PHYSICS 112
Homework 6 Solutions

1. (a) The thermodynamic identity is
\[TdS = dU + PdV. \]
If the volume changes by a small amount \(dV \), and the temperatures by \(dT \) at constant entropy we have \(0 = dU + PdV \). Now \(dU = C_VdT \) since the energy of an ideal gas only depends on \(T \), not the volume, so
\[C_VdT + PdV = 0. \]

(b) Writing \(P = N k_B T / V \) and recalling that \(N k_B = C_P - C_V \) we get
\[C_V \frac{dT}{T} + (C_P - C_V) \frac{dV}{V} = 0. \]
Dividing by \(C_V \) gives the desired result
\[\frac{dT}{T} + (\gamma - 1) \frac{dV}{V} = 0, \]
where \(\gamma = C_P / C_V \).

(c) Integrating the last expression gives
\[\ln T + (\gamma - 1) \ln V = \text{const}. \]
and exponentiating gives
\[TV^{\gamma - 1} = \text{const}. \]
Substituting \(T = PV/Nk_B \) into the result of the previous part gives
\[\frac{PV}{N k_B} V^{\gamma - 1} = \text{const}. \]
and so
\[PV^{\gamma} = \text{const}'. \]
where const'. is another constant. (Remember we are keeping \(N \) constant here.)

(d) At constant \(T \), we have \(PV = C \) where \(C = N k_B T \) is constant, and so
\[B_T = -V \left(\frac{\partial P}{\partial V} \right)_T = (-V) \left(-\frac{C}{V^2} \right) = \frac{C}{V} = \frac{P}{V}. \]
At constant entropy, we have \(PV^{\gamma} = C \), and so
\[B_S = -V \left(\frac{\partial P}{\partial V} \right)_S = (-V) \left(-\frac{\gamma C}{V(1 + \gamma)} \right) = \frac{\gamma C}{V^{\gamma}} = \frac{\gamma P}{V}. \]

2. The density of states in two dimensions was worked out in HW 3, Qu. 1 and is
\[\rho(\epsilon) = A \frac{m}{2\pi\hbar^2}, \]
where we divided that expression by 2 since we have spin = 0 here. Note that this is independent of \(\epsilon \).
As in three dimensions we have
\[\Omega = -k_B T \lambda z^{(1)} \]
where now
\[z^{(1)} = \sum_l e^{-\beta \epsilon_l} = A \frac{m}{2\pi \hbar^2} \int_0^\infty e^{-\beta \epsilon} d\epsilon = A \frac{m k_B T}{2\pi \hbar^2} = \frac{A}{A_Q}, \]
where \(A_Q \), the “quantum area”, is given by
\[A_Q = \frac{2\pi \hbar^2}{mk_B T}. \]

Note that \(A_Q = V_Q^{2/3} \).

Results for the free energies for classical ideal gas in three dimensions go over with \(V \) replaced by \(A \) and \(V_Q \) replaced by \(A_Q \). In particular:

(a) \[\mu = k_B T \ln(nA_Q) = -k_B T \ln \left(\frac{1}{n} \left(\frac{mk_B T}{2\pi \hbar^2} \right) \right), \]
where \(n = N/A \) is the areal density.

(b) Also \[F = N k_B T \left[\ln(nA_Q) - 1 \right]. \]

We obtain \(U \) from \(U = (\partial / \partial \beta)(\beta F) \) which gives \[U = N k_B T, \]
noting that \(A_Q \sim T^{-1} \) (not \(T^{-3/2} \) which is the result in three dimensions).

(c) In the same way, \(S = -\partial F / \partial T \) gives
\[S = N k_B \left[2 - \ln(nA_Q) \right]. \]

3. Let us define \(V_1 = V, V_2 = 2V, V_3 = 4V \), where \(V \) is the initial volume, and similarly \(T_1 = T (= 300), T_2 = T_1, \) and the final temperature is \(T_3. \)

(a) \(V_1 \rightarrow V_2 \) is isothermal. As discussed in class the heat supplied is \(N k_B T \ln(V_2/V_1) = N k_B T \ln 2. \) \(V_2 \rightarrow V_3 \) is isentropic so no heat is added. Hence the total heat added is
\[N k_B T \ln 2 = 6.02 \times 10^{23} \times 0.693 \times 1.38 \times 10^{-23} \times 300 = 1728 \text{ J}. \]

where we used that 1 mole contains Avogadro’s number of molecules \(N = 6.02 \times 10^{23}. \)

(b) In the first process \(T \) is constant. In the second process we have \(TV^{2/3} = \text{const.} \) and so
\[T_3 = T \left(\frac{1}{2} \right)^{2/3} = 0.63T = 189 \text{ K}. \]

(c) As discussed in the book the increase in entropy is
\[\Delta S = N k_B \ln(V_2/V_1) = N k_B \ln 2 = 5.76 \text{ JK}^{-1}. \]
4. We are given that the distribution of speeds is

\[P(v) = \frac{1}{\sqrt{2\pi}} \left(\frac{m}{k_B T} \right)^{3/2} v^2 \exp \left(-\frac{mv^2}{2k_B T} \right). \]

(1)

To answer this question we will need certain results for Gaussian integrals mentioned in class

\[\int_{0}^\infty e^{-a^2x^2/2} \, dx = \sqrt{\frac{\pi}{2 \, a}}, \]

(2)

\[\int_{0}^\infty x^2 e^{-a^2x^2/2} \, dx = \sqrt{\frac{\pi}{2 \, a^3}}, \]

(3)

\[\int_{0}^\infty x^4 e^{-a^2x^2/2} \, dx = 3 \sqrt{\frac{\pi}{2 \, a^5}}. \]

(4)

Note that Eq. (3) shows that the distribution in Eq. (1) is correctly normalized, i.e. \(\int_{0}^\infty P(v) \, dv = 1 \). We will also need

\[\int_{0}^\infty x e^{-a^2x^2/2} \, dx = \frac{1}{a^2}, \]

(5)

which is easy because indefinite integral is \(-(1/a^2)e^{-a^2x^2/2}\), and

\[\int_{0}^\infty x^3 e^{-a^2x^2/2} \, dx = \frac{2}{a^3}, \]

(6)

which is done by integrating by parts to make it look like Eq. (5).

(a) Using Eq. (4) with \(a^2 = m/k_B T \) we get

\[\langle v^2 \rangle = \int_{0}^\infty v^2 P(v) \, dv = \sqrt{\frac{2}{\pi}} \left(\frac{m}{k_B T} \right)^{3/2} 3 \sqrt{\frac{\pi}{2}} \left(\frac{k_B T}{m} \right)^{5/2} = \frac{3k_B T}{m}, \]

and so the rms velocity is given by

\[v_{\text{rms}} \equiv \langle v^2 \rangle^{1/2} = \sqrt{3k_B T \over m}. \]

(b) The most probable value of the speed, \(v_{\text{mp}} \), is where \(P(v) \) in Eq. (1) has a maximum, i.e.

\[\left(2v_{\text{mp}} - v_{\text{mp}}^2 \frac{mv_{\text{mp}}}{k_B T} \right) \exp \left(-\frac{mv_{\text{mp}}^2}{2k_B T} \right) = 0, \]

i.e.

\[v_{\text{mp}} = \sqrt{2k_B T \over m}. \]

(c) From Eq. (3), the mean speed is given by

\[\langle v \rangle = \int_{0}^\infty v P(v) \, dv = \sqrt{2 \over \pi} \left(\frac{m}{k_B T} \right)^{3/2} \int_{0}^\infty v^3 \exp \left(-\frac{mv^2}{2k_B T} \right) \, dv = \sqrt{2 \over \pi} 2 \sqrt{\frac{k_B T}{m}} \int_{0}^\infty v^3 \exp \left(-\frac{mv^2}{2k_B T} \right) \, dv = \sqrt{8k_B T \over \pi m}. \]
(d) We are also given that the probability for a single component of velocity is

\[P_z(v_z) = \sqrt{\frac{m}{2\pi k_B T}} \exp \left(-\frac{mv_z^2}{2k_B T} \right). \]

Noting that \(v_z \) can have either sign we get

\[\langle |v_z| \rangle = \int_{-\infty}^{\infty} |v_z| P_z(v_z) \, dv_z = 2 \int_0^\infty v_z P_z(v_z) \, dv_z = 2 \sqrt{\frac{m}{2\pi k_B T}} \int_0^\infty v_z \exp \left(-\frac{mv_z^2}{2k_B T} \right) = \sqrt{\frac{2k_B T}{\pi m}}, \]

where we used Eq. (5) to get the final result. Note that \(\langle |v_z| \rangle = \frac{1}{2}\langle v \rangle \).

5. Following the discussion in class, the number of states in which the magnitude of the wavevector lies between \(k \) and \(k + dk \) is

\[2 \left(\frac{L}{\pi} \right)^3 \frac{4\pi k^2 \, dk}{8}. \]

We write this as \(\rho(\epsilon) \, d\epsilon = \rho(\epsilon) \left(\partial\epsilon / \partial k \right) \, dk \), and so

\[\rho(\epsilon) = \frac{V}{\pi^2 (\hbar c)^3} \frac{1}{\left(\partial\epsilon / \partial k \right)} = \frac{V}{\pi^2 (\hbar c)^3} \frac{1}{\hbar c} = \frac{V}{\pi^2 (\hbar c)^3} \epsilon^2. \]

(a) At \(T = 0 \) we fill up all the states up to \(\epsilon_F \), i.e.

\[N = \frac{V}{\pi^2 (\hbar c)^3} \int_0^{\epsilon_F} \epsilon^2 \, d\epsilon = \frac{V}{3\pi^2} \left(\frac{\epsilon_F}{\hbar c} \right)^3. \]

This can be rearranged as

\[\epsilon_F = \frac{\pi^{2/3} \hbar c (3n)^{1/3}}{3}. \]

(b) The energy is given by

\[U = \int_0^{\epsilon_F} \epsilon \rho(\epsilon) \, d\epsilon = \frac{V}{4\pi^2} \left(\frac{\epsilon_F}{\hbar c} \right)^3 = \frac{3}{4} N \epsilon_F, \]

where we used Eq. (7).

6. (a) As shown in the book, the energy of an ideal Fermi gas at \(T = 0 \) is

\[U = \int_0^{\epsilon_F} \epsilon \rho(\epsilon) \, d\epsilon = \frac{3}{5} N \epsilon_F = \frac{3}{10} N \frac{\hbar^2}{m} \left(3\pi^2 N / V \right)^{2/3}. \]

From the thermodynamic identity

\[dU = T dS - P dV \]

we have

\[P = -\left(\frac{\partial U}{\partial V} \right)_S. \]

However at \(T = 0 \) the entropy is zero, (Third Law) and so constant \(S \) is equivalent to constant \(T \). Hence we can obtain the pressure by differentiating Eq. (8) with respect to \(V \), i.e.

\[P = -\frac{\partial U}{\partial V} = \frac{(3\pi^2)^{2/3} \hbar^2}{5} \frac{n^{5/3}}{m}. \]