
The Logistic Map

 Introduction
One of the most challenging topics in science is the study of chaos. As an example of chaos, consider fluid flowing
round an object. If the velocity of the fluid is not very large the fluid flows in a smooth steady way, called "laminar
flow", which can be calculated for simple geometries. However, if the velocity is increased the flow becomes more
complicated, and depends on time and space in a non-trivial way which is essentially impossible to calculate. This
"turbulent" behavior is called "chaos".

Note that chaos does not mean that the behavior is completely random; one does see recognizable structures, such as
little whirlpools, called "vortices", but it is very complicated. The reason that chaotic behavior is essentially impossible
to calculate is that the future behavior of the fluid depends in a very sensitive way on what the fluid is doing now. If
we consider two configurations of the velocity field, which differ only by a very small amount, then, in the chaotic
regime, those differences grow exponentially time, (the coefficient in the exponential is called the "Lyapunov expo-
nent" which we will calculate in this notebook for a particular model) so that eventually the two velocity fields
become completely different. This "sensitivity to initial conditions" is generally taken as the definition of chaos.
Because the flow of air in the atmosphere is chaotic, it is impossible to predict the weather in detail for more than
about a week because we cannot integrate the equations with sufficient accuracy, even assuming that we had suffi-
ciently detailed data on the state of the weather now (which we don't).

While a lot of chaos theory was developed by Poincaré around the start of the 20th century, there were few subsequent
developments (because the field is so difficult) until, starting in the 1980s, the mass availability of computers meant
that the equations could easily be integrated numerically, and perhaps most importantly, the solutions visualized by
computer graphics.

As the velocity of the fluid increases, rather than there being a discontinuous change from laminar to turbulent flow at
a critical velocity, the motion changes only gradually as it passes the instability where it first becomes non-laminar,
and it is only at larger values of the velocity that fully developed turbulence appears. An important question, then, is
the nature of this "transition to chaos". He we will use the graphical ability of Mathematica to consider a very
simple looking model which has a transtion to chaos. There does not seem to be a single route to chaos, but the model
that we study here, shows one of them, known as "period doubling". It is, in fact, the world's simplest model with a
transition to chaos.

The Model
Most realistic systems with chaotic behavior, such as fluid flow around an obstacle, are described by a non-linear
partial differential equation, which determines how the velocity changes in space and time. We will see later in the
course that chaos also occurs in many ordinary (non-linear) differential equations. Here we will consider something
even simpler, an "iterative map". This means that starting from an initial value of a variable, x0 say, we generate a
sequence of values, x1, x2, etc. from the map (i.e. function), xn+1 = f(xn) where we here make a simple choice f(x) = 4
Λ x (1 - x), i.e.

xn+1 = 4Λ xn(1-xn),

where Λ is parameter. In other words, x1 = 4Λ x0(1-x0), x2 = 4Λ x1(1-x1), etc. We will be interested in the behavior of
successive iterations of this map, as a function of the parameter Λ. In particular we will study the behavior of the xn for
large n.

We consider Λ in the range from 0 to 1, so, if x0 is between 0 and 1, it is easy to see that all subsequent values of x
also lie in this range. In fact the largest value of xn+1(which occurs for xn= 1/2) is equal to Λ.

This so-called "logistic map" has been used as model for population dynamics, but here we just treat it as a toy
model which has a transition to chaos.

Most realistic systems with chaotic behavior, such as fluid flow around an obstacle, are described by a non-linear
partial differential equation, which determines how the velocity changes in space and time. We will see later in the
course that chaos also occurs in many ordinary (non-linear) differential equations. Here we will consider something
even simpler, an "iterative map". This means that starting from an initial value of a variable, x0 say, we generate a
sequence of values, x1, x2, etc. from the map (i.e. function), xn+1 = f(xn) where we here make a simple choice f(x) = 4
Λ x (1 - x), i.e.

xn+1 = 4Λ xn(1-xn),

where Λ is parameter. In other words, x1 = 4Λ x0(1-x0), x2 = 4Λ x1(1-x1), etc. We will be interested in the behavior of
successive iterations of this map, as a function of the parameter Λ. In particular we will study the behavior of the xn for
large n.

We consider Λ in the range from 0 to 1, so, if x0 is between 0 and 1, it is easy to see that all subsequent values of x
also lie in this range. In fact the largest value of xn+1(which occurs for xn= 1/2) is equal to Λ.

This so-called "logistic map" has been used as model for population dynamics, but here we just treat it as a toy
model which has a transition to chaos.

A first look at the properties of the model
We create the function f in Mathematica as follows:

In[5]:= Clear@"Global`*"D

In[6]:= f@x_D := 4 Λ x H1 - xL;

It is a parabola which vanishes at x = 0 and 1. We plot it for Λ = 0.4:

In[7]:= Plot@f@xD �.Λ ® 0.4, 8x, 0, 1<D

Out[7]=

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

Let us first see what happens to successive iterations for a few values of Λ. If we start with Λ < 0.25, then one can
easily show analytically that xn+1 < xn and lim n ® ¥ xHnL = 0. To verify this in Mathematica we put Λ = 0.1 and
generate a list of successive values with the Mathematica function NestList[func, x0, n], in which func(x) is the
function to be iterated, x0 is the starting value of x, and n is the number of iterations

In[8]:= Λ = 0.1; NestList@f, 0.5, 10D

Out[8]= 80.5, 0.1, 0.036, 0.0138816, 0.00547556, 0.00217823,
0.000869395, 0.000347456, 0.000138934, 0.0000555659, 0.0000222251<

Here we have set Λ = 0.1, and then iterated f(x) 10 times with the initial value 0.5. The initial value of x is unimportant
provided it is not a 0 or 1 in which case all the subsequent values of x would be zero. In this example we see that
successive values eventually tend to zero. We say that zero is a fixed point, where the initial and final values of x are
equal, i.e. X is a fixed point of the function f if

f HXL = X

It is best to see successive iterations graphically, i.e.

In[9]:= Λ = 0.1;

2 logistic.nb

In[10]:= pt = ListPlot @ 8NestList@f, 0.5, 10D, NestList@f, 0.5, 10D< , Joined ® 8True, False<,
Axes -> False, Frame -> True, FrameLabel -> 8"n", "xn"<, PlotRange -> 80, 0.12<,
Prolog -> AbsolutePointSize@8D, RotateLabel -> False, PlotLabel -> "Λ = 0.1"D

Out[10]=

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

n

xn

Λ = 0.1

We already discussed fixed point iteration in an earlier part of the class, and there we showed that a fixed point is
stable, i.e. you converge towards it if you start off not too far away, provided

f' HXL < 1

Since f'(x) = 4 Λ (1 - 2x), the fixed point at x = 0 is stable when 4Λ < 1, i.e. Λ < 0.25. For Λ > 0.25 this fixed point is
unstable, and we need to find out what happens instead.

If we start from a value of Λ greater than 0.25 but less than 0.75, successive points "flow" to a fixed point at a non-
zero value of x. However, for values of Λ a little larger than 0.75 the fixed point "bifurcates" to a "limit cycle" of
period 2. This then bifurcates again (i.e. the period doubles) at a larger value of Λ to a limit cycle with period 4. As Λ
increases the period continues to double at successively closer and closer values of Λ until, at around Λ = 0.89, the
period becomes infinity and we have chaotic behavior. This is illustrated in the following figure with four values of
Λ (Λ = 0.6, fixed point), (Λ = 0.8, period 2 limit cycle), (Λ = 0.88, period 4 limit cycle), and (Λ = 0.91, chaos):

In[11]:= Λ = 0.6;
g1 = ListPlot @ 8NestList@f, 0.5, 10D, NestList@f, 0.5, 10D< , Joined ® 8True, False<,

Axes -> False, Frame -> True, FrameLabel -> 8"n", "xn"<, PlotRange -> 80.5, 0.62<,
Prolog -> AbsolutePointSize@8D, RotateLabel -> False, PlotLabel -> "Λ = 0.6" D;

In[12]:= Λ = 0.8;
g2 = ListPlot @ 8NestList@f, 0.5, 10D, NestList@f, 0.5, 10D<, Joined ® 8True, False<,

Axes -> False, Frame -> True, FrameLabel -> 8"n", "xn"<, PlotRange -> 80.4, 0.9<,
Prolog -> AbsolutePointSize@8D, RotateLabel -> False, PlotLabel -> "Λ = 0.8" D;

In[13]:= Λ = 0.88;
g3 = ListPlot @ 8NestList@f, 0.5, 10D, NestList@f, 0.5, 10D<, Joined ® 8True, False<,

Axes -> False, Frame -> True, FrameLabel -> 8"n", "xn"<, PlotRange -> 80.3, 0.9<,
Prolog -> AbsolutePointSize@8D, RotateLabel -> False, PlotLabel -> "Λ = 0.88" D;

In[14]:= Λ = 0.91;
g4 = ListPlot @ 8NestList@f, 0.5, 10D, NestList@f, 0.5, 10D<, Joined ® 8True, False<,

Axes -> False, Frame -> True, FrameLabel -> 8"n", "xn"<, PlotRange -> 80, 1<,
Prolog -> AbsolutePointSize@8D, RotateLabel -> False, PlotLabel -> "Λ = 0.91" D;

logistic.nb 3

In[15]:= Show@GraphicsGrid@88g1, g2<, 8g3, g4<<, Spacings ® Scaled@0.05DDD

Out[15]=

0 2 4 6 8 10
0.50
0.52
0.54
0.56
0.58
0.60
0.62

n

xn

Λ = 0.6

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

n

xn

Λ = 0.8

0 2 4 6 8 10
0.3
0.4
0.5
0.6
0.7
0.8
0.9

n

xn

Λ = 0.88

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

n

xn

Λ = 0.91

The sequence towards which the x values converge is called an attractor. We have seen that an attractor may be a
fixed point, a limit cycle, or a chaotic attractor. We will be interested in the nature of the attractor as a function of Λ.

Fixed Points
In previous section, we saw that, for certain values of Λ, the sequence of xnconverges to a fixed point value X where X
= f(X).We illustrate a fixed point graphically for the case of Λ = 0.4

In[16]:= Λ = 0.4;

In[17]:= Plot@8f@xD, x<, 8x, 0, 1<, AxesLabel ® 8"x", "y"<, PlotRange ® 80, 0.5<D

Out[17]=

0.0 0.2 0.4 0.6 0.8 1.0
x

0.1

0.2

0.3

0.4

0.5

y

The fixed point value is the point of intersection of the line y = x with the curve y = f(x).

Mathematica has a convenient function called FixedPoint[f, start] for computing fixed points of maps. The first
argument is the function and the second is the starting value for x. For example, still considering Λ = 0.4, we get

In[18]:= FixedPoint@f, 0.5D

Out[18]= 0.375

FixedPoint gives a result when two successive values are exactly the same. If convergence is very slow, or if roundoff
errors prevent exact agreement, it is best to put in a less stringent test for determining whether convergence has been
reached. This is done with the option SameTest to the FixedPoint command. The following example shows how it
works.

4 logistic.nb

In[19]:= FixedPoint@f, 0.5 , SameTest ® HAbs@ð1 - ð2D < 10^-11 &LD

Out[19]= 0.375

The notation is that of a pure function, in which #1 and #2 are the arguments and the function is terminated by &.

We can find the value of Λ where the fixed point at non-zero X becomes unstable quite easily using pencil and paper.
We need to simultaneously solve

x = f HxL, f' HxL = 1

The solution is

Λ = 3 � 4, x = 2 � 3

(There is also a second solution Λ = 1/4, x = 0 which is the other limit of stability of the x ¹ 0 fixed point; as we have
seen, for Λ < 0.25 the stable fixed point is at x = 0.) Mathematica will also give us the above result

In[20]:= Clear@x, ΛD

In[21]:= Solve@81 � 4 Λ H1 - xL, 1 � Abs@ 4 Λ H1 - 2 xLD<, 8x, Λ<D

Out[21]= ::x ® 0, Λ ®

1

4
>, :x ®

2

3
, Λ ®

3

4
>>

Let's plot f(x) and x at the borderline case Λ = 0.75.

In[22]:= Λ = 0.75;

In[23]:= Plot@8f@xD, x<, 8x, 0, 1<, AxesLabel ® 8"x", "y"<, PlotRange ® 80, 0.8<D

Out[23]=

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

y

We see that f '(X) < 0 (X is the intersection point). Since the magnitude of the derivative is 1, we have |f '(X)| = -1.

We have seen that for certain choices of Λ bigger that 0.75 successive values converge to a limit cycle of length 2. This
is a fixed point of the twice iterated function f(f(x)). Lets call this f2(x). First we Clear Λ and x (we don't want to
Remove Λ because Remove not only removes information about Λ but also removes Λ from the list of variables that
Mathematica knows about; this gives problems when defining f2. Clear just removes the information about Λ):

In[24]:= Clear@ Λ, xD

In[25]:= f2@x_D = f@f@xDD

Out[25]= 16 H1 - xL x Λ
2 H1 - 4 H1 - xL x ΛL

Let's take Λ = 0.8, where we found above that the system goes into a limit cycle of length 2

In[26]:= Λ = 0.8;

logistic.nb 5

and plot y=f2 (as well as y=x) against x

In[27]:= Plot@8f2@xD, x<, 8x, 0, 1<, AxesLabel ® 8"x", "y"<D

Out[27]=

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

y

We see that there are now 3 fixed points. The middle one is also a fixed point of f (note that any fixed point of f is also
a fixed point of f2). See the plot below which also includes f (the parabola).

In[28]:= Plot@8f2@xD, x, f@xD<, 8x, 0, 1<, AxesLabel ® 8"x", "y"<D

Out[28]=

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

y

We can locate this fixed point using FindRoot (not FixedPoint because it is untable)

In[29]:= unstableFP = FindRoot@ f@xD � x, 8x, 0.7<D

Out[29]= 8x ® 0.6875<

This fixed point is unstable because | f2'| (and also | f ' |) is greater than 1 at this value of x. Indeed, one can see from
the figure above that f2[x] has a greater slope at the middle fixed point than the slope of x (i.e. its slope is greater than
1). We can also find the precise numerical values of the derivative of f and f2 at this fixed point,

In[30]:= 8f'@xD �. unstableFP, f2'@xD �. unstableFP<

Out[30]= 8-1.2, 1.44<

showing that they are greater in magnitude than 1, confirming that the fixed point at 0.6875 is unstable.

The other two are fixed points of f2 (the two values of x correspond to the values of x in the period-2 cycle of f) and
these are stable because |f2'| < 1 at these values of x, as is clear from the above figure and which we shall confirm
quantitatively.

We can find the stable fixed points of f2 using the FixedPoint command

6 logistic.nb

In[31]:= stableX = FixedPoint@f2, 0.5, SameTest ® HAbs@ð1 - ð2D < 10^-11 &LD

Out[31]= 0.513045

We verify that | f2' < 1 | at this value of X

In[32]:= f2'@stableXD

Out[32]= 0.16

The value 0.513045 is the lower of the two stable fixed points of f2 in the above figure. Depending on the different
initial value for x0we would converge either to this one or the other one, which is close to x=0.8:

In[33]:= stableX2 = FixedPoint@f2, 0.8, SameTest ® HAbs@ð1 - ð2D < 10^-11 &LD

Out[33]= 0.799455

In[34]:= f2'@stableX2D

Out[34]= 0.16

These last results are for Λ = 0.8, where the fixed point of f2 (2-cycle of f) is stable. We now ask Mathematica to tell us
where this attractor becomes unstable. We will help Mathematica by specifying that the derivative is -1 (rather than
+1) at the instability point (We can see this, for example from the figure below, which is for Λ = 0.86, near the limit of
stability. The stable fixed point values of f2 are the first and third fixed points (not counting the trivial one at 0), as
discussed above, which are near 0.4 and 0.9. The derivative is clearly negative there. The intermediate fixed point, at
about 0.7 is unstable since one can see from the figure that its derivative is greater than 1. (Remember that the slope of
the straight line is one.)

In[35]:= Clear@ΛD

In[36]:= Plot@8f2@xD �.Λ ® 0.86, x<, 8x, 0, 1<D

Out[36]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

In[37]:= Clear@ΛD

logistic.nb 7

In[38]:= Solve@8f2@xD � x, f2'@xD � -1<, 8x, Λ<D

Out[38]= ::x ® 0, Λ ® -

ä

4
>, :x ® 0, Λ ®

ä

4
>, :x ®

3

5
-

ä

5
, Λ ®

1

2
-

ä

4
>,

:x ®

3

5
+

ä

5
, Λ ®

1

2
+

ä

4
>, :x ®

1

10
4 - 6 - 14 + 4 6 , Λ ®

1

4
J1 - 6 N>,

:x ®

1

10
4 - 6 + 14 + 4 6 , Λ ®

1

4
J1 - 6 N>,

:x ®

1

10
4 + 6 - 14 - 4 6 , Λ ®

1

4
J1 + 6 N>,

:x ®

1

10
4 + 6 + 14 - 4 6 , Λ ®

1

4
J1 + 6 N>>

There are several solutions. To see which we want it is useful to compute the numerical values:

In[39]:= Λ �. N@%D

Out[39]= 80. - 0.25 ä, 0. + 0.25 ä, 0.5 - 0.25 ä, 0.5 + 0.25 ä, -0.362372, -0.362372, 0.862372, 0.862372<

The only solution with Λ real and positive is Λ = (1 + 6)/4 = 0.86237. At this value of Λ, the 2-cycle becomes
unstable and gives way to a 4-cycle.

We can test for 4-cycles by looking at the fourth iterated function f4(x) = f2(f2(x)):

In[40]:= Clear@ Λ, xD

In[41]:= f4@x_D = f2@f2@xDD

Out[41]= 256 H1 - xL x Λ
4 H1 - 4 H1 - xL x ΛL I1 - 16 H1 - xL x Λ

2 H1 - 4 H1 - xL x ΛLM

I1 - 64 H1 - xL x Λ
3 H1 - 4 H1 - xL x ΛL I1 - 16 H1 - xL x Λ

2 H1 - 4 H1 - xL x ΛLMM

We take Λ = 0.88 where above we found a length-4 cycle:

In[42]:= Λ = 0.88;

This length-4 cycle is confirmed because we find a fixed point of f4:

In[43]:= FixedPoint@f4, 0.5, SameTest ® HAbs@ð1 - ð2 D < 10^-11 &L D

Out[43]= 0.512076

This value for x is one of the 4 values on the 4-cycle of f to which the trajectory converges. Starting with different
values for x0,we could converge to the other values of x.

Using Mathematica, we can determine where the stable fixed point of f4 (4-cycle of f) becomes unstable. Since this is
too complicated to solve analytically, and since NSolve gives a large number of roots, I prefer to use FindRoot, giving
a reasonable initial guess based on the results from the iterations.

In[44]:= Λ �. FindRoot@8f4@xD � x, f4'@xD � -1<, 8x, 0.88<, 8Λ, 0.9<D

Out[44]= 0.886023

For Λ > 0.886023 the 4-cycle gives way to an 8-cycle. We can also find where the higher order cycles become unsta-
ble, though the calculations become increasingly complicated and require quite accurate initial guesses for the parame-
ters Λ and x. For, example, to determine where the 8-cycle becomes unstable I find

In[45]:= Clear@ΛD

In[46]:= f8@x_D = f4@f4@xDD ;

In[47]:= Λ �. FindRoot@8f8@xD � x, f8'@xD � -1<, 8x, 0.891<, 8Λ, 0.891<D

Out[47]= 0.891102

To conclude this section, we have seen that if the results of successive iterations of the map suggest that there is
convergence to a fixed point, or limit cycle of a certain length, it is useful to confirm this hypothesis with the Fixed-
Point command. We can also use the stability criterion |fn'(X)| < 1 (where fn(x) is the n-th iterate of f(x)) to determine
where cycles of length n become unstable, using Mathematica's commands, Solve, NSolve and FindRoot.

8 logistic.nb

To conclude this section, we have seen that if the results of successive iterations of the map suggest that there is
convergence to a fixed point, or limit cycle of a certain length, it is useful to confirm this hypothesis with the Fixed-
Point command. We can also use the stability criterion |fn'(X)| < 1 (where fn(x) is the n-th iterate of f(x)) to determine
where cycles of length n become unstable, using Mathematica's commands, Solve, NSolve and FindRoot.

General Behavior
We now investigate systematically the behavior as a function of Λ. It is convenient to define a function which will
iterate the map n times. Furthermore, the ultimate behavior, such as fixed point or limit cycle, only appears after an
initial number of iterations during which the x values are in the process of "converging" to the limiting behavior. The
length of this "initial transient" increases as one approaches a bifurcation point where the period doubles. We therefore
want our function to drop the first m, say, iterations and only print a list of the remaining n-m values. The former is
accomplished by the Mathematica commnd Drop so we define

In[48]:= iterate @ m_, n_D := Drop @ NestList @f, 0.5, nD, mD

We will use Mathematica commands to display the points in the (x, Λ) plane. We display a point by the command
Point, so we define the following function:

In[49]:= drawpt@y_D := Point@8Λ, y<D

The result of a the command Point, and related commands, is a "graphics element". Graphics elements can be com-
bined together with the Graphics command to produce a "graphics object" which can then be plotted with the
command Show.

Here, we want to plot a point for each of the values of x generated by our function iterate. For this we use the Mathe-
matica function Map[drawpt, list] which applies (maps) the function drawpt to each element of list. The following
function, graph, sets up the lists of points that will be plotted:

In[50]:= graph@Λmin_, Λmax_, nΛ_, mdrop_, n_D := Graphics @ 8PointSize@0.001D,
Table @ Map@drawpt, iterate @mdrop, n D D, 8Λ, Λmin, Λmax, HΛmax - ΛminL � nΛ< D<D

This takes nΛ values of Λ between Λmin and Λmax and, for each of these, makes a list of the first n iterates of f, starting
with x=0.5, but dropping the first mdrop values. These points can now be plotted using the Show command below, in
which we have also given some useful plot options.

logistic.nb 9

In[51]:= Show@graph@0.72, 1, 400, 300, 700D, Axes ® False, Frame ® True,
FrameLabel ® 8"Λ", "x"<, PlotRange ® 880.72, 1.02<, 80, 1<<, AspectRatio ® 1D

Out[51]=

0.75 0.80 0.85 0.90 0.95 1.00
0.0

0.2

0.4

0.6

0.8

1.0

Λ

x

This figure just shows the region for Λ > 0.72, which is the most interesting part. For smaller values of Λ one always
has a fixed point, which is at 0 for Λ < 0.25 and at a non-zero value for 0.25 < Λ < 0.75. This figure just shows the
attactors, the sets of values of x towards which the iterations converge, for different values of Λ. There can also be
unstable fixed points and limit cycles, which we don't see. For example the fixed point which is stable for Λ < 0.75,
continues smoothly for Λ > 0.75, but it becomes unstable, so the iterations don't flow towards it and hence it does not
appear on the plot for Λ > 0.75. Instead, the stable attractor, a length-2 cycle, appears in the figure for Λ just greater
than 0.75.

Notice how rich the behavior is for Λ > 0.75. We not only see the period doubling cascade, discussed above,
starting at 0.75 and leading to chaos at about 0.89, but in addition there are "windows" of limit cycle behavior even in

the region from 0.89 to 1. The largest of these, which starts at Λ = (8 + 1N �4 = 0.9571... has a period 3 limit cycle,

which then undergoes period doubling with periods 6, 12, 24 etc. until one enters again into a chaotic regime. The
plot below, which enlarges this region, shows the period doubling cascade of the middle branch of the period 3 limit
cycle,

10 logistic.nb

In[52]:= Show@graph@0.96, 0.963, 400, 300, 700D, Axes ® False, Frame ® True,
FrameLabel ® 8"Λ", "x"<, PlotRange ® 80.455, 0.525<, AspectRatio ® 1D

Out[52]=

0.9600 0.9605 0.9610 0.9615 0.9620 0.9625 0.9630

0.46

0.47

0.48

0.49

0.50

0.51

0.52

Λ

x

Notice that, even in this greatly enlarged view, one sees the same period doubling structure on smaller and smaller
scales. One can continue to expand the scale of the plot to show even smaller scales, limited in practice only by
numerical precision.

Note too that there is structure in the density of points even in the chaotic regime.

The separations between successive values of Λ where the period doubles get closer and closer together as the period

increases. Let us define Λk to be the value of Λ at which the 2k-1period becomes unstable resulting in a 2k cycle, so, for

example, Λ0 = 1 �4, Λ1 = 3 �4, Λ2 = J 6 + 1N �4 > 0.8624... , Λ3 > 0.8860. Successive differences Λk - Λk-1 are

then in a geometric ratio (at least for large k), and the inverse of this, denoted by ∆, is called the Feigenbaum constant,
i.e.

∆ = Lim
k®¥

Λk - Λk-1

Λk+1 - Λk

Its value is about 4.6692... . This number is important because it is "universal", i.e. the same value is obtained for a
wide range of functions (actually any function with a quadratic maximum), not just f(x) = 4 Λ x (1 - x). Furthermore,
for any given function, it is the same for all the period doublings which occur at different parameter values (here the
parameter varied is Λ).

To conclude this section, who would have thought that the simple looking map in the first equation would have the
amazingly rich behavior shown in the last two figures. This richness was only fully appreciated once computers and
computer graphics had developed to the point that figures like these could readily be produced.

Lyapunov Exponent
A defining feature of a chaotic system is sensitivity to initial conditions. If two trajectories which start off close to
each other deviate more and more with increasing time, the system is said to be chaotic. The rate at which nearby
trajectories deviate from each other with time is characterized by a quantity called the Lyapunov exponent. Here we
discuss the Lyapunov exponent for the logistic map.

logistic.nb 11

A defining feature of a chaotic system is sensitivity to initial conditions. If two trajectories which start off close to
each other deviate more and more with increasing time, the system is said to be chaotic. The rate at which nearby
trajectories deviate from each other with time is characterized by a quantity called the Lyapunov exponent. Here we
discuss the Lyapunov exponent for the logistic map.

Consider two iterations of the logistic map starting from two values of x which are close together. Let the two starting
values be x0 and x0 + ∆x0. These map to x1 and x1 + ∆x1, ..., xn + ∆xn. Expanding f(x) about xnwe have

∆xn = f' Hxn-1L ∆xn-1

assuming that ∆xn is sufficiently small. Hence the separation of two trajectories after n steps, ∆xn, is related to their
initial separation, ∆x0, by

∆xn

∆x0

= ä
i=0

n-1

f' HxiL .

We expect that this will vary exponentially at large n like

∆xn

∆x0

= eΛL n Hlarge nL

and so we define the Lypunov exponent ΛL by

ΛL = Lim n ® ¥

1

n
â
i=1

n

ln f' HxiL .

If ΛL> 0 neighboring trajectories diverge from each other at large n, which corresponds to chaos. However if the
trajectories converge to a fixed point or limit cycle they will get closer together, which corresponds to ΛL< 0.

Hence we can determine whether or not the system is chaotic by the sign of the Lyapunov exponent.

Below we calculate the Lyapunov exponent for some values of the parameter Λ (not to be confused with the Lyapunov
exponent ΛL).

The Lyapunov exponent, which we call lya, is obtained by generating a list of xi using NestList. The average of the
elements of the a list can be very elegantly calculated in Mathematica using Apply[Plus, list] and dividing by Length-
[list]. Hence the average of ln | f'(x)| is given by

In[53]:= lya @l_, xinit_, n_, ndrop_D := HΛ = l; xlist = Drop@ NestList@f, xinit, nD , ndrop + 1 D;
Apply@ Plus, Log@ Abs@ f'@xlistD D D D � Length@xlistDL

The following deternines ΛL for Λ=0.91, starting with x0=0.7, and averaging over 50000 iterations of the map, except
for dropping off the first 20 to allow for an initial transient.

In[54]:= lya@0.91, 0.7, 50 000, 20D

Out[54]= 0.232347

The positive value indicates that Λ=0.91 is in a region of chaos. By contrast if we specify Λ = 0.78

In[55]:= lya@0.78, 0.7, 50 000, 20D

Out[55]= -0.340998

we get a negative value, indicating that the trajectory of points xi, (i = 0, 1, 2, ,) converges to an attractor, which,
in this case we already know is a length 2 limit cycle.

Next lets plot the Lyapynov exponent for a range of values of Λ (this is slow)

12 logistic.nb

In[56]:= Plot@lya@Λ, 0.7, 5000, 2000D, 8Λ, 0.5, 1.<, AxesOrigin ® 80.5, 0<, AxesLabel ® 8"Λ", "ΛL"<D

Out[56]=

0.6 0.7 0.8 0.9 1.0
Λ

-3

-2

-1

ΛL

The main significance of this figure is that one can easily distinguish the regions which are chaotic HΛL > 0L from the
regions which tend to a fixed point or limit cycle (ΛL < 0). You see several points (the first is at Λ = 0.75) where the
Lyapuov exponent hits 0 and then goes negative again. These are the period doubling bifurcations. Precisely at the
period doubling point the system is at the limit of chaos, but then becomes non-chaotic when the period doubles.
However, at the end of the period doubling regime, at Λ about 0.8922, ΛL crosses the axis and the system enters a
chaotic regime.

Now let's speed things up with a compiled version in which the function f[x] and its derivative are hard wired in. In the
Compile command, the first argument is a list of variables which are assumed to be numerical, and the second argu-
ment is the function. It may be necessary to declare certain variables to be of a particular type such as integer. In this
case the variable name is replaced by a list of two elements, the first being the variable and the second element the data
type such as _Real or _Integer, e.g. {n, _Integer}. In the following, it is necessary that n and ndrop are declared to be
integer:

In[57]:= lyaC = Compile@8 Λ, xinit, 8n, _Integer<, 8ndrop, _Integer<<,
xlist = Drop@ NestList@4 Λ ð H1 - ðL & , xinit, nD , ndrop + 1 D;
Apply@ Plus, Log@ Abs@ 4 Λ H1 - 2 xlistLD D D � Length@xlistD D;

Note that the function f(x) = 4 Λ x(1 - x) is represented as a pure function (without a name) whose argument is repre-
sented by # and which is terminated by &.

In[58]:= lya@0.9, 0.7, 50 000, 100D �� Timing

Out[58]= 80.386764, 0.181632<

In[59]:= lyaC@0.9, 0.7, 50 000, 100D �� Timing

Out[59]= 80.170849, 0.184141<

We see that the compiled version is significantly faster.

Next we blow up the chaotic region.

logistic.nb 13

In[60]:= Plot@lyaC@Λ, 0.7, 30 000, 5000D, 8Λ, 0.85, 1.<,
AxesOrigin ® 80.85, 0<, AxesLabel ® 8"Λ", "ΛL"<D

Out[60]= 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Λ

-1.0

-0.5

0.5

ΛL

In[61]:=

Note that for Λ in the range greater than the point where ΛL first goes positive, there are many regions where ΛL is
negative, "islands of stability" where the behavior is fixed point or limit cycle.

Now we home in on the principle period doubling transition to chaos by enlarging the scale (the last figure will take
some time)

In[62]:= Plot@lyaC@Λ, 0.7, 30 000, 5000D, 8Λ, 0.892, 0.8926<,
AxesOrigin ® 80.892, 0<, AxesLabel ® 8"Λ", "ΛL"<, AxesStyle ® AutomaticD

Out[62]=

0.8921 0.8922 0.8923 0.8924 0.8925 0.8926
Λ

-0.06

-0.04

-0.02

0.02

ΛL

14 logistic.nb

In[63]:= Plot@lyaC@Λ, 0.7, 50 000, 15 000D, 8Λ, 0.892482, 0.892488<,
AxesLabel ® 8"Λ", "ΛL"<, PlotPoints ® 200, AxesStyle ® AutomaticD

Out[63]=

0.892483 0.892484 0.892485 0.892486 0.892487 0.892488
Λ

-0.010

-0.008

-0.006

-0.004

-0.002

0.002

0.004

ΛL

Notice that there is fine detail no matter how much one expands the scale. We see that chaos emerges (i.e. ΛL> 0) for Λ
between 0.892486 and 0.892487.

Numerical Precision in the Chaotic Regime
Consider the logistic map in the chaotic regime. We know that two trajectories which start off close together get
further and further apart on iterating the map. The rate of separation of the trajectories is determined by the Lyapunov
exponent ΛL, i.e.

∆xn = eΛL n
∆x0

Hence any roundoff error in the calculation will also grow like eΛL n. If Εmis machine precision, then, when Εm eΛL nis
about 1, all precision will have been lost and the results will be just noise. Hence it is not possible to predict the
value of xn for very large n in the chaotic regime. This is analogous to being unable to predict the weather arbitrarily
far into the future.

To illustrate the loss or precision, we will take Λ = 1, for which the Lyapunov exponent is known to be

ΛL = logH2L,

so

∆xn = 2n
∆x0 Hlarge nL.

Let's verify this numerically:

In[64]:= 8lyaC@1, 0.7, 200 000, 15 000D, N@Log@2DD<

Out[64]= 80.693149, 0.693147<

The numerical value of the Lyapunov exponent is very close to log 2, as claimed.

We define the map and set Λ = 1:

In[65]:= f@x_D := 4 Λ x H1 - xL

logistic.nb 15

In[66]:= Λ = 1;

We calculate the error in the result, using machine precision, after n iterations as a function of n.

In[67]:= diff@n_D := N@ Nest@f, 0.3, nD - Nest@f, N@3 � 10, 70D, nD D

In the line above, the first term on the right hand side is the result using machine precision, and the second is the result
using 70 digits of precision (which is essentially exact by comparison). The starting value is x = 3/10.

In[68]:= err = ListPlot@Table@8n, Log@10, Abs@diff@nDDD<, 8n, 2, 60<D, AxesLabel ® 8"n", "log10HerrL"<,
PlotStyle ® 8PointSize@0.02D, Hue@0D<, PlotLabel ® "HMachine PrecisionL"D

Out[68]=

10 20 30 40 50 60
n

-15

-10

-5

log10HerrL
HMachine PrecisionL

The vertical axis is log10(err) which is the negative of the number of digits of accuracy (we will call the number of
digits of accuracy the precision.) After about 55 iterations all precision has been lost. The lost of accuracy is just what
one expects with an initial precision of a little better than 16 decimal places and an error growing with the Lyapunov
exponent log(2). The following is a plot of y = -16.5 + log10(2) x (note that log10(2) = 0.30103):

In[69]:= lin =

Plot@-16.5 + Log@10, 2D x, 8x, 1, 60<, PlotStyle ® 8AbsoluteThickness@2D, Hue@0.7D<D;

In[70]:= Show@err, linD

Out[70]=

10 20 30 40 50 60
n

-15

-10

-5

log10HerrL
HMachine PrecisionL

16 logistic.nb

It fits the data well:

Alternatively, we can use Mathematica's arbitrary precision numbers. In this case Mathematica only keeps the digits
that it is sure are correct. We can start with much higher precision, essentially whatever we want, but the precision
that Mathematica claims in subsequent results goes down faster with increasing n than what we found above using
machine precision. The difference occurs because, with arbitrary precision numbers, if Mathematica is not sure of the
correctness of higher order digits it does not give them.

Below we take the initial precision to be 17, hardly more than the default precision of 16, but still (since > 16) an
arbitrary precision number.

In[71]:= prec = ListPlotBTableB:n, -PrecisionBNestBf, NB
3

10
, 17F, nFF>, 8n, 2, 60<F,

AxesLabel ® 8"n", "-Precision"<, PlotStyle ® 8PointSize@0.02D, Hue@0D<,

PlotLabel ® "HInitial Precision=17L"F

General::ovfl : Overflow occurred in computation. �

General::ovfl : Overflow occurred in computation. �

Out[71]=

10 20 30 40 50 60
n

-15

-10

-5

-Precision
HInitial Precision=17L

We see that the (guaranteed) precision is lost about twice as fast as the (not-guaranteed) precision found above with
machine precision numbers. Here is a fit, with slope 0.6:

In[72]:= lin2 = Plot@-17 + 0.6 x, 8x, 1, 32<, PlotStyle ® 8AbsoluteThickness@2D, Hue@0.7D<D;

logistic.nb 17

In[73]:= Show@prec, lin2D

Out[73]=

10 20 30 40 50 60
n

-15

-10

-5

-Precision
HInitial Precision=17L

Finally we show the precision claimed by Mathematica after 200 iterations, as a function of the initial precision.

In[74]:= ListPlotBTableBPrecisionBNestBf, NB
3

10
, nF, 200FF, 8n, 5, 150<F,

PlotStyle ® 8PointSize@0.02D, Hue@0.7D<,

AxesLabel ® 8"precision", "final precision"<, PlotLabel ® "H200 iterationsL"F

General::ovfl : Overflow occurred in computation. �

General::ovfl : Overflow occurred in computation. �

General::ovfl : Overflow occurred in computation. �

General::stop : Further output of General::ovfl will be suppressed during this calculation. �

Out[74]=

20 40 60 80 100 120 140
precision

2

4

6

8

10

12

final precision
H200 iterationsL

We see that at least 120 digits of initial precision are necessary to determine x200from xn+1= 4 xn (1 - xn) (with x1=
3/10).

Overall, we have found empirically that the number of digits of precision which must be specified is about 0.6 of the
number of iterations. Hence, to determine is x10 000, we need about 6000 digits. The answer, according to my com-
puter, is 0.104373:

18 logistic.nb

We see that at least 120 digits of initial precision are necessary to determine x200from xn+1= 4 xn (1 - xn) (with x1=
3/10).

Overall, we have found empirically that the number of digits of precision which must be specified is about 0.6 of the
number of iterations. Hence, to determine is x10 000, we need about 6000 digits. The answer, according to my com-
puter, is 0.104373:

In[75]:= N@ Nest@f, N@3 � 10, 6100D, 10 000D D �� Timing

Out[75]= 80.367788, 0.104373<

What about x100 000? I found 0.625851 (it takes quite a long time) :

In[76]:= N@ Nest@f, N@3 � 10, 61 000D, 100 000D D �� Timing

Out[76]= 8109.281, 0.625851<

What is x1 000 000 ? The calculation is extremely slow. A student in a previous year's class, Dustin Gilbert, ran his
computer for a long time to get the answer, and here it is, 0.751139. (Because it takes so long to execute, this cell is
currently set to not execute when the notebook is evaluated. This option can be changed by selecting the cell by
clicking on its vertical bar on the right, going to the Cell menu, and selecting Cell Properties.)

N@Nest@f, N@3 � 10, 610 000D, 1 000 000DD �� Timing

847 924.1, 0.751139<

The calculation took 47,924 secs, a bit over 13 hours!

logistic.nb 19

