
PHYSICS 231

Homework 6

The final exam will be in class, Wednesday December 7, 4:00 - 7:00 pm. The exam will be closed book
but you can bring one sheet of notes, if you wish. The topics on the exam will be closely related to the
topics covered in the homework assignments. Hence part of your preparation for the exam should be to
go over the HW questions. Solutions are available on the class website (except for the last assignment).
However, you are also expected to read related material in one of the recommended books, Mardar or
Ashcroft and Mermin.

This homework must be handed in, at the latest, at the final exam.

1. Statistics of Donor Levels

In the standard treatment of donor levels one assumes that the energy to have two electrons
(of opposite spin) in a donor level is very high (because of Coulomb repulsion), so this state is
neglected. Here we do not neglect this state but assign it an energy 2ǫd + ∆.

(a) Show that the mean number of electrons in the donor levels (per unit volume), nd is given
by

nd = Nd
1 + e−β(ǫd−µ+∆)

1

2
eβ(ǫd−µ) + 1 + 1

2
e−β(ǫd−µ+∆)

, (1)

where Nd is the concentration of donor impurities.

(b) Show that this reduces to the expected result for independent electrons as ∆ → 0 and to the
Eq. (28.32) of AM for ∆ → ∞.

(c) In reality a donor impurity may have many bound states rather than just one as assumed
above (think of the hydrogen atom). Show that the appropriate generalization of Eq. (28.32)
of AM is

Nd

1 + 1

2

(
∑

i e
−β(ǫi−µ)

)

−1 . (2)

(d) Indicate how (if at all) this result alters the results described on pages 582-584 of AM.

2. Impurity Orbits

Indium Antimonide has an energy gap Eg = 0.23 ev; dielectric constant ε = 18 and conduction
band effective mass mc = 0.015m. Calculate

(a) the donor ionization energy;

(b) the radius of the ground state orbit.

(c) At what minimum donor concentration will appreciable overlap effects between the orbits of
adjacent impurity atoms occur?

This overlap will produce an impurity band, i.e. a band of energy levels which permits conductivity
through the electrons hopping directly from one impurity level to another without needing to be
excited to the conduction band.

3. Interpretation of Cyclotron Resonance Data
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(a) Compare the cyclotron resonance signal from silicon, AM Fig. 28.9b, with the geometry of
the conduction band ellipsoids in Fig. 28.5, and explain why there are only two electron
peaks although there are six pockets of electrons.
Note: The direction of the field is

(

sinψ√
2
,
sinψ√

2
, cosψ

)

, (3)

with ψ = 30◦.
Note also that if θ is the direction of the field with respect to the direction of the major axis
of the constant energy ellipsoid, then the cyclotron effective mass mc is given by

(

1

mc

)2

=
cos2 θ

m2
t

+
sin2 θ

mlmt
, (4)

where mt and ml are the transverse and longitudinal band masses, see e.g. Kittel Ch. 8.
This result can be derived from the result of Qu. 1 Homework 5.

(b) Verify that the positions of the electron resonances in Fig. 28.9b are consistent with the
electron effective masses for silicon on AM page 569 and the expression for the resonance
frequency.

4. Constraint on Carrier Densities

(a) Consider a doped semiconductor with more donor than acceptor levels, i.e.Nd ≥ Pa. Describe
the electronic configuration at T = 0.

(b) Show that for T 6= 0, the carrier concentrations are given, in the notation of AM (except
that I find it more consistent to use Pa than Na) by

nc + nd −Nd = pv + pa − Pa. (5)

(c) Describe the electronic configuration at T = 0 of a doped semiconductor where Nd < Pa.

(d) Explain why Eq. (5) continues to hold in this limit.

5. Carrier Density in a Doped Semiconductor

Consider a doped semiconductor with a concentration of Nd donor impurities and no acceptor
impurities. Assume that the gap from the valence to the conduction band is sufficiently large that a
negligible number of electrons are excited out of the valence band, which can therefore be neglected
in what follows. (At really high temperatures a significant density of carriers is excited from the
valence to the conduction band, leading to another regime with nc(T ) ≃ Nc(T ) exp(−Eg/(2T )),
as discussed in class.) Also assume that ǫc − µ(T ) ≫ kBT . It can be shown that this is a good
approximation in the two limiting cases in §5d and §5e below, but may not be adequate in the
intermediate regime, where x(T ), defined below, is of order unity.

(a) Show that if the concentration of electrons in the conduction band is nc(T ) and in the
impurity states is nd(T ) then

nc(T ) = Nd − nd(T ). (6)

(b) Hence show that if µ(T ) is the chemical potential and Nc(T ) is given by

Nc(T ) =
1

4

(

2mckBT

πh̄2

)3/2

, (7)
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where mc is the effective mass of the electrons in the conduction band,1 then Eq. (6) can be
written

Nc(T )e−β(ǫc−µ(T )) = Nd

(

1 − 1
1

2
eβ(ǫd−µ(T )) + 1

)

, (8)

where ǫc is the energy of the bottom of the conduction band and ǫd is the energy of the
impurities.

(c) Show from this that µ(T ) is given by

µ(T ) = ǫd + kBT ln

[

−1 +
√

1 + 8x(T )

4

]

, (9)

where

x(T ) =
Nd

Nc(T )
eβ(ǫc−ǫd). (10)

Let us define a temperature Td by

Nc(T ) = Nd

(

T

Td

)3/2

, (11)

where

Td =
πh̄2

2mckB
(4ND)2/3, (12)

so

x(T ) =

(

Td

T

)3/2

eβ(ǫc−ǫd). (13)

Note that two temperature scales enter: Td which is determined by the density of impurities
and the curvature of the conduction electron band, and (ǫc − ǫd)/kB which is determined
by the energy of the impurity states. The existence of two temperature scales complicates
somewhat the analysis.

Note also that x(T ) is much less than unity at high temperatures, monotonically increases
as T decreases, and diverges as T → 0. It is therefore also convenient to define another
temperature scale, T0 (related to Td and ǫc − ǫd) by x(T0) = 1, i.e.

(

T0

Td

)3/2

= e(ǫc−ǫd)/(kBT0). (14)

Note that T0 > Td. If ǫc−ǫd ≪ kBT0 then T0/Td ≃ 1, but in the opposite limit, ǫc−ǫd ≫ kBT0,
one has T0 ≫ Td.

(d) Show that at high temperatures, T ≫ T0, i.e. x(T ) ≪ 1 ,

µ(T ) = ǫc −
3

2
kBT ln

(

T

Td

)

(15)

nc(T ) = Nd, (16)

i.e. the donors are fully ionized so the concentration of electrons in the conduction band is
independent of T (in this range).

1For a precise definition of mc see the comment in AM after Eq. (28.15).
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(e) Show that in the low temperature limit, T ≪ T0, i.e. x(T ) ≫ 1

µ(T ) =

(

ǫc + ǫd
2

)

+ kBT

[

3

4
ln

(

Td

T

)

− 1

2
ln 2

]

(17)

nc(T ) =
Nd√

2

(

T

Td

)3/4

e−β(ǫc−ǫd)/2, (18)

i.e. only a small fraction of the impurity levels are thermally ionized and the concentration
of electrons in the conduction band decreases rapidly with decreasing temperature.

(f) Consider a semiconductor with Nd = 1015/cm3, ǫc − ǫd = 2 mev and mc = 0.01m. Consider
the system at (i) T1 = 300 K, and (ii) T2 = 4 K. Which of the limits of the last two sections
is the system in for T = T1 and T = T2? Hence determine nc(T1) and nc(T2).
Hint : The numerical expression in Eq. (28.16) of AM may be useful.

4


