
Mathematical Methods of Physics 116A- Winter 2018

Physics 116A

Home Work # 1
Posted on Jan 11, 2018

Due in Class Jan 18, 2018

§Required Problems: Each problem has 5 points
E.g. MB 19.16 means problem #16 on page 19 in the book by M. Boas, 3rd

Edition.
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3. MB 5.6 Find the limit of the sequence.
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4. MB 5.8 Find the limit of the sequence.
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5. MB 8.6 Find the formulas and the limiting values of the sequences, an, Sn

and Rn:
The sequence formula an for the series is

an =
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,

and the limiting value is

a = lim
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an → 0 .

The formula for the partial sum sequence Sn is

Sn =

∞∑
n=1

1

n(n+ 1)
=

∞∑
n=1

(
1

n
− 1

n+ 1

)
=

(
1−

�
��1

2

)
+

(
�
��1

2
−

�
��1

3

)
+

(
�
��1

3
−

�
��1

4

)
+ · · ·+

(
�
��1

n
− 1

n+ 1

)
=

(
1− 1

n+ 1

)
,

and its limiting value is

S = lim
n→∞

Sn → 1 .

The remainder formula Rn is

Rn = S − Sn =
1

n+ 1
,



and the limiting value is

R = lim
n→∞

Rn → 0 .

6. MB 8.7 Find the formulas and limiting values of the sequences, an, Sn

and Rn:
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The sequence formula an for the series above is
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and the limiting value is
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)
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The sequence formula Sn is

Sn = {3/2,−5/3, 7/9,−9/20, . . .}
= {1 + 1/2, 1− 1/3, 1 + 1/4, 1− 1/5, . . .}
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and the limiting value is
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)
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The remainder formula Rn is

Rn = S − Sn

=
(−1)n

n+ 1
,

and the limiting value is

R = lim
n→∞

Rn → 0 .



7. MB 11.3 Use the comparison test to show that
∑∞

n=1 1/n2 converges. Note
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where limN→∞(1− 1/N) = 1, so

∞∑
n=1

1/n2 also converges.

8. MB 13.11 Use the integral test to determine the convergence or divergence
of the sum:

∞∑
n=1

1

n(1 + ln(n))3/2
.

Compute ∫ ∞ 1

n(1 + ln(n))3/2
dn .

Start by making the substition x = ln(n) where dx = (1/n)dn such that∫ ∞ 1

(1 + x)3/2
dx .

We can further simplify the integrand with the substitution y = x + 1
where dy = dx, to find∫ ∞ 1

y3/2
dy = −y

−1/2

1/2

∣∣∣∣∞ = 0.

Since the integral converges, the sum also converges.



9. MB 13.14 Use the integral test to determine if

∞∑
1

1

(n2 + 32)

converges or diverges. Compute∫ ∞ 1

(n2 + 32)
dn .

Let n = 3 sinh(x) where dn = 3 cosh(x)dx and we find∫ ∞
dx = x

∣∣∣∣∞ = sinh−1(n/3)

∣∣∣∣∞ =∞ .

Since the integral diverges, so does the sum.

10. MB 15.21 Test the convergence of the sum
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and because p > 1, the sum diverges.

11. MB 15.28 Test the convergence of the sum
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and since ρ < 1, the sum converges.

12. MB 16.33 Use the special comparison test to find if the sum converges or
diverges:

∞∑
n=5

an =

∞∑
n=5

1

2n + n2
.

Notice that series is similarly to
∑∞

n=5 1/2n which is a convergent geo-
metric series. If we let bn = 1/2n and do the special comparison test, we
find

lim
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÷ 1
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1
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Since the limit is finite, the sum converges.

13. MB 16.34 Use the special comparison test to find the convergence or di-
vergence of the sum

∞∑
n=0

an =

∞∑
n=0

n2 + 3n+ 4

n4 + 7n+ 6n− 3
,

by comparing it with the series bn = 1/n2 which we know converges from
Pr. 7 (MB 11.3):
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Since the limit is finite, the sum converges.

14. MB 17.5 The alternating series

∞∑
n=2

(−1)n

ln(n)

converges if |an+1| ≤ |an| for n > N where N is a finite number and the
limn→∞ an = 0. This series satisfies both the conditions,∣∣∣∣ 1

ln(n+ 1)
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ln(n)

∣∣∣∣ and lim
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1
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= 0 ,

so the series converges.



15. MB 17.8 Use the alternating series test on
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.
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√
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the series converges.

16. MB 19.5 Test the convergence or divergence of the series

∞∑
n=1

an =

∞∑
n=1

n

n3 − 4
,

by any means. First do the Preliminary Test

lim
n→∞

n

n3 − 4
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n→∞

1/n2

1− 4/n3
= 0 ,

to check for divergence. Since the series passes this test, we need to test
further. Let’s try the root test:
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n→∞
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(n+ 1)3 − 4
÷ n

n3 − 4

∣∣∣∣
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1

∣∣∣∣ = 1 .

This test is inconclusive because ρ = 1, so we need to try a different test.
How about we do the special comparison test with the series bn = 1/n2

which converges as shown in Pr. 7 (MB 11.3):

lim
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Since the limit is finite, the series converges.

17. MB 19.15 Test the convergence or divergence of the series

∞∑
n=1

(−1)nn!

10n
,



by any means. Use the alternating series test:∣∣∣∣ (n+ 1)!

10n+1

∣∣∣∣ � ∣∣∣∣ n!

10n

∣∣∣∣ for n� 1 and lim
n→∞

(n+ 1)!/10n+1 →∞ .

The alternating series fails both conditions, so the series diverges.

18. MB 19.18 Test the convergence or divergence of the series

∞∑
n=1

(−1)n/2ln(n) ,

by any means. Use the alternating series test:∣∣∣∣ 1

2ln(n+1)

∣∣∣∣ ≤ ∣∣∣∣ 1

2ln(n)

∣∣∣∣ for n ≥ 1 and lim
n→∞

(−1)n/2ln(n) → 0 .

Both conditions are passed, so the series converges.

19. MB 20.19 Test the convergence of the following series:

1

2n
− 1

32
+

1
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33
+ · · · =
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n=2

(
1

2n
− 1

3n

)
.

Warning: Although the series can be rearranged to look like the difference
between two series or two series substracted term by term, we are not
allowed to rearrange the series unless it is absolutely convergent.

First we must determine if the series is absolutely convergent:

∞∑
n=2

(
1

2n
+

1

3n

)
=

∞∑
n=2

1

2n
+

∞∑
n=2

1

3n
.

For a postive definite series, we are allowed to rearrange terms. In this
case the series is just the sum of two convergent geometric series with the
first two terms dropped. Since the addition of any two convergent series is
also convergent, this means the series is absolutely convergent. And thus
the alternating series also converges.

20. MB 20.21 Test the convergence of
∑∞

n=1 an with the recursion relation
an+1 = (n/(2n+ 3))an. Use the ratio test:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
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n→∞

∣∣∣∣ n

2n+ 3
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n→∞
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2 + 3/n

∣∣∣∣ =
1

2
.

Since ρ < 1, the series converges.



§Recommended Supplementary problems: No scores

S(1) MB 17.7 Find the convergence of the

∞∑
n=0

(−1)nn

1 + n2
.

Use the alternating series test:∣∣∣∣ n+ 1

1 + (n+ 1)2

∣∣∣∣ ≤ ∣∣∣∣ n

1 + n2

∣∣∣∣ for n ≥ 1 and lim
n→∞

1

n+ 1/n
= 0 ,

Because both conditions are satisfied, the series converges.

S(2) MB 17.10 Show that an → 0. Explain why the following alternating series
diverge using alternating series test:
a) If we group terms as follows, it appears we have the difference of two
divergent series:

2− 1

2
+

2

3
− 1

4
+

2

5
− 1

6
+

2

7
− 1

8
+ · · ·

=

∞∑
n=1

(
2

2n− 1
− 1

2n

)
.

We are not allowed to take the difference of two divergent series. First we
test if the series is absolutely convergent. For a positive denfinte series we
are allowed to rearrange terms and the sum of two divergent series is also
divergent. Hence, the series does not absolutely converge. Now we must
check for conditional convergence using alternating series test:

L = lim
an→∞

(
2

2n− 1
− 1

2n

)
→ 0;

and∣∣∣∣ 1

2n

∣∣∣∣ ≤ ∣∣∣∣ 2

2n− 1

∣∣∣∣ for odd terms∣∣∣∣ 2

2n+ 1

∣∣∣∣ � ∣∣∣∣ 1

2n

∣∣∣∣ for even terms .

Since the series fails the inequality condition for even terms, the series diverges.

b) Similary, if we group terms as follows, it appears we have the differ-
ence of two divergent series taken term by term:

1√
2
− 1

2
+

1√
3
− 1√

4
+
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4
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5
+

1

5
+ · · ·

=

∞∑
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(
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n
− 1

n

)
.



We are not allowed to take the difference of two divergent series unless the
series produces a conditionally convergence. As stated in part a) the sum
of two postive definite divergent series also diverges. Hence, the series does
not absolutely converge. So now we must check for conditional convergence
using alternating series test:

L = lim
an→∞

(
1√
n
− 1

n

)
→ 0

and∣∣∣∣ 1n
∣∣∣∣ ≤ ∣∣∣∣ 1√

n

∣∣∣∣ for odd terms∣∣∣∣ 1√
n+ 1

∣∣∣∣ � ∣∣∣∣ 1n
∣∣∣∣ for even terms .

Since the series fails the inequality condition for even terms, the series diverges.

S(3) MB 16.31 Use the special comparison test to determine if the series con-
verges or diverges.

∞∑
n=9

(2n+ 1)(3n− 5)√
n2 − 73

=
6n− 7− 5/n√

1− 73/n2

Now we compare this series with the series of bn = 1 which clearly must
diverge:

L = lim
n→∞

an
bn

=
6n− 7− 5/n√

1− 73/n2
→∞ .

(This is actually identical to the preliminary test.)

Since the limit is infinte, the series diverges.

S(4) MB 16.37 If L = limn→∞ an/bn lies on the interval 0 < L < ∞, we can
find two positive numbers, m and M , such that m < L < M . We know
that there exists an positive integer N such that for all n > N the ratio
an/bn lies arbitrarily close to L so that

m <
an
bn

< M .

Now, if we multiply through by bn we have

mbn < an < Mbn for n > N.

So, if
∑
bn diverges then so does

∑
mbn and since mbn < an for all n > N

then the
∑
an also diverges. Similarly, if

∑
bn converges then so does∑

Mbn and since an < Mbn for all n > N then the
∑
an also converges.



S(5) MB 22.10 Find the convergence of the power series

∞∑
n=1

(−1)n+1(x)2n

(2n)3/2
,

and check the endpoints for convergence or divergence. Use the ratio test:

ρ = lim
n→∞

∣∣∣∣ (−1)n+1(x)2n

(2n)3/2
÷ (−1)n+1(x)2n

(2n)3/2

∣∣∣∣
= lim

n→∞

∣∣∣∣ (−1)xn

(1 + 1/(2n))3/2

∣∣∣∣ = |x2|

The series converges for |x2| < 1. Now we check the endpoints at x =
±1 where the terms of the series are an = (−1)n/(2n)3/2. Using the
alternating series test, we compute∣∣∣∣ 1

(2n+ 2)3/2

∣∣∣∣ ≤ ∣∣∣∣ 1

(2n)3/2

∣∣∣∣
and

lim
n→∞

1

(2n)3/2
→ 0 ,

which satisfies both conditions, so the seris is convergent at x = ±1.

Thus the power series is convergent for |x| ≤ 1.

S(6) MB 22.13 Find the convergence of the power series

∞∑
n=1

n(−x)n

n2 + 1
,

and check the endpoints for convergence or divergence. Use the ratio test:

ρ = lim
n→∞

∣∣∣∣ (−1)n+1(n+ 1)(x)n+1

(n+ 1)2 + 1
÷ n(−1)nxn

n2 + 1

∣∣∣∣
=

∣∣∣∣ (−1)x(1 + 1/n)1 + 1/n2)

(1 + 1/n)2 + 1/n2

∣∣∣∣ = |x|

The series converges for |x| < 1. Now we check the endpoints, starting
with x = 1 where the terms of the series are an = (−1)nn/(n2 + 1). Using
the alternating series test, we find∣∣∣∣ n+ 1

(n+ 1)2 + 1

∣∣∣∣ ≤ ∣∣∣∣ n

n2 + 1

∣∣∣∣
and

lim
n→∞

n

n2 + 1
= lim

n→∞

1

n+ 1/n
= 0 .



and thus the series converges for x = 1. For x = −1 the terms of the series
are an = n/(n2 + 1). Using the special comparison test for bn = 1/n, we
find

lim
n→∞

an
bn

= lim
n→∞

n

n2 + 1
÷ 1

n

= lim
n→∞

1

1 + 1/n2
= 1 .

Since the limit exists and the
∑
bn diverges, the

∑
an also diverges.

Hence, the power series is convergent for −1 < x ≤ 1.


