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Introduction
• What is a Quantum Computer ?

• What is the “Quantum Adiabiatic Algorithm” proposed for quantum
computers.

• Motivation for studying the complexity of the Quantum Adiabatic
Algorithm for much larger sizes than has been studied before.

• The Monte Carlo method that will be used to do this.

• Results for the a particular problem (Exact Cover).

• Conclusions .
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Quantum Computer I
The bits of a classical computer are either 0 or 1.
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Quantum Computer I
The bits of a classical computer are either 0 or 1.

The qubits of a quantum computer can be simultaneously 0 and 1.

A quantum computer with N qubits can be in a superposition of 2N

states (huge).

Can a computer gain from the parallel evolution of the 2N states?

A traditional quantum algorithm manipulates the qubits by a sequence of
quantum logic gates.
(Here we will discuss a rather different type of quantum algorithm.)

Many proposed implementations:

• Superconductor-based (Josephson junctions)

• Trapped ions

• Quantum dots

• NMR-based (e.g. phosphorous-doped silicon)

• · · ·
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Quantum Computer II
And also many experimental difficulties:

• Need to be able to couple to the qubits in order to manipulate them.

• But otherwise need to prevent coupling of bits to outside world
because this causes decoherence .

• Scalability to large number of bits.

So far, quantum computing operations have only been successfully carried
out on very small numbers of bits. However, it still interesting to consider ...
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Problem Studied I
... what problems could be studied more efficiently on quantum computer
than a classical computer if a quantum computer can eventually be built?
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Problem Studied I
... what problems could be studied more efficiently on quantum computer
than a classical computer if a quantum computer can eventually be built?

There are algorithms for some specific problems which are much more
efficient than the fastest classical algorithm.

The best known is Shor’s factoring algorithm which factors an integer of n
bits in a time which is polynomial in n, as opposed to the best classical
algorithm which takes a time of order exp(c n1/3) .
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Problem Studied: II

Here we are interested in a general class of problems: “optimization
problems” in which we need to minimize a function of N binary variables,
bi = 0, 1, with constraints.

In particular, we are interested in an important subset of optimization
problems called

NP-Hard.
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Problem Studied: II

Here we are interested in a general class of problems: “optimization
problems” in which we need to minimize a function of N binary variables,
bi = 0, 1, with constraints.

In particular, we are interested in an important subset of optimization
problems called

NP-Hard.

Interested in how the computer time, the complexity, depends on N. All
known classical algorithms have exponential complexity ,

complexity ∝ exp(const. N) .

for both “worst case” and “typical” instances.

Could a quantum computer solve typical instances of NP-Hard problems
with just polynomial complexity , i.e.

complexity ∝ Nσ ,

for some value of σ? – p.6



Quantum Adiabatic Algorithm
The Quantum Adiabatic Algorithm was proposed by Farhi et al. (2001)
as way of solving general optimization problems on a quantum computer,
see also “quantum annealing” of Kadowaki and Nishimori (1998).
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The Quantum Adiabatic Algorithm was proposed by Farhi et al. (2001)
as way of solving general optimization problems on a quantum computer,
see also “quantum annealing” of Kadowaki and Nishimori (1998).

Problem Hamiltonian HP is a function of the bits, zi = 0, 1, or equivalently
the Ising spins σz

i = 1 − 2zi = ±1.

Add a “driver Hamiltonian”, which is simple and does not commute with
HP . The simplest is a “transverse field” HD = −h

∑

i σx
i .

The total Hamiltonian is

H = [1 − λ(t)] HD + λ(t) HP ,

where the “control parameter” λ(t) varies from 0 at t = 0 to 1 at t = T ,
the running time , or complexity .
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Quantum Adiabatic Algorithm
The Quantum Adiabatic Algorithm was proposed by Farhi et al. (2001)
as way of solving general optimization problems on a quantum computer,
see also “quantum annealing” of Kadowaki and Nishimori (1998).

Problem Hamiltonian HP is a function of the bits, zi = 0, 1, or equivalently
the Ising spins σz

i = 1 − 2zi = ±1.

Add a “driver Hamiltonian”, which is simple and does not commute with
HP . The simplest is a “transverse field” HD = −h

∑

i σx
i .

The total Hamiltonian is

H = [1 − λ(t)] HD + λ(t) HP ,

where the “control parameter” λ(t) varies from 0 at t = 0 to 1 at t = T ,
the running time , or complexity .

At t = 0, just have HD. Prepare the system in its ground state. Evolve the
system slowly enough that the process is adiabatic .

At t = T , just have HP . If the evolution is adiabatic, the system is in the
ground state of HP and the problem is solved .
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Quantum Adiabatic Algorithm
The Quantum Adiabatic Algorithm is less demanding on the hardware
than algorithms like Shor’s.

The QAA gradually evolves the Hamiltonian, which is hardwired into the
connections in the computer, e.g. by changing a magnetic field, whereas
Shor’s algorithm proceeds by a series of discrete unitary transformations.

It is easier to avoid interference between the bits and to maintain quantum
coherence if changes are made gradually, rather than in a series of
discrete jumps.

Here there is real interest in the quantum computing community in
building a quantum computer which uses the QAA.

However, even if one can build one will it be more efficient than a
classical computer for NP-hard problems?
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Complexity of the QAA

How does T vary with N

in order to maintain adiabatic evolution with high probability?

λ
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Complexity of the QAA

How does T vary with N

in order to maintain adiabatic evolution with high probability?

The problem is severe at an “avoided level crossing” with a small
“minimium gap” between the ground state and the first excited state.

λ

E
0

E1

∆ minE

E

The dashed lines show a crossing
that the ground state and first excited
would have in the absence of any cou-
pling between them. However, there
is actually “level repulsion” so the two
levels, shown by the solid lines, do
not cross but have a minimum gap
∆Emin.
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Complexity of the QAA

How does T vary with N

in order to maintain adiabatic evolution with high probability?

The problem is severe at an “avoided level crossing” with a small
“minimium gap” between the ground state and the first excited state.

λ

E
0

E1

∆ minE

E

The dashed lines show a crossing
that the ground state and first excited
would have in the absence of any cou-
pling between them. However, there
is actually “level repulsion” so the two
levels, shown by the solid lines, do
not cross but have a minimum gap
∆Emin.

Landau-Zener theory . To stay in ground state, time ∝ (∆Emin)
−2.
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Quantum Phase Transition
As λ(t) is varied the system is likely to go through a Quantum Phase
Transition where the gap will be particularly small.

Hence we are, effectively interested in:

The Size Dependence of the Energy Gap at a Quantum Phase
Transition
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Early Simulations
So far: just simulations of the QAA on a classical computer.
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i.e. Polynomial complexity!
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Early Simulations
So far: just simulations of the QAA on a classical computer.

Farhi et al. (2001), Hogg (2003): integrated the time dependent
Schrödinger equation. Limited to very small sizes , N . 20–24, because
the number of basis states 2N grows exponentially.

The time to get the true ground state with some finite probability found to
vary as Nσ with σ ≃ 2.

i.e. Polynomial complexity!

But sizes are very small. Perhaps “crossover” to exponential complexity at
larger sizes.

How can we do larger sizes? Can’t include all 2N states. Need to do
some sort of sampling of the states.

=⇒ “Monte Carlo" methods

– p.11



Quantum Monte Carlo: I
In Quantum Monte Carlo (QMC) simulations, we can only study
equilibrium (time-dependent) quantum fluctuations.
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statistical mechanics e−Hβ
. We see that β ≡ T −1 is like imaginary
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Quantum Monte Carlo: I
In Quantum Monte Carlo (QMC) simulations, we can only study
equilibrium (time-dependent) quantum fluctuations.

Cannot study the (non-equilibrium) evolution of a time dependent
Hamiltonian. However, as we shall see, we can determine the gap ∆E
for each λ, and hence determine the minimum gap .

QMC depends on the correspondence between the time evolution

operator in quantum mechanics eiHt and the Boltzmann operator in

statistical mechanics e−Hβ
. We see that β ≡ T −1 is like imaginary

time .

Working through the details, one ends up with copies of the system at
different values of imaginary time τ where 0 ≤ τ < β. One discretizes
imaginary time (Trotter decomposition) into Lτ “time slices” separated by
the time-slice width ∆τ . We have

T −1 ≡ β = Lτ /∆τ .

The exact quantum mechanical Hamiltonian is reproduced in the limit
∆τ → 0. However, this limit is not necessary for our purposes. – p.12



Quantum Monte Carlo: II

2

τ∆

K
12

Kτ

K
12

K
12

Kτ

τ
β

0
1

3

Trotter decomposition in QMC.

At each time slice 3 sites are
shown. An independent spin
σz

i (τ) lives at each site and each
of the Lτ time slices. If spins i and
j have an interaction in HP , then,
each time slice, these spins inter-
act with a coupling Kij , the same
for each slice. Spins on the same
site but at neighboring time slices
are coupled by an interaction Kτ ,
again the same for all slices. (De-
tails on next slide.)

The slice at time τ = β is identi-
fied with the slice at τ = 0 (i.e. we
have periodic boundary conditions
in the imaginary time direction).
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Model simulated
One simulates an effective Hamiltonian (strictly speaking an action) in
space and imaginary time .
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Model simulated
One simulates an effective Hamiltonian (strictly speaking an action) in
space and imaginary time .

This effective Hamiltonian has:

1. couplings between different spins at the same time slice, arising from
the problem Hamiltonian:

HP ({σz}) =⇒

Lτ −1
∑

m=0

HP ({σz
i (τm)})∆τ

where τm = m∆τ , and

2. ferromagnetic couplings between different spins at the same site but
neighboring time slices arising from the driver Hamiltonian

HD = −
∑

i

σx
i =⇒ −

Lτ −1
∑

m=0

Kτ σz
i (τm)σz

i (τm+1)

where e−2Kτ = tanh(∆τ h).
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Time Dependence
We will assume that T is sufficiently low that the system is in its ground
state, i.e. T ≪ ∆E ≡ E1 − E0.
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Time Dependence
We will assume that T is sufficiently low that the system is in its ground
state, i.e. T ≪ ∆E ≡ E1 − E0.

In quantum mechanics, correlations between a spin at an initial (real) time
t0 and a later time t0 + t have the form

C(t) ≡
1

N

N
∑

i=1

〈σz
i (t0)σ

z
i (t0 + t)〉 =

1

N

N
∑

i=1

[

∑

n

∣

∣〈0|σz
i |n〉

∣

∣

2

]

ei(En−E0)t .
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∣

2

]

ei(En−E0)t .

In imaginary time, the complex exponentials are replaced by real,
decaying exponentials:

C(τ ) =
1

N

N
∑

i=1

[

∑

n

∣

∣〈0|σz
i |n〉

∣

∣

2
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ei(En−E0)t .

In imaginary time, the complex exponentials are replaced by real,
decaying exponentials:

C(τ ) =
1

N

N
∑

i=1

[

∑

n

∣

∣〈0|σz
i |n〉

∣

∣

2
e−(En−E0)τ

]

.

Hence, at large τ , we have

C(τ ) = q +
1

N

N
∑

i=1

∣

∣〈0|σz
i |1〉

∣

∣

2
e−(E1−E0)τ ,

where q = N−1
∑

i〈σ
z
i 〉2. (See next slide for some results.)
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Sample results for C(τ )

Results for the time dependent
correlation function against τ for
one instance of the Exact Cover
problem with N = 128 near the
location of the minimium gap.
Note that the vertical axis is loga-
rithmic. Fitting to the straight line
region gives a slope (equal to the
gap ∆E) equal to 0.0354.

We took Lτ = 300,∆τ = 1,
so T−1 ≡ β = 300. Hence the
condition T ≪ ∆E is well satis-
fied.
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Exact Cover Problem
We simulated the same problem as Farhi et al., namely Exact Cover .
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Exact Cover Problem
We simulated the same problem as Farhi et al., namely Exact Cover .

We have N bits and form randomly M triples of bits (known as
“clauses” ). The energy of a clause is 0 if one bit is 1 and the other two
are 0; otherwise the energy is 1. Writing in terms of spin variables,
σz

i = 1 − 2bi, the problem Hamiltonian HP is given by

HP =
1

8

M
∑

α=1

(

5 − σz
α1

− σz
α2

− σz
α3

+ σz
α1

σz
α2

+ σz
α2

σz
α3

+ σz
α3

σz
α1

+ 3 σz
α1

σz
α2

σz
α3

)

, (1)

where α1, α2 and α3 are the three spins in clause α.
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where α1, α2 and α3 are the three spins in clause α.

If there is a “satisfying assignment” the energy is zero. Otherwise the
energy is a positive integer.
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Exact Cover Problem
We simulated the same problem as Farhi et al., namely Exact Cover .

We have N bits and form randomly M triples of bits (known as
“clauses” ). The energy of a clause is 0 if one bit is 1 and the other two
are 0; otherwise the energy is 1. Writing in terms of spin variables,
σz

i = 1 − 2bi, the problem Hamiltonian HP is given by

HP =
1

8

M
∑

α=1

(

5 − σz
α1

− σz
α2

− σz
α3

+ σz
α1

σz
α2

+ σz
α2

σz
α3

+ σz
α3

σz
α1

+ 3 σz
α1

σz
α2

σz
α3

)

, (-1)

where α1, α2 and α3 are the three spins in clause α.

If there is a “satisfying assignment” the energy is zero. Otherwise the
energy is a positive integer.

Following Farhi et al. we take instances with a “Unique Satisfying
Assignment” (USA). To find these with reasonable probability, we adjust
the ratio M/N for each size N .
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Dependence of gap on λ

Results for the gap to the first excited
state ∆E as a function of the con-
trol parameter λ for one instance with
N = 64. The gap has is finite for
λ = 0 (this is due to the driver Hamil-
tonian,

P

i σx
i ). It is also finite for

λ = 1 because we chose instances
with this property (Unique Satisfying
Assignment). There is a minimum of
the gap at an intermediate value of λ,
presumably close to a

quantum phase transition.

We compute ∆Emin for many (50)
instances for several different sizes,
N = 16,32,64,128.
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Size dependence
We take the median value of the minimum gap among different instances
for a gives size N to be a measure of the “typical” minimum gap.
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Size dependence
We take the median value of the minimum gap among different instances
for a gives size N to be a measure of the “typical” minimum gap.

50 instances for each size.

A log-log plot of the median of the
minimum gap as a function of the
number of bits N up to N = 128.
From the satisfactory straight line fit,
it is seen that the median ∆Emin

decreases as a power law,

median ∆Emin ∝ N−µ,

for these sizes, with

µ = 0.73 ± 0.06.

The inset shows a log-linear plot. The
pronounced curvature shows that the
behavior is not exponential for this
range of sizes.

Expect complexity ∝ N2µ (if ma-

trix element effects are small).
– p.19



Imaginary time discretization
Note: The discretization of imaginary time does not affect the way the
complexity varies with N , though it does affect the precise value of the
energy gap for given N and λ. Once the relaxation time (∆E)−1 is much
larger than the “lattice spacing” ∆τ the lattice discretization is
unimportant. Hence, whether the minimum gap varies exponentially with
N or as a power law will not depend on the value of ∆τ .
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In the theory of continuous phase transitions this concept of
“universality” is well established. Universality means that some
(universal) quantities like “critical exponents” don’t depend on microscopic
details such as the lattice structure. Other (non-universal) quantities, such
as the location of the critical point, do depend on details.
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“universality” is well established. Universality means that some
(universal) quantities like “critical exponents” don’t depend on microscopic
details such as the lattice structure. Other (non-universal) quantities, such
as the location of the critical point, do depend on details.

Example: Exact solution of the Ising model in two dimensions. The
magnetization tends to zero as T → T −

c , like (Tc − T )β. With a lot of
work, this can be calculated on different lattices, e.g. square and
triangular. The value of Tc depends on the lattice (it is “non-universal )
but β = 1/8, the same for all lattice structures, i.e. it is “universal" .
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Note: The discretization of imaginary time does not affect the way the
complexity varies with N , though it does affect the precise value of the
energy gap for given N and λ. Once the relaxation time (∆E)−1 is much
larger than the “lattice spacing” ∆τ the lattice discretization is
unimportant. Hence, whether the minimum gap varies exponentially with
N or as a power law will not depend on the value of ∆τ .

In the theory of continuous phase transitions this concept of
“universality” is well established. Universality means that some
(universal) quantities like “critical exponents” don’t depend on microscopic
details such as the lattice structure. Other (non-universal) quantities, such
as the location of the critical point, do depend on details.

Example: Exact solution of the Ising model in two dimensions. The
magnetization tends to zero as T → T −

c , like (Tc − T )β. With a lot of
work, this can be calculated on different lattices, e.g. square and
triangular. The value of Tc depends on the lattice (it is “non-universal )
but β = 1/8, the same for all lattice structures, i.e. it is “universal" .

Note: One can simulate the ∆τ → 0 limit, but this is more complicated.
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Classical Algorithms: I

A commonly used classical algorithm
for satisfiability problems is the Davis
Putnum algorithm. This is guaranteed
to correctly say whether or not there
is a satisfying assignment. The fig-
ure shows the complexity for the in-
stances used in the QMC simulations.
It is clearly exponential for the range
of sizes studied.
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Classical Algorithms: II

A classical algorithm which is more
analgous to QAA is WALKSAT, a lo-
cal heuristic search algorithm. Like
simulated annealing, it includes “up-
hill" moves in a stochastic way. Using
the default value of the “noise param-
eter" the complexity for the QAA in-
stances with USA crosses over from
power-law to (presumably) exponen-
tial for N & 100. (But note the QMC
is so far only for N ≤ 128).
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Classical Algorithms: IIb

Adjusting the noise parameter, the
crossover to exponential behavior is
pushed to larger sizes N & 200.
(Remember: the QMC is so far only
for N ≤ 128).
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Conclusions
• Using Quantum Monte Carlo simulations (QMC) we have been able

to study the complexity of the Quantum Adiabatic Algorithm (QAA) for
the Exact Cover problem with a Unique Satisfying Assignment (USA)
for much larger sizes (up to 128) than in earlier work (20–24).
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to study the complexity of the Quantum Adiabatic Algorithm (QAA) for
the Exact Cover problem with a Unique Satisfying Assignment (USA)
for much larger sizes (up to 128) than in earlier work (20–24).

• The complexity remains polynomial up to this size.

• Despite substantial effort to build a quantum computer to implement
the QAA, it remains to be shown whether QAA is more efficient for
satisfiability problems than classical algorithms such as WALKSAT.

• Efforts are underway to improve the efficiency of the algorithm so that
larger sizes can be studied to see if a crossover to exponential
complexity can be detected.

Thank you
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