Tight Binding Density of States

Here are plots of densities of states for the tight-binding Hamiltonian for “cubic” lattices in several dimensions. In
these figures I have set the minimum energy to be zero. For example, in three dimensions the energy is given by

(k) = t[6 — 2(cos kya + cos kya + cosk.a)). (1)

There are analogous expressions for other dimensions.

Note the Van Hove singularities, which have the form of a square root divergence in one dimension, a discontinuity
or log divergence in two dimensions, and a square root cusp in three dimensions.

The density of states in six dimensions is close to a Gaussian. In fact, one can show that the density of states
becomes precisely a Gaussian when the dimension d tends to infinity.
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Also shown is the dispersion relation in some directions for the honeycomb lattice. (Here I have taken the center
of the energy bands to be zero, rather than the minimum energy to be zero.) You are required to derive these results
in a homework question.
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