
PHYSICS 231

Homework 2

Due in class, Friday October 14

Rescheduling of two lectures:

There will be no lecture on Monday October 17 and Wednesday October 19. Instead there will be
makeup lectures on Thursday October 20 and October 27, 12:00–1:10 pm. in ISB 231.

1. Diatomic Linear Chain

Consider a linear chain in which alternate ions have masses M1 and M2, and only nearest neighbors
interact.

(a) Show that the dispersion relation for normal modes is

ω2 =
K

M1M2

(

M1 + M2 ±
√

M2
1

+ M2
2

+ 2M1M2 cos ka

)

, (1)

where K is the spring constant, and a is the size of the unit cell (so the spacing between
atoms is a/2).

(b) Discuss the form of the dispersion relation and the nature of the normal modes when M1 ≫
M2.

(c) Determine the dispersion relation when M1 − M2 → 0 and compare with that of the
monatomic linear chain discussed in class.

2. Nearest neighbor spring model

Consider a three-dimensional monatomic Bravais lattice in which each ion only interacts with its
nearest neighbors. Assume that the interaction between neighboring ions is given by a Hooke’s
law potential,

φ(ri − rj) = 1

2
K(|ri − rj | − d)2, (2)

where d is the equilibrium spacing between the atoms, and K is a spring constant. n.b. This
model is equivalent to assuming that the atoms are connected by springs.

Show that the frequencies of the three normal modes for each wave vector k are given by

ωs(k) =

√

λs(k)

M
, (3)

where M is the mass and the λs(k) are eigenvalues of the 3 × 3 matrix:

Dµν(k) = 2K
∑

R 6=0

sin2
(

1

2
k · R

)

R̂µR̂ν , (4)

where the sum is over the nearest neighbors of the point R = 0, and R̂ is a unit vector in the
direction of R.
n.b. You may find Eqs. (22.59) and (22.11) of Ashcroft and Mermin are a convenient starting
point.

3. Normal modes of a fcc lattice

Consider the spring model for normal modes in the last question and apply it to the fcc lattice
where the 12 nearest neighbor vectors are given by

a

2
(±x̂ ±ŷ),

a

2
(±ŷ ±ẑ),

a

2
(±ẑ ±x̂). (5)
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(a) Show that when k is in the (100) direction, k = (k, 0, 0), then one normal mode is longitudinal
with frequency

ωL = 2

√

2K

M
sin 1

4
ka, (6)

and the other two are transverse and degenerate with frequency

ωT = 2

√

K

M
sin 1

4
ka. (7)

(b) Next consider k to be in the (111) direction, k = (k̄, k̄, k̄) so k = 31/2k̄. Show that one
normal mode is longitudinal with frequency

ωL = 2

√

2K

M
sin 1

2
k̄a, (8)

and the other two are transverse and degenerate with frequency

ωT =

√

2K

M
sin 1

2
k̄a. (9)

(c) Consider k to be in the (110) direction, k = (k̄, k̄, 0) so k = 21/2k̄. Show that one normal
mode is longitudinal with frequency

ωL = 2

√

K

M

(

sin2 1

4
k̄a + sin2 1

2
k̄a

)

, (10)

one is transverse and polarized along the z-axis with frequency

ωT1
= 2

√

2K

M
sin 1

4
k̄a, (11)

2



and the third is is transverse and polarized perpendicular to the z-axis with frequency

ωT2
= 2

√

K

M
sin 1

4
k̄a. (12)

A sketch of the (110) dispersion relations is shown. Note that it is quite similar to the
observed dispersion relation of Al shown, in Fig. (22.13) of Ashcroft and Mermin.

4. Specific heat of a one-dimensional model

We showed in class that the phonon dispersion relation of a one-dimensional chain of atoms with
nearest–neighbor harmonic forces is

ω = ω0 sin(k/2), (13)

in units where the lattice spacing, a, is set to unity, and where ω0 is the maximum phonon
frequency.

(a) Compute the group velocity and show that the density of states per atom is given by

ρ(ω) =
2

π

1
√

ω2
0
− ω2

, (14)

for 0 < ω < ω0 and zero otherwise. (n.b. You should verify that
∫

ρ(ω) dω = 1 as required
in one-dimension.)

(b) Explain physically why the density of states diverges as ω → ω0. (n.b. This is an example of
a Van Hove singularity.)

(c) In the Debye theory one takes an approximate form for the density of states, ρD(ω), as
follows; the form of ρ(ω) obtained at low frequency is assumed to be valid at all frequencies
up to a cut-off, ωD, determined by the requirement that

∫

ρ(ω) dω is correctly given.
One defines h̄ωD = kBΘD, where ΘD is the Debye temperature. Determine ρD(ω) and show
that

ωD =
π

2
ω0. (15)

(d) Sketch ρ(ω) and ρD(ω).

(e) Show that the Debye specific heat per atom in one dimension is given by

CD

kB
=

T

ΘD

∫

ΘD/T

0

x2ex

(ex − 1)2
dx. (16)

(f) Consider the limit T → 0, in which case the upper limit in the integral can be sent to ∞.
By expanding the integral in powers of exp(−x), integrating each term, and using the result
that

ζ(2) ≡
∞
∑

n=1

1

n2
=

π2

6
, (17)

show that
CD

kB
=

π2

3

T

ΘD
(T → 0) . (18)

(g) Consider the limit T → ∞. Show that

CD

kB
= 1 (T → ∞) , (19)

which is the Dulong-Petit law in one-dimension.
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(h) Show that the specific heat obtained using the exact density of states is given by

C

kB
=

2

π

1

t2

∫ π/2

0

esin φ/t sin2 φ

(esin φ/t − 1)2
dφ, (20)

where t = kBT/h̄ω0.

(i) Evaluate this last expression in the limits T → 0 and T → ∞ and show that the Debye
theory results, Eqs. (18) and (19), are correct in these limits.
n.b. This is not a surprise since the Debye theory is cooked up precisely to get these two
limits correct. For intermediate temperatures the Debye theory does not agree with the exact
calculations, see the figure. However, considering it makes a very crude approximation for
the density of states (see your answer to problem (4d) ), the agreement for the specific heat
is not too bad. This is because the specific heat is given by a rather crude average over the
density of states and is insensitive to its detailed structure.

5. Van Hove singularities in two and three dimensions

You showed in the previous question that a maximum in the phonon dispersion curve in one
dimension gives rise to an inverse square root divergence in the density of states. Show that
in two dimensions, a maximum gives a discontinuity in the density of states and that in three
dimensions it gives a square root cusp.
n.b. Take the dispersion to be of the form

ω = ω0 − A|k − k0|
2 (A > 0) (21)

near the maximum at k = k0, ω = ω0.
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