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Debye Waller factor

The intensity of Bragg scattering is reduced, due to motion of atoms about their equilibrium
positions, by the Debye-Waller factor, generally written as e−2W , where, for a monatomic (i.e.
Bravais) lattice,

e−2W = 〈exp(iG · ul)〉
2
. (1)

Here G is a reciprocal lattice vector, and ul is the displacement of the l-th atom. The average in
Eq. (1) is easily found if one makes the harmonic approximation because one can then use the
result

〈

eA
〉

= e
1

2
〈A2〉, (2)

where 〈· · ·〉 denotes a quantum statistical mechanical average at a temperature T ≡ β−1 for a
simple harmonic oscillator (or set of oscillators), and A is a linear combination of the displace-
ments and momenta of the oscillators (or, equivalently, a linear combination of creation and
destruction operators, c

†
i and ci ), i.e.

A =
∑

i

(aici + bic
†
i ), (3)

where the ai and bi are constants. We now proceed to prove Eq. (2).
The most commonly given proofs of Eq. (2) uses Wick’s theorem, which relates the average

of a product of operators to sums of products of pairwise averages. It is taught in classes on
many-body theory and field theory. However D. Mermin, J. Math. Phys. 7, 1038 (1966), has
a derivation which does not require Wick’s theorm and which we follow here. To begin with,
consider just a single oscillator, and let us evaluate

〈

eac+bc†
〉

, (4)

c and c† are creation and annihilation operators for an oscillator with Hamiltonian

H = ǫ(c†c + 1
2). (5)

We start with the well known formula

eA+B = eAeBe−
1

2
[A,B], (6)

assuming that the commutator [A,B] is a c-number. A derivation of this is given in the Appendix.
Applying Eq. (6) to Eq. (4) gives

〈

eac+bc†
〉

=
〈

eacebc†
〉

e−
1

2
ab. (7)

We can also apply Eq. (6) to Eq. (4) but with the opposite identification of A and B to give

〈

eac+bc†
〉

=
〈

ebc†eac
〉

e
1

2
ab. (8)
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Eqs. (7) and (8) are consistent only if

g(a, b) ≡
〈

eacebc†
〉

(9)

= eab
〈

ebc†eac
〉

(10)

= eab
〈

eβHeace−βHebc†
〉

, (11)

where the last line follows from the cyclic invariance of the trace. Expanding out the exp(ac) in
the last line one can sandwich factors of eβH and e−βH around each factor of c and so

g(a, b) = eab
〈

eac(β)ebc†
〉

, (12)

where

c(β) ≡ eβHce−βH (13)

= e−βǫc, (14)

where the last line is derived in the Appendix. Hence we have

g(a, b) = eabg(ae−βǫ, b). (15)

Iterating this procedure another n times we have

g(a, b) = eab(1+e−βǫ+···+e−nβǫ)g(ae−(n+1)βǫ, b), (16)

and so taking the limit n → ∞ we have

g(a, b) = eab(1−e−βǫ)−1

g(0, b). (17)

Now trivially,
g(0, b) =

〈

ebc†
〉

= 1, (18)

since all terms in the expansion of the exponential give zero except the first. Hence

g(a, b) = eab[n(ǫ)+1], (19)

where

n(ǫ) =
1

eβǫ − 1
, (20)

is the Planck distribution, and so from Eqs. (7), (9) and (19), we obtain

〈

eac+bc†
〉

= eab[n(ǫ)+ 1

2
] = e

1

2
〈(ac+bc†)2〉. (21)

The derivation goes over straightforwardly to the case where there are many operators and so
we obtain Eq. (2).

As a result of Eq. (2), the Debye Waller factor for a lattice with one atom per unit cell is
given by

〈exp(iG · ul)〉
2 = e−2W , (22)
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where
W = 1

2〈(G · ul)
2〉. (23)

This expression is evaluated by transforming to k-space, so

W =
1

2N

∑

k,s

〈(G · us(k))2〉, (24)

where s denotes a branch. Writing

us(k) = ~εs(k)

√

√

√

√

h̄

2Mωk,s

(ck,s + c
†
−k,s), (25)

where ~εs(k) is the polarization vector and M is the mass of the ion, we have

W =
h̄

2M

1

N

∑

k,s

[G · ~εs(k)]2

ωk,s

[

nk,s + 1
2

]

, (26)

where nk,s ≡ n(h̄ωk,s). Our final result, then, is that the intensity of a Bragg peak is reduced,
due to the motion of the atoms, by the Debye Waller factor, e−2W , where W is given by Eq. (26).

Note:

• W 6= 0 even at T = 0 because of the zero point motion of the atoms.

• In three dimensions, W is finite so the intensity of Bragg peaks is finite, as observed.

• In two dimensions, W is finite at T = 0 but infinite at finite-T . (You should show that
the integral diverges logarithmically as k → 0.) Since the amplitude of the Bragg peak is
proportional to e−2W then there are no (delta-function) Bragg peaks in two dimensions. In
other words there is no long range crystalline order at finite-T in two dimensions. Because
of thermal fluctations, positional order is eventually lost at long distances, though locally
there will be a good crystalline arrangement. This was known in the 1930’s through the
work of Landau (see Landau and Lifshitz, Statistical Mechanics), and Peierls, (Quantum
Theory of Solids) and was made rigorous in the 1960’s through the work of Mermin, Wagner,
and Hohenberg, see especially N.D. Mermin. J. Math. Phys. 8 1061 (1967). Since the
divergence is weak, and since it turns out that there is long range orientational order, see
Halperin and Nelson, Phys. Rev. 19, 2467 (1979), the delta function Bragg peaks are
replaced by cusp-like divergences of the form |q−G|−[2−ηG(T )], where ηG(T ) is an exponent
which varies with T and G.

• In one dimension, not only is there no Bragg peak (long range positional order) at finite-T
but now, additionally, zero point fluctuations destroy long range order even at T = 0. You
should show that the divergence is power law at finite-T but only logarithmic at T = 0.

• These last results just depend on there being at least one acoustic phonon branch with a
linear dispersion relation. It is quite easy to see that they do not depend on the assumption
made above of one atom per unit cell. However, all our calculations have used the harmonic
approximation. One might worry that the conclusions would be changed if we relax this.
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Although, it might seem impossibly difficult to to get exact results when anharmonic
interactions are included, this turns out not to be the case, and the work of Mermin, Wagner
and Hohenberg shows rigorously that the above conclusions about lack of translational order
in low dimensions, found within the harmonic approximation, are correct.

Appendix

First of all we will derive Eq. (14), i.e.

eβHce−βH = e−βǫc, (27)

where H is the free particle Hamiltonian in Eq. (5). Defining

F (τ) = eτHce−τH, (28)

and differentiating with respect to τ gives

dF

dτ
= eτH[H, c]e−τH (29)

= −ǫeτHce−τH (30)

= −ǫF (τ). (31)

Solving this equation with the boundary condition F (0) = c gives Eq. (14).
Finally, we derive Eq. (6). Let us write

e(A+B)τ = eAτeBτf(τ), (32)

where τ is a c-number. Then
f(τ) = e−Bτe−Aτe(A+B)τ , (33)

and, differentiating with respect to τ gives

df

dτ
= −e−Bτ [B, e−Aτ ]e(A+B)τ . (34)

We evaluate the commutator [B, e−Aτ ] using the result

[B,An] = n[B,A]An−1, (35)

valid if [B,A] is a c-number, which is obtained by successively moving the factor of B through
the n factors of A one place at a time. Hence

[B,F (A)] = [B,A]F ′(A), (36)

where F is any function, and the prime denotes a derivative. For the case of interest here, this
gives

[B, e−Aτ ] = −[B,A]τe−Aτ . (37)

Substituting into Eq. (34) then gives

df

dτ
= −[B,A]τe−Bτe−Aτe(A+B)τ , (38)

= −[B,A]τf(τ). (39)

Integrating, and using the boundary condition that f(0) = 1, which is obvious, gives the desired
result, Eq. (6).
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