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We will obtain the equation of state and other properties, such as energy and entropy, of the

classical ideal gas. We will start with quantum statistical mechanics, and take the classical limit,

since this avoids certain ambiguities. Furthermore, our result for the entropy will involve h̄ and so

what we are doing is not entirely a classical theory.

A state of an ideal gas is identified by the “occupation numbers”, nk, of the single particle states

k with energy ǫk. In particular, the total number of particles N and energy E are given by

N =
∑

k

nk , (1)

E =
∑

k

nkǫk . (2)

We will use the Gibbs distribution, in which the number of particles is allowed to vary

and, the results are expressed in terms of the chemical potential µ rather than the

mean number of particles N.

The reason for this choice is that, as we shall now show, for non-interacting, identical particles,

the grand partition of the whole system, Z, factorizes into a a product of grand partition functions

for the single-particle states. The grand partition function is given by

Z =
∑

{nk}

exp [β (Nµ− E)] =
∑

{nk}

exp

[

β
∑

k

(µ− ǫk)nk

]

=
∑

{nk}

∏

k

[

eβ(µ−ǫk)nk

]

=
∏

k

[

∑

nk

eβ(µ−ǫk)nk

]

,

(3)

where µ is the chemical potential, and {nk} refers to the set of all allowed values of the occupation

numbers nk. To get the third expression we used that the exponential of a sum is the product of

exponentials, and to get the fourth expression we used that each exponential only depends on one

of the nk. The summations over the different nk can be done independently because there is no

constraint on the total number N =
∑

k nk in the Gibbs distribution. Hence, as stated above, the

grand partition of the whole system, Z, factorizes into a a product of grand partition functions for

the single-particle states, i.e.

Z =
∏

k

Zk , (4)
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where

Zk =
∑

nk

enkβ(µ−ǫk) . (5)

The factorization of the grand partition function for non-interacting particles is the reason why we

use the Gibbs distribution (also known as the “grand canonical ensemble”) for quantum, indistin-

guishable particles.

For fermions, nk in the sum in Eq. (5) only takes values 0 and 1, while for bosons nk takes

values from 0 to ∞ and Eq. (5) gives a geometric series which is easy to sum. The result is

Zk =







1 + λe−βǫk , fermions,
(

1− λe−βǫk
)−1

, bosons ,
(6)

where

λ = eβµ (7)

is called the “activity” (sometimes the word “fugacity” is also used).

As discussed in class, the classical limit is when the occupancy of any single-particle state is

very much less that unity. This means that the statistical weight (i.e. the exponential factor in

Eq. (5)) for nk = 1, is much less than the statistical weight for nk = 0, i.e.

λe−βǫk ≪ 1 . (8)

In this case, we work to first order in λe−βǫk , so the difference between bosons and fermions

disappears and for both we get

Zk = 1 + λe−βǫk , (9)

lnZk = λe−βǫk . (10)

where we used ln(1+ x) = x+ · · · for small x. Taking the log of Eq. (4), and using Eq. (10), gives

lnZ =
∑

k

lnZk = λ
∑

k

e−βǫk . (11)

As shown in class, the grand potential Ω is related to Z by

Ω (= −PV ) = −kBT lnZ , (12)

where P is the pressure, and combining this with Eq. (11) gives

Ω = −kBTλz
(1) (13)
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where z(1) is the (canonical) partition function for a single particle:

z(1) =
∑

k

e−βǫk . (14)

To carry out the sum in Eq. (14) we use the result for the single particle density of states

discussed earlier in class, and covert the sum over states to an integral over ǫ. Considering spin-0

(in the class we will discuss the trivial changes that come from a non-zero spin) the density of

states is given by

ρ(ǫ) =
V

4π2

(

2m

h̄2

)3/2

ǫ1/2 . (15)

Hence z(1) in Eq. (14) is given by

z(1) =
V

4π2

(

2m

h̄2

)3/2 ∫ ∞

0
ǫ1/2e−βǫ dǫ =

V

4π2

(

2mkBT

h̄2

)3/2 ∫ ∞

0
x1/2e−x dx . (16)

As discussed in Math. Methods classes, the integral is Γ(3/2) =
√
π/2, and so

z(1) = V

(

mkBT

2πh̄2

)3/2

=
V

VQ
, (17)

where

VQ =

(

2πh̄2

mkBT

)3/2

(18)

is the “quantum volume” already discussed in class. Hence, from Eqs. (11), (14) and (17)

lnZ = λ
V

VQ
, (19)

so

Z = eλV/VQ . (20)

Using Eq. (12), then gives the desired expression for the grand potential Ω

Ω(T, V, µ) = −kBTλ
V

VQ
, (21)

(remember λ = eβµ).

Since we are using the Gibbs distribution with a variable number of particles, we have calculated

the grand potential, which is expressed in terms of the chemical potential rather than the number

of particles. However, in practice, experiments are carried out with a given number of particles,

not a given value of the chemical potential.
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Hence we have to convert expressions like Eq. (21), written in terms of µ, to ones

written in terms of the mean number of particles N.

This is a general problem with the Gibbs distribution. Fortunately this conversion is very easy

here for the classical ideal gas because we will find a closed form expression for µ(T ) as a function

of n, Eq. (24) below. It will be less easy when we consider quantum ideal gases. To obtain the

result for µ(T ), recall that the mean number of particles is given by

〈N〉 = −
(

∂Ω

∂µ

)

T,V

, (22)

which, according to Eq. (21), yields

〈N〉 = eβµ
V

VQ
, (23)

(remember that λ = eβµ). Although fluctuations in the number of particles are allowed in the

Gibbs distribution, their relative size is small (of order N1/2). Hence, for conciseness of notation,

from now on, we will omit the brackets and denote the mean number of particles simply by N .

Eq. (23) gives the desired expression for the chemical potential:

µ(T ) = kBT ln(nVQ) = −kBT ln

[

1

n

(

mkBT

2πh̄2

)3/2
]

= −3

2
kBT ln

(

T

TQ

)

(24)

where n = N/V is the particle density, and

TQ =
2πh̄2

mkB
n2/3 ,

is a temperature below which quantum effects are important. Since the the condition to be in the

classical regime is nVQ ≪ 1, see Eq. (25) below, (or equivalently T ≫ TQ), it follows that µ must

be negative. Furthermore, Eq. (24) shows that µ gets more negative with increasing T .

The variation of µ(T ) with T in the classical regime is sketched in the figure below.
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µ
At lower T (dashed line and still lower T)

QSolid line − Classical result (T >> T  )
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To describe a classical ideal gas with a FIXED density of particles n using the Gibbs

distribution, we have to let µ(T ) vary with T according to Eq. (24).

The condition that we are in the classical regime, i.e. the occupancy is much less than unity

even for the lowest single particle level which we take to be at zero energy, is λ ≪ 1, see Eq. (8).

From Eq. (23), this is equivalent to

nVQ ≪ 1 (condition to be in the classical regime). (25)

As discussed in class this corresponds to the mean separation between particles (n−1/3) being

much greater than the thermal de Broglie wavelength (the de Broglie wavelength of a particle

whose energy is kBT ). Equivalently, from Eq. (24), we can write

T ≫ TQ (condition to be in the classical regime), (26)

showing that classical regime is a high temperature regime.

Eq. (23) can be substituted into Eq. (21), and noting that Ω = −PV , we get

PV = NkBT , (27)

the famous ideal gas law.

The (Helmholtz) free energy is F = Ω+ µN which, using Eqs. (21) and (23) and recalling that

F should be expressed in terms of N not µ, is given by F = −kBTN + µN or

F (T, V,N) = NkBT [ln(nVQ)− 1] . (28)

Now that we have determined F, it is more convenient to use it, rather than Ω, to

determine other quantities, because F is expressed in terms of N, which is specified

and kept fixed, whereas Ω is expressed in terms of µ, which varies with T and V (in

such a way as to keep N constant).

For example, the entropy is given by

S = −
(

∂F

∂T

)

V,N

= NkB

[

1− ln(nVQ)− T
∂

∂T
lnVQ

]

. (29)

Since VQ ∝ T−3/2, (∂/∂T ) lnVQ = −3/(2T ). Hence we have

S = NkB

[

5

2
− ln(nVQ)

]

, (30)



6

a well known result, which is called the Sackur-Tetrode equation. The entropy is proportional to

the number of particles N if the density n is kept constant, i.e. the entropy is extensive. Note

too that although we have taken the classical limit, the expression for the entropy involves h̄. The

reason is that only in quantum mechanics can one define precisely the sum over states and hence

give an absolute definition for the entropy (rather than just entropy differences). More discussion

of this, along with a discussion of experimental verification of Eq. (30) will be given in class.

The energy can be obtained from

U =

(

∂(βF )

∂β

)

N,V

= N
∂

∂β
[ln(nVQ)− 1]N,V . (31)

The only quantity which depends on β is VQ, and VQ ∝ β3/2, so

U =
3

2
NkBT . (32)

This is an example of a well known result of classical statistical mechanics, called the “equipar-

tition theorem”. This states that every quadratic term in the microscopic expression for the energy

contributes (1/2)kBT to the average energy. Here we have N atoms for each of which the energy

is

1

2
m(v2x + v2y + v2z) , (33)

which has 3 quadratic terms. Hence the total average energy is (3/2)NkBT , in agreement with

Eq. (32)

The specific heat at constant volume, CV , can be obtained from CV = (∂U/∂T )N,V or equiva-

lently from CV = (T∂S/∂T )N,V , and the result is

CV =
3

2
NkB . (34)


