
in Hooke’s letter to him in 1679, Hooke had correctly described some of the principles
of orbital motion that led Newton to his discovery of Kepler’s area law, and to a deep-

* Giovanni Alfonso Borelli (1608–1679), Italian physicist and astronomer who published Theo-
ricæ Mediceorum Planetarum ex causis physicis deductæ in 1666 in which he supposed that a
centrifugal tendency acted on a planet and counterbalanced the gravitational attraction of the
Sun.

** Ismael Bouillaud (Ismaelis Bullialdi [Bullialdus], 1605–1694), French librarian, priest, and emi-
nent astronomer and mathematician who published Astronomia Philolaica in 1645 based upon
Copernicus’s and Kepler’s discoveries.

Nauenberg 226  7.11.2004  11:53 Uhr  Seite 7



Michael Nauenberg Phys. perspect.8

er understanding of orbital dynamics.38 Newton later referred to Hooke in his System
of the World, the less mathematical treatment of Book III of the Principia, lumping him
together with other well-known natural philosophers whose speculations about the
motion of the planets were wrong: “The later philosophers pretend [my italics] to
account for it either by the action of certain vortices, as Kepler and Descartes; or by
some other principle of impulse or attraction, as Borelli, Hooke, and others of our
nation.”39

Actually, Hooke arrived at his remarkable physical insights in dynamics by careful
observations of mechanical analogs of celestial motion, and not merely by guessing.
With the notable exceptions of Johannes Lohne and V.I. Arnol’d,40 many Newtonian
scholars have repeated the misconception that Hooke’s discoveries of the principles of
mechanics and the inverse-square law of gravitational force were pure guesses, or
somehow based on incorrect mathematical reasoning. A. Rupert Hall, for example, has
stated that, “Other philosophers of mechanics, such as Marcus Marci* and Robert
Hooke, were just as deeply embroiled in imprecise notions and perilous analogies as
was Borelli”;41 and further, that:

One sees his [Newton’s] point: Hooke had been almost as vague as Borelli, and cer-
tainly could never have produced dynamical demonstrations applicable to planetary
motion: yet we may allow that the idea of a terrestrial projectile becoming a satel-
lite in elliptical orbit was Hooke’s own, though a “guess” indeed as Newton rightly
called it.42

This sentiment, that Hooke did not have any sound basis for his physical principles,
echoes the words of the eighteenth-century French mathematician Alexis-Claude
Clairaut (1713–1765) who, although considered to be a supporter of Hooke, stated that
Hooke’s examples “serve to show what a distance there is between a truth that is
glimpsed and a truth that is demonstrated.”43

Hooke’s dynamical principles, however, were from the outset grounded on careful
experiments and observations of mechanical systems that could serve as analogs of
celestial dynamics. The best-documented example is that of the motion of a circular or
conical pendulum,44 but there also is evidence that he studied the dynamics of balls
rolling inside various surfaces of revolution.These mechanical systems serve as approx-
imate analog models for different central attractive forces. Indeed, for a long time
Hooke had been applying the maxim “That Nature seems to take similar Ways for pro-
ducing similar Effects; without granting of which we cannot reason or make any Con-
clusion from similar Operations.”45 He cautions, however, that “Omne simile non est
idem [Everything that looks the same is not equal].”46

Patri J. Pugliese has recently reproduced a remarkable diagram (figure 4),47 which
is part of an unfinished and unpublished manuscript that Hooke wrote, entitled “The

* Marcus Marci (1595–1667), Bohemian physician and professor of medicine at the University
of Prague (1620–1660) who published De proportione motus in 1639 describing his theory and
experiments on collisions of bodies, and Thaumantias liber de arcu coelesti in 1648 reporting his
researches on optics.
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Laws of Circular Motion,” which is deposited in the Wren Library, Trinity College,
Cambridge. It shows a graphical construction of a segment of an orbit for a body mov-
ing in a central field of force, and on a page associated with it is inscribed the date Sep-
tember 1, 1685. This date, as we shall see, is important in relating it to Newton’s De
Motu,48 the preliminary draft of his Principia, which was registered by Halley at the
Royal Society in November 1684. Hooke’s graphical construction shows a body mov-
ing under the action of an attractive force that varies linearly with the distance from
the center of its orbit, and in the handwritten text associated with it he states that its
orbit is that of an ellipse. Pugliese has analyzed it only for the special case of circular
motion and has implied that Hooke failed to generalize his construction to noncircular
motion, concluding that “Hooke claims, but certainly does not demonstrate, [its orbit]
to be elliptical.” Pugliese asserted earlier that, “There can be no doubt that Hooke

Fig. 4. Hooke’s September 1685 geometrical construction and graphical evaluation of the orbital
motion of a body in a central field of force that varies linearly with distance. The original is in Hooke’s
manuscripts in Trinity College Library, Cambridge, Ms O.11a.1/16. Reproduced by permission of the
Master and Fellows of Trinity College.
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could not have taken this [dynamical] principle so far [as Newton],” and he comment-
ed further that Hooke “does not seem to have ever come to a full appreciation of the
magnitude of the step from his ideas to Newton’s achievement.”49

Pugliese’s comments and conclusions thus seem to reinforce the conventional wis-
dom among historians of science about Hooke’s mathematical limitations. I have car-
ried out a detailed analysis of Hooke’s diagram, however, which leads to very different
conclusions.50 Hooke’s graphical solution for the orbit of a body moving in a central
field of force that varies linearly with the distance from the center of its orbit is based
precisely on the same geometrical construction that Newton developed the preceding
year in Theorem 1 of his De Motu, and which then became Book I, Proposition I, The-
orem I, two years later in his Principia. Hooke’s geometrical construction is effective-
ly the mathematical formulation of the principles of dynamics that he had been propos-
ing during the previous twenty years. Moreover, contrary to Pugliese’s assertion, I have
shown that Hooke in his diagram gives several different graphical demonstrations that
the vertices of the resulting polygonal orbit lie on an ellipse, and that this is an exact
property of his construction, which is equivalent to an affine transformation of a circle
into an ellipse.51

While the extent to which members of the Royal Society were aware of Newton’s
De Motu is uncertain,* at least two letters exist indicating that Hooke appears to have
seen it shortly after it was registered at the Royal Society in November 1684. Thus, a
month later Flamsteed wrote to Newton that,“I am obliged by your kind concession of
ye perusall of your papers, tho I beleive I shall not get a sight of them till our common
freind [friend] Mr Hooke & the rest of the towne have beene first satisfied.”52 And on
June 29, 1686, Halley wrote to Newton that “it [De Motu] has been enterd upon the
Register books of the Society as all this past Mr Hook was acquainted with it.…”53

Assuming that Hooke saw and read Newton’s De Motu, he would have recognized
that Newton had implemented geometrically his dynamical principle of compounding
a tangential velocity with an impressed radial acceleration due to a center of attrac-
tion.** Thus, Newton had drawn a diagram on the first page of his De Motu (figure 5)
that describes a geometrical construction that embodies Hooke’s dynamical principles
for a body undergoing a sequence of impulses under the action of a central force. In it,

* Pugliese believes that Newton’s De Motu was not “generally known to members of the Royal
Society prior to the appearance of his Principia,” the “principal argument” being “the total lack
of discussion of its contents”; see Pugliese,“Hooke” (ref. 16), p. 203. Likewise, Mordechai Fein-
gold, who is familiar with the history of the Royal Society, also believes that Halley did not cir-
culate Newton’s De Motu to members of the Royal Society; private communication, January 9,
2004.

** When the Principia was published in 1687, most of its readers, among whom were some of the
best mathematicians in Europe, had considerable difficulties in understanding its contents and
in particular the significance of Kepler’s area law.For example, the French mathematician Pierre
Varignon (1654–1722) assumed different laws for the time evolution of orbital motion, such as
those proposed by the English astronomer Seth Ward (1617–1689) and the Italian-French
astronomer Gian Domenico Cassini (1625–1712); see Guicciardini, Reading the Principia (ref.
1), pp. 202–205.Therefore it is revealing that Hooke recognized that Newton’s proof of Kepler’s
area law in his De Motu was based upon his own principles of planetary motion.
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the trajectory ABCDEF is determined by the initial tangential velocity described by
the length AB and by the impressed deflections cC, dD, eE, and fF that are directed
toward the center of force at S, or as Newton wrote:

Let the time be divided into equal intervals, and in the first interval of time suppose
the body by reason of its innate force describes the line AB. Likewise in the second
interval of time if nothing were to impede it suppose it would continue straight on
to c covering a length Bc equal to the line AB, so that the radii AS, BS, cS being
drawn to the center [S] the areas ASB, BSc would be made equal. But actually when
the body comes to B let the centripetal force act [on it] with a single great impulse,
forcing the body to deviate from the line Bc and continue on in the line BC.54

Newton applied this geometrical construction to prove Kepler’s area law, that “All bod-
ies circulating about a centre [of force] sweep out areas proportional to the times.”55

Whether or not Hooke had seen Newton’s De Motu, he gave his own description of
the geometrical construction in his diagram of 1685 (figure 4) in the handwritten text
above it in the same physical terms that he had used for the past twenty years:

Let ha represent the imprest velocity in the tangent of an ellipse and aδ the veloci-
ty imprest by Gravity. Make (δβ) parallel and equal to (ac), then draw the diagonall
(aβ). The second puls of gravity [referring to Hooke’s theory of periodic gravita-
tional pulses] shall meet the body at β where the puls againe meets it, driving it
towards the center o with the velocity βγ which has the same proportion to the
radius βo that αδ has to ao.56

Hooke’s description is similar to, but not merely a translation of Newton’s description
from Latin into English, quoted above. Furthermore, Hooke proceeds in his geometri-
cal construction in a way quite different from Newton by applying it in a novel way to
obtain the orbit of a body moving in an attractive central field of force that varies lin-
early with distance. We can see this more clearly by deleting some of Hooke’s auxiliary
lines and enlarging the result, as shown in figure 6. We see that Hooke’s diagram cor-

Fig. 5. Diagram associated with Newton’s proof of Kepler’s area law as it first appeared in his De
Motu of 1684. Source: Whiteside, “preliminary manuscripts” (ref. 15), p. 3.
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responds to Newton’s, taking into account that Hooke’s proceeds clockwise with the
initial velocity of the body directed along ha, while Newton’s proceeds counterclock-
wise with its initial velocity directed along AB.

Background to Hooke’s Physical Principles of Orbital Motion

I now turn to how Hooke developed his understanding of orbital dynamics and discuss
further aspects of his correspondence with Newton in 1679, as well as Halley’s and
Newton’s correspondence in 1686.

Hooke gave a remarkable lecture to the members of the newly founded Royal Soci-
ety on May 23, 1666, entitled “A Statement of Planetary Movements as a Mechanical
Problem,”57 in which he proposed that the Keplerian elliptical orbits of planets around
the Sun could be obtained by compounding an inertial straight-line motion with an
inflection toward the center of the Sun due to an attractive property of the Sun. This
was the first published account in which some of the essential dynamical principles of
planetary motion were stated clearly and unambiguously, nearly two decades before
Newton implemented them in mathematical form in his celebrated Principia. Hooke’s
paper, which was registered by the Royal Society, begins with his statement that:

I have often wondered, why the planets should move about the sun according to
Copernicus’s supposition, being not included in any solid orbs (which the ancients
possibly for this reason might embrace) nor tied to it, as their centre, by any visible
strings; and neither depart from it beyond such a degree, nor yet move in a straight
line, as all bodies, that have one single impulse, ought to do.…58

Fig. 6. Enlargement of the upper-right-hand portion of Hooke’s diagram of September 1685 (figure
4) with some auxiliary lines removed to show more clearly its correspondence to Newton’s diagram in
his De Motu of 1684 (figure 5). Reproduced by permission of the Master and Fellows of Trinity College.
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Hooke then dismisses a theory, partly due to Borelli,59 which was in vogue at the
time, that the impressed force is due to a medium of variable density acting on the plan-
etary body, and states his own idea that:

the second cause of inflecting a direct motion into a curve may be from an attractive
body placed in the centre; whereby it continually endeavours to attract or draw it to
itself. For if such a principle be supposed, all the phenomena of the planets seem
possible to be explained by the common principle of mechanic motions; and possi-
bly the prosecuting [of] this speculation may give us a true hypothesis of their
motion, and from some few observations, their motions may be so far brought to a
certainty, that we may be able to calculate them to the greatest exactness and cer-
tainty that can be desired.

This inflexion of a direct motion into a curve by a supervening attractive princi-
ple I shall endeavour to explicate from some experiments with a pendulous body:
not that I suppose the attraction of the sun to be exactly according to the same
degrees, as they are in a pendulum.…60

Hooke thus proposed that a conical pendulum, by projecting its motion onto a plane
perpendicular to its axis of suspension, could serve as a mechanical analog to demon-
strate the principles of planetary orbital motion. His analog model therefore general-
ized Descartes’s demonstration of circular motion of a stone revolving on a sling (fig-
ure 1). Hooke discussed the theory of the conical pendulum, pointing out that the
effective radial force on its bob

is greater and greater, according as it is farther and farther removed from the cen-
tre, which seems to be otherwise in the attraction of the sun....

But however it be, the compounding this motion with a direct or straight motion
just crossing it, may serve to explicate this hypothesis, though all the appearances of
it are not exactly the same.61

Hooke thus was well aware of the shortcomings of the conical pendulum as a model
for planetary orbital motion.

Hooke was then Curator of the newly founded Royal Society, and one of his main
tasks was to present weekly scientific experiments. He gave a demonstration to its
members of “a pendulum fastened to the roof of the room with a large wooden ball of
lignum vitae on the end of it.”62 This would have given an impressive demonstration of
nearly closed elliptical orbits as projected onto a plane normal to its axis of suspension,
as I verified by repeating Hooke’s experiment. I suspended a weight from the ceiling
of a room, attached a pen to it, and traced its motion on a sheet of paper on the floor,
as shown in figure 7,* which also confirmed Hooke’s careful observation that “the pro-
gression of the auges [apsides] are very evident.”63

* Richard S. Westfall commented in a letter to me of January 22, 1995, that “your tracing of the
ellipse is indeed quite remarkable. I have been willing, apriori, to assert with confidence that
anything half so precise was impossible.” His remark underscores the importance of repeating
often-neglected historical experiments to understand their significance in shaping theoretical
concepts.
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Later, in a letter that Hooke wrote to Newton on December 6, 1679,64 he made a
drawing (figure 8) of a similar orbit of a body revolving around the center of the Earth
“supposing then ye earth were cast into two half globes,” which clearly shows a “pro-
gression of the auges.”* Nevertheless, in the vast literature on the Newton-Hooke cor-
respondence, Hooke’s diagram has invariably been reproduced incorrectly as a sym-
metrical figure,65 which leaves out the “progression of the auges.” Hooke, moreover,
demonstrated mathematically that in this case the horizontal force on the bob increas-
es linearly with the distance from its axis of suspension.66

Extending the pendulum’s axis of suspension to a point on the plane normal to it
gives a point that coincides with the center of its elliptical motion, while the center of
force for the motion of a planet is at a focal point of its elliptical orbit. Furthermore,
the period of the pendulum is nearly independent of the size of its orbit, as Hooke dis-
covered for the oscillation of springs.** This is in striking contrast to the dependence
of the periods of planets on their distances from the Sun, which obey Kepler’s third law,
that is, the square of their periods vary with the cube of the major axes of their ellipti-
cal orbits. But, as noted above, Hooke was well aware of the shortcoming of his model
for planetary motion. He also attached a smaller pendulum to it to model, although less

Fig. 7. The trajectory of a conical pendulum as determined experimentally by the author.

* The precession of the apsides (auges) arises because for noncircular motion the trajectory of a
conical pendulum does not lie in a plane. The precession can be readily calculated for small
eccentricities of the orbit.

** In his sixth Cutler Lecture, which he published in 1678, Hooke deciphered his anagram, ceii-
inosssttuu, presented two years earlier, which translates to ut tensio sic vis (as the extension so
the force); see Hooke, “De Potentia Restitutiva” (ref. 9), pp. 333–334. It is not generally recog-
nized that Hooke was able to obtain the correct phase-space relation between velocity and posi-
tion for the harmonic oscillator, shown in a graph in a beautiful frontispiece of his paper. He
also showed that the period of the spring was independent of amplitude, but he did not obtain
the correct dependence of amplitude and velocity on time.

Nauenberg 226  7.11.2004  11:53 Uhr  Seite 14



Vol. 7 (2005)   Hooke’s Contribution to Orbital Dynamics 15

successfully, the motion of the Moon around the Earth. This is particularly significant,
because it shows that Hooke understood the universal character of the gravitational
force, which he later enunciated explicitly. He also proposed and carried out several
other inconclusive experiments to determine how the gravitational force varies with
the distance both above and below the surface of the Earth.67

Hooke developed his ideas further in his Cutler Lectures, which he delivered at the
regular meetings of the Royal Society. His first lecture, which he delivered in 1670, was
on An Attempt to Prove the Motion of the Earth from Observations by observing stel-
lar parallax* and thus to “furnish the Learned with an experimentum crucis to deter-
mine between the Tychonick and the Copernican Hypotheses.”68 Two years earlier, in
October 1668,69 he had begun to erect a zenith telescope in his quarters in Gresham
College in London (figure 9), and in 1670 he began to make observations of the star
Gamma Draconis as it passed directly overhead.** Now, at the end of his lecture in
1670, which he did not publish until 1674,70 he restated his principles of dynamics and
formulated the principle of universal gravitational attraction:

Fig. 8. Hooke’s drawing for the trajectory of a body moving inside the Earth, supposing that the Earth
were divided into two half globes. Source: Koyré, “Unpublished Letter” (ref. 6), p. 330.

* The idea to demonstrate the motion of the earth by observing stellar parallax can be traced
back to the ancient Greeks.

** After a few months, Hooke observed a displacement in the expected position of Gamma Dra-
conis, but he tells us that unfortunately the objective lens of his telescope accidentally broke
and he therefore discontinued his observations; see his Attempt (ref. 33), p. 24. The English
astronomers James Bradley (1693–1762) and Samuel Molyneux (1689–1728) repeated Hooke’s
observations in 1725 with a better telescope and discovered that the observed displacements
could not be due to parallax, but they were unable to interpret them. By 1727, however, after
erecting another telescope and continuing his observations, Bradley found the explanation as
due to the finite velocity of light, which the Danish astronomer Ole Römer (1644–1710) had
determined in 1676. Bradley thus was able to establish the motion of the Earth, finally accom-
plishing Hooke’s Attempt to Prove the Motion of the Earth from Observations. See “A Letter 
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At which time also I shall explain a System of the World differing in many particu-
lars from any yet known, answering in all things to the common Rules of Mechani-
cal Motions: This depends on three Suppositions. First, That all Cœlestial Bodies
whatsoever, have an attraction or gravitating power towards their own Centers,
whereby they attract not only their own parts, and keep them from flying from them,
as we may observe the Earth to do, but that they do also attract all the other Cœles-
tial Bodies that are within the sphere of their activity; and consequently that not
only the Sun and Moon have an influence upon the body and motion of the Earth,
and the Earth upon them, but that [Mercury] also [Venus], [Mars], [Saturn], and
[Jupiter] by their attractive powers,* have a considerable influence upon its motion
as in the same manner the corresponding attractive power of the Earth hath a con-
siderable influence upon every one of their motions also. The second supposition is
this, That all bodies whatsoever that are put into a direct and simple motion, will so
continue to move forward in a streight line, till they are by some other effectual
powers deflected and bent into a Motion, describing a Circle, Ellipsis, or some other
more compounded Curve Line. The third supposition is, That these attractive pow-
ers are so much the more powerful in operating by how much the nearer the body
wrought upon is to their own Centers. Now what these several degrees are I have
not yet experimentally verified.…71

In light of Newton’s later unkind description of Hooke, as quoted in my introduction,
we must remember that Hooke was a poorly paid employee of the Royal Society,
whose aristocratic members often ordered him to carry out this or that demonstration
almost every week during the year.72 He did not have the advantage of inherited
wealth like his early mentor, Robert Boyle (1627–1691), or that of a well-paid acade-
mic chair like Newton, which would have given him the leisure to follow his own intel-
lectual pursuits. Instead, Hooke supplemented his income by moonlighting, for exam-
ple, by serving as one of the main surveyors for the reconstruction of the City of Lon-
don after the Great Fire in 1666,73 by designing buildings and private houses, and by
attempting to patent his inventions.

Hooke discussed his ideas with Newton in letters to him in 1679. By then Hooke had
become Secretary of the Royal Society, and his avowed purpose in his first letter was
to again establish contact with Newton, with whom he had a strained relationship since
their earlier controversy on optics, and to elicit Newton’s reaction to his current phys-
ical hypotheses. Thus, he wrote to Newton on November 24, 1679, that:

For my own part I shall take it as a great favour if you shall please to communicate
by Letter your objections against any hypothesis or opinion of mine, And particu-

Michael Nauenberg Phys. perspect.16

from the Reverend Mr. James Bradley Savilian Professor of Astronomy at Oxford, and F.R.S.
to Dr. Edmund Halley, Astronom. Reg. &c. giving an Account of a new discovered Motion of
the Fix’d Stars,”Philosophical Transactions 35 (1727),637–661; reprinted in Miscellaneous Works
and Correspondence of the Rev. James Bradley, D.D. F.R.S. (Oxford: Oxford University Press,
1832; reprinted New York and London: Johnson Reprint Corporation, 1972), pp. 1–16.

* I have substituted the names of the planets for the accepted symbols for them that Hooke used.
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Fig. 9. Hooke’s zenith telescope, which he designed to follow the star Gamma Draconis as it passed
directly above his lodgings in Gresham College, is shown in his Fig. 4. He inserted a wooden tube 1 foot
square and about 10 feet long through a hole in the roof and cemented the objective lens c of his tele-
scope (focal length about 36 feet) inside it, which he protected against rain by closing the lid with a
cord. He put the eyepiece in a hole in the table at the bottom, above which he placed his measuring
instrument, the round thin brass plate shown on the left of his Fig. 7, insuring that it lay perpendicular
to the optical axis of his telescope by using the plumb lines with the small lead balls on their lower ends.
The cross hairs ab and cd, which lay exactly east-west and north-south, crossed at e, so that as a star
passed through the zenith its position on the meridian was determined by the distance em, whose
observed magnitude was magnified 15 times in his eyepiece, and which he measured to seconds of arc
with the ingenious micrometer he invented shown in his Fig. 8. He took observations by lying on the
couch k underneath the table in his Fig. 4, looked directly upward through the eyepiece, and observed
accurately how far north-south from the zenith e the star passed the meridian dc while an assistant
recorded its time of passage using a pendulum clock and its distance using the micrometer scale op.
Hooke observed the star Gamma Draconis four times between July 6 and October 20, 1669, conclud-
ing that he had found a “sensible parallax” owing to the motion of the Earth about the Sun. Source:
Gunther, Early Science. Vol. VIII. Cutler Lectures (ref. 3), plate after p. vii.
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larly if you will let me know your thoughts of that of compounding the celestiall
motions of the planetts of a direct motion by the tangent & an attractive motion
towards the centrall body.74

It thus appears from this letter and from his later correspondence with Newton that
one of Hooke’s principal reasons for now writing to Newton was that he had been
unable to make progress in expressing his physical principles of celestial mechanics
mathematically, and he wanted to solicit help from Newton, whose great mathematical
abilities were known to several members of the Royal Society. Hooke’s diary shows
that he had approached other mathematicians earlier for help without success. He now
also discussed with Newton the motion of a body inside the Earth, which was mostly of
concern to him insofar as it clarified the orbital dynamics for central forces, which he
had been studying with mechanical analogs for the past fourteen years. Thus, Newton
responded on December 13, 1679, sending Hooke a drawing of the orbit of a body
moving under the action of a constant radial force (figure 2),75 to which Hooke replied
on January 6, 1680, that:

Your Calculation of the Curve by a body attracted by an æquall power at all Dis-
tances from the center Such as that of a ball Rouling in an inverted Concave Cone
is right and the two auges [apsides] will not unite by about a third of a Revolution.76

Newton’s letter of December 13 must have come as a great revelation to Hooke. In his
response to it quoted above, Hooke indicated that he had previously observed the orbit
of a ball rolling inside an inverted cone, and that he knew that the effective radial force
acting on it is constant. He also realized that Newton had developed a method for cal-
culating such an orbit. But almost all historians of science have ignored Hooke’s
insightful observations.* 

I repeated Hooke’s experiment of a ball rolling inside an inverted cone and took a
stroboscopic picture of its trajectory (figure 10), which evidently corresponds approxi-
mately to the theoretical trajectory Newton drew (figure 2), although the angle
between successive apsides is somewhat different. Hooke continued:

But my supposition is that the Attraction always is in a duplicate proportion to the
Distance from the Center Reciprocall, and Consequently that the Velocity will be in
a subduplicate proportion to the Attraction and Consequently as Kepler Supposes
Reciprocall to the Distance.77

* D.T.Whiteside quoted Hooke without however indicating that Hooke was referring to an exper-
imental observation relevant to Newton’s diagram,remarking only that:“Inadequate or no,even
such relatively unsophisticated reasonings [Newton’s] were above Hooke’s head and he could
only compliantly answer…”; see Whiteside, ed., The Mathematical Papers of Isaac Newton.Vol.
VI. 1684–1691 (Cambridge: Cambridge University Press, 1974), p. 12. I have shown, however,
that Newton’s reasonings were far from unsophisticated and instead demonstrated a remark-
able theoretical understanding of the motion of a body moving under the action of a constant
attractive central force, in good agreement with Hooke’s observations; see Nauenberg, “New-
ton’s Early Computational Method” (ref. 15).
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Here Hooke announced for the first time his belief that the gravitational force depends
inversely on the square of the distance of a planet from the Sun. He erred, however, in
saying that Kepler took its velocity to depend inversely on the radial distance. Newton
later pounced on Hooke’s error, claiming that Hooke did not understand orbital
motion under a central inverse-square force, but ignoring that Hooke in his letter went
further and supposed correctly:

that with Such an [inverse-square] attraction the auges [apsides] will unite in the
same part of the Circle and that the neerest point of accesse to the center will be
opposite to the furthest Distant. Which I conceive doth very Intelligibly and truly
make out all the Appearances of the Heavens.78

Nowhere, however, is there any evidence in Hooke’s letter that he knew at this time
how to demonstrate his conjecture mathematically. Instead, he goes on, stating that:

(though in truth I agree with You that the Explicating the Curve in which a body
Descending to the Center of the Earth, would circumgyrate were a Speculation of
noe Use yet) the finding out the proprietys of a Curve made by two such principles
will be of great Concerne to Mankind.… This Curve truly Calculated will shew the
error of those many lame shifts [ad hoc approximations] made use of by
astronomers to approach the true motion of the planets with their tables.79

Fig. 10. Stroboscopic photograph taken by the author of  the trajectory of a ball revolving inside an
inverted cone.The angle between successive “auges” (apsides) depends on the cone’s angle of aperture.
For the ball to move sufficiently slowly to determine the shape of the orbit with the naked eye, I chose
an angle of aperture of 60 degrees, which also brings the trajectory of the ball in closer agreement with
Newton’s diagram (figure 2) and compensates for the error in his drawing. By a historical quirk, it
appears that Hooke used a similar angle of aperture.
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Finally, Hooke states again in a letter to Newton on January 17, 1680, that “I doubt not
but that by your excellent method you will easily find out what that Curve must be, and
its proprietys, and suggest a physicall Reason of this proportion.”80

Hooke’s remarks indicate that at this time he did not know how to calculate the
orbital motion of a planet in an attractive central field of force; his remarkable physi-
cal understanding and hypothesis were based on mechanical analog models. However,
his asking Newton for mathematical help turned out to be a capital mistake. Newton
formulated Hooke’s problem mathematically and solved it for various central forces,
including the inverse-square force, but he never acknowledged Hooke’s seminal phys-
ical concept or even replied to Hooke’s letter of January 17. Two months earlier, how-
ever, on November 28, 1679, Newton had written to Hooke that:

I did not before ye receipt of your last letter [sent four days earlier], so much as
heare (yt [that] I remember) of your Hypotheses of compounding ye celestial
motion of ye Planets, of a direct motion by the tang[en]t to ye curve.… 

If I were not so unhappy as to be unacquainted with your Hypotheses above-
mentioned.…81

Newton went on to congratulate Hooke “that so considerable a discovery as you made
of ye earth’s annual parallax is seconded by Mr. Flamstead’s Observations.”82 Hooke,
however, had not told Newton anything in his last letter about his own apparent dis-
covery of the Earth’s parallax, but only had commented briefly that Flamsteed “hath
confirmed the paralax of the orb of the earth.”83

It thus appears that Newton was familiar with Hooke’s tract on An Attempt to Prove
the Motion of Earth by Observations,84 as Newton later admitted to Halley in a letter
of July 27, 1686.85 Hooke himself was not convinced of Newton’s denials and later
wrote in an unpublished memorandum that, “Newton pretends he knew not Hooke’s
Hypoth. as by his Answer to ye former dated Nov. 28, 1679….”86 Hooke also scribbled
this telling comment on the margin of Newton’s letter to him of that date.

Four years earlier, in 1674, Hooke had published his hypotheses,87 which evidently
were read by some of the leading scientists at the time, such as Christiaan Huygens
(1629–1695) and Gian Domenico Cassini (1625–1712), Director of the Paris Observa-
tory, who had sent comments on them to the Philosophical Transactions.88 Also, as
noted above, Hooke communicated his ideas directly to Newton in 1679. A decade
later, on February 15, 1689, Hooke noted in his diary that, “At Hallys [Halley’s] met
Newton; vainly pretended claim yet acknowledged my information. Interest has no
conscience: A posse ad esse non valet consequentia [It is not valid to infer from the
possible to the actual].”89

Hooke had mentioned to Newton in a letter of January 6, 1680, without giving any
supporting arguments, that:

my supposition is that the Attraction always is in a duplicate proportion to the Dis-
tance from the center Reciprocall.… [It] truly makes out all the Appearances of the
Heavens … not that I believe there really is such an attraction to the very Center of
the Earth.…90

In fact, Hooke had conjectured correctly on physical grounds that:
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I rather Conceive that the more the body approaches the Center, the lesse will it be
Urged by the attraction – possibly somewhat like the Gravitation on a pendulum or
a body moved in a Concave Sphære where the power Continually Decreases the
neerer the body inclines to a horizontall motion.…91

Newton later also conveniently forgot these remarks and charged incorrectly that
“what he [Hooke] told me of ye duplicate proportion was erroneous, namely that it
reacht down from hence to ye center of ye earth.”92

Nevertheless, in letters that Newton wrote to Halley in the summer of 1686 that
were intended primarily to deny Hooke any credit for the fundamental ideas in his
Principia,93 Newton admitted that Hooke’s letters of 1679 had stimulated him to con-
sider again the fundamental problems of celestial mechanics. Newton had engaged in
a bitter invective against Hooke after he had heard rumors that Hooke had accused
him of plagiarism, and after he had calmed down following a soothing letter from Hal-
ley,94 he responded to Halley on July 14, 1686, that:

This is true, that his [Hooke’s] Letters occasioned my finding the method of deter-
mining Figures, wch when I had tried in ye Ellipsis, I threw the calculation by being
upon other studies & so it rested for about 5 yeares till upon your request I sought
for yt [that] paper, & not finding it did it again & reduced it into ye Propositions
shewed you by Mr. Paget*.…95

Two weeks later, on July 27, 1686, Newton again wrote to Halley:

And thô his correcting my Spiral occasioned my finding ye Theorem by wch I after-
ward examined ye Ellipsis; yet I am not beholden to him for any light into yt [that]
business but only for ye diversion he gave me from my other studies to think on
these things & for his dogmaticalnes in writing as if he had found ye motion in ye
Ellipsis, wch inclined me to try it after I saw by what method it was to be done. 96

Seven years earlier, in his letter to Hooke of December 13, 1679, Newton had con-
cluded with the comment that:

Your acute Letter having put me upon considering thus far ye species of this curve,
I might add something about its description by points quam proximè. But the thing
being of no great moment I rather beg your pardon for having troubled you thus far
with this second scribble.…97

Newton’s computational method “by points quam proximè” has long been puzzling,
but I have shown that it was based on his development of the calculus of curvature
between 1664 and 1671.98 The earliest extant documentary evidence that Newton
applied to orbital motion Hooke’s idea of compounding the tangential velocity of a
body with its radial velocity as impressed by an attractive central force – an idea that
Newton claimed repeatedly that he could not remember having heard from Hooke –
is in Newton’s De Motu of 1684, five years after his correspondence with Hooke. This

* Edward Paget (1656–1703?),Fellow of Trinity College,Cambridge,who was appointed as Math-
ematical Master at Christ’s Hospital and was elected as a Fellow of the Royal Society in 1682.
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supports my contention that Hooke had contributed in a fundamental way to Newton’s
understanding of the dynamical principles that he incorporated in his Principia. New-
ton later recalled that:

In the end of the year 1679 in answer to a Letter from Dr Hook … I found now that
whatsoever was the law of the forces wch kept the Planets in their Orbs, the areas
described by a Radius drawn from then to the Sun would be proportional to the
times in wch they were described. And by the help of these two Propositions I found
that their Orbs would be such Ellipses as Kepler had described. 99

In 1684 Hooke declared to Christopher Wren (1632–1723) and Edmond Halley, two of
his friends at the Royal Society, that on the principle of an inverse-square gravitation-
al force “all the Laws of celestiall motions were to be demonstrated, and that he him-
self had done it.….”100 However, despite a subsequent challenge by Wren, who offered
a prize of a 40-shilling book for such a demonstration, Hooke apparently failed to pro-
duce a calculation for such planetary motion.101 Unfortunately, Hooke also never pub-
lished his physical arguments for planetary motion or his remarkable graphical solu-
tion of 1685 (figure 4) for the motion of a body under the action of an attractive radi-
al force that varies linearly with distance.

Summary and Conclusions

Hooke’s fundamental idea was to determine planetary motion by compounding the
planet’s tangential velocity with a change in its radial velocity impressed by the gravi-
tational attractive force of the Sun. He gained his profound physical understanding of
orbital dynamics by observing mechanical analogs like the motion of a conical pendu-
lum and the motion of a ball rolling inside various surfaces of revolution. I verified
Hooke’s observations by repeating two of his experiments, one that showed the pro-
jection of the trajectory of a conical pendulum onto a plane perpendicular to its axis of
symmetry (figure 7), and one that showed the projection of the trajectory of a ball
revolving inside an inverted cone (figure 10). Both showed that Hooke’s descriptions
of these trajectories were fairly accurate.

Hooke also analyzed mathematically the radial forces that act on these bodies
toward the axis of symmetry of their motions.102 My analysis of Hooke’s diagram of
1685 (figure 4), which gave a geometrical construction and graphical evaluation of the
path of a body in an attractive radial field of force that depends linearly on the dis-
tance, offers new evidence that Hooke came much closer to formulating his principles
of dynamics mathematically than previously has been thought.103 Hooke developed
these principles correctly in the middle 1660s, demonstrating them with mechanical
analogs, and not simply by guessing them as historians of science have assumed.
Indeed, he applied precisely the same rules of reasoning that Newton later included in
Book III of his Principia. However, prior to the recent publication of Hooke’s diagram
of 1685, there was no concrete evidence of the extent to which Hooke had been able
to formulate his dynamical principles in mathematical form and apply them to the
approximate evaluation of the orbital motion of a body in an attractive central field of
force. Hooke apparently was able to accomplish this only after he had seen Newton’s
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De Motu of 1684, in which Newton gave an equivalent geometrical construction (fig-
ure 3). Newton applied his construction only to obtain a proof of Kepler’s area law,
however, while Hooke applied his to determine graphically that the orbit of a body
moving under the action of an attractive central force that varies linearly with the dis-
tance is an ellipse.

The key to a mathematical formulation of the physical principles of orbital motion,
which had long eluded Hooke, is to start with the approximation that the central force
on a body acts in instantaneous periodic impulses instead of continuously. Hooke actu-
ally conjectured that the gravitational attraction originates in periodic pulses, in analo-
gy to the emission of light and sound,104 and he deduced from this idea that the
strength of gravity varies inversely with the square of the distance from the center of
attraction. Newton’s letter of December 13, 1679, indicated to Hooke that Newton was
capable of evaluating, at least approximately, the orbital motion of a body in an attrac-
tive central field of force. In the absence of the infinitesimal calculus that Newton and
Leibniz developed, Hooke could have solved the problem of orbital dynamics by his
discrete graphical method only approximately.

Among Hooke’s unpublished manuscripts in the library of the Royal Society in
London I found a handwritten document that appears to be a translation* into English
of the treatise of 1696 by Guillaume-François-Antoine Marquis de l’Hospital
(1661–1704) on the Analysis of infinitesimal small quantities to describe curved lines.105

This was the first textbook that was published on the differential calculus and was
based on lectures by Jean Bernoulli (1667–1748), whom l’Hospital had hired as his
tutor. Assuming that Hooke received and read l’Hospital’s textbook, he must have
understood the significance of this mathematical development, which Newton did not
discuss in any detail in his Principia. Hooke also may have been familiar with Leibniz’s
work on the differential calculus of 1684,106 but this is unknown, because Hooke’s
diaries during the crucial period 1682–1687 have been lost. I also did not find evidence
among Hooke’s manuscripts at the Royal Society that he investigated orbital motion
during this period. The differential calculus, of course, was precisely the mathematical
tool that Hooke had been lacking, but he unfortunately had gone to Newton for math-
ematical help. One might speculate that had Hooke corresponded with Leibniz or
Huygens rather than with Newton in 1679, the development of orbital dynamics might
have taken a different path.

Among Hooke’s unpublished manuscripts in the Wren Library at Trinity College,
Cambridge, there is a memorandum entitled “A True state of the Case and Controver-
sy between Sr Isaac Newton & Dr Robert Hooke as to the Priority of that Noble
Hypothesis of Motion of ye Planets about ye Sun as their Centre.”107 In it Hooke accu-
rately recounts his main contributions to the theory of mechanics and gravitation that
he had communicated to Newton in his correspondence in 1679, but he does not men-
tion his unpublished graphical computation of 1685 and related work. Hooke’s memo-

* The handwriting is that of Charles Hayes, a self-taught mathematician who wrote a textbook
on the differential calculus under the title,A treatise on fluxions, that was based in part on l’Hos-
pital’s textbook; D.T.Whiteside, private communication, 1993.
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randum makes it clear that he understood quite well the extent and significance of his
contributions to celestial mechanics relative to those of Newton. After Hooke’s death
in 1703, Richard Waller pencilled in the margin of the manuscript of Hooke’s diary the
enigmatic comment that,“Dr. Hook who was as I could prove were it a proper time the
first Inventor or if you please first Hinter of those things about which Magni Nominis
Heroes have contested for priority.”108 Many documents of Hooke’s contributions
have been lost, some of which may have pertained to his work on orbital dynamics.109

But as I have shown, we already have ample evidence that shows that the early devel-
opment of modern orbital dynamics was due both to Hooke’s as well as to Newton’s
contributions, and to their inadvertent collaboration through their timely and momen-
tous correspondence in 1679.

Appendix

Newton’s diagram (figure 2) in his letter to Hooke of December 13, 1679, appears to
be a freehand sketch of the orbit of a body supposed to be moving under the action of
a central force that is independent of the distance from the center C, but it cannot be,
because the initial segment of the orbit AFOGH is almost exactly symmetric under
reflection – a symmetry that Newton must have discovered and we now know is due to
time-reversal invariance.

This symmetry suggests how Newton might have constructed his diagram.Thus, if he
had a theoretical method to calculate the segment of the orbit AFO from the farther-
most point A from the center of force at C to its nearest point O, he could have used
this segment as a template to obtain continuations of the orbit by sequential mirror
reflections. One then would expect that the segments AFO and OGH are mirror
images with respect to the line OC. This is not the case, however, because under a
reflection and rotation that leaves the segment AFOGH unchanged, the image of C
shifts by a small amount into the first quadrant ACB while the image of O shifts toward
the point F on the curve AFO. Thus, it is not clear where the center of force C then is,
and whether Newton had calculated the segment AFO or the segment OGH to use as
a template to obtain continuations of the orbit by mirror reflections.

In an earlier article,110 I assumed that Newton used the segment OGH, and not
AFO, as the template, because the former reproduced more accurately the correct
orbit of a body in a central field of force.When the segment AFO is reflected about the
line OC, in fact, the farthermost point A does not coincide with point H, as it should,
but instead lies beyond it, as shown in figure 11, so that the reflected segment OFA
does not coincide with the original segment OGH. John Faulkner recently point out to
me (private communication, June 2003) that the reflection of A lies very close to the
margin of Newton’s letter, which suggests an alternate explanation for the shift of the
image of the center C noted above in Newton’s diagram. To avoid having to redraw his
diagram, Newton may have decided to move the image of A away from the margin by
shifting the reflected segment OFA in such a way that its continuation with the origi-
nal segment AFO produces a smooth curve. I reproduced this shift, as shown in fig-
ure 12, and found that the resulting curve agrees very well with the original segement
AFOGH, accounting also for the superimposed lines that Newton drew along the seg-
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ment FOG (see figure 2) to cover the overlap of AFO with its shifted image. Moreover,
as I showed earlier,111 the closed curve AFOGH in Newton’s diagram is not a circle
(although it always has been reproduced as such in the past). Indeed, while the orthog-
onal axes CA and CB are of equal length, as are the orthogonal axes CD and CE, which
also are equal to CH, but the shift makes CH smaller than CA, so that the arcs AB and
DE are sections of a circle, while the arcs BD and EA are sections of ellipses – a dis-
tortion that is very small owing to their very small eccentricities and hence has not been
noticed earlier and is generally neglected in the literature. As a result of shifting the
segment FOH, Newton also had to modify the next two segments HIK and KL, which
are supposed to be (but only appoximately) images of AFOGH and HIK relative to
the lines CH and CK, respectively.

If, therefore, Newton used the segment AFO as a template, then he made a consid-
erable error in calculating this segment. The angle ACO in his drawing is 130°, while it
should be approximately 104°, as Pelseneer pointed out112. Later, in a Scholium in a
draft of his Principia,113 Newton gave this value as 110o, which is in close agreement to
the value of 107° that I calculated on the basis of Newton’s graphical-curvature method
for computing orbits.114 Newton did not publish this Scholium in his Principia, howev-
er, because by 1686 he had found an analytic expression for this angle for orbits of
small eccentricity, which he presented in Book 1, Proposition 43.

The above analysis of Newton’s diagram provides further evidence that by the time
of his correspondence with Hooke in 1679 Newton had not discovered the origin of
Kepler’s area law or the conservation of angular momentum. This conservation law

Fig. 11. Newton’s diagram (figure 2) showing only the segment AFO of the orbit and its mirror reflec-
tions with respect to the line OC – the arc AB and the lines AC and BC.
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would have allowed him to express the velocity of a body along its orbit in terms of its
position, as required by his curvature method, and to solve the outstanding problem
that he had indicated by his cryptic remark of 1664, “if its motion [velocity] in that
point bee given.…”115 Instead, as I have shown,116 to determine the change in veloci-
ty of a body along its orbit, Newton would have had to resort to a further approxima-
tion. Apparently, he implemented this approximation poorly, perhaps because he was
too much in a hurry to respond to Hooke, who had embarrassed him at a meeting of
the Royal Society by exposing an error in his previous letter of November 28, 1679.
However, as the cancelled Scholium to his Principia reveals, by 1684 Newton had
obtained a good approximation to the angle ACO, presumably by obtaining the change
in velocity of a body along its orbit by applying Kepler’s area law – which he had dis-
covered only after expressing the physical principles of orbital dynamics in mathemat-
ical form after he had assimilated Hooke’s insight of “compounding the celestiall
motions of the planetts of a direct motion by the tangent & an attractive motion
towards the centrall body.”117 (see page 21).
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