
Mathematical Methods of Physics 116A- Winter 2018

Physics 116A

Home Work # 3 Solutions
Posted on Jan 25, 2018

Due in Class Feb 1, 2018

§Required Problems: Each problem has 5 points
E.g. MB 19.16 means problem #16 on page 19 in the book by M. Boas, 3rd

Edition.

1. MB 53.23 Find

f(z) =
1 + z

1− z
in rectangular (x+ iy) form if case a) z = 2− 3i and if case b) z = x+ iy:

a)

f(2− 3i) =
3− 3i

−1 + 3i

=
(3 + 3i)

(−1 + 3i)

(−1− 3i)

(−1− 3i)

= −6 + 3i

5

b)

f(x+ iy) =
1− x+ iy

1− x− iy

=
(1 + x+ iy)

(1− x+ iy)

(1− x+ iy)

(1− x+ iy)

=
1− x2 − y2

(1− x)2 + y2
+ i

2y

(1− x)2 + y2

(1)

2. Find the absolute value of each of the following:

a) MB 53.30 Given

z =
3i

i−
√

3
,

we find absolute value by taking
√
zz̄, where z̄ is the complex conjugate,

i.e. setting i→ −i. Thus z̄ = 3i/(
√

3 + i), so

√
zz̄ =

√(
3i

i−
√

3

)(
3i

i+
√

3

)
=

3

2



b) MB 53.32

Similarly, given
z = (2 + 3i)4 ,

the absolute value is
√
zz̄ =

√
(2 + 3i)4(2− 3i)4 = [(2 + 3i)(2− 3i)]2 = [13]2 = 169.

3. MB 55.62 Describe geometrically the set of points in the complex plane
satisfying the equation

|z + 1|+ |z − 1| = 8.

In order to see the geometry of this expression, it is helpful to put it in
the more familar rectangular (x + iy) form:

|(x+ 1) + iy|+ |(x− 1) + iy| = 8 .

Now, if we compute the absolute value, we find√
(x+ 1)2 + y2 +

√
(x− 1) + y2 = 8 .

This is the equation of ellipse with foci at c = (−1, 0) and (1, 0), and a
semi-major axis of a = 4. The expression states that an arbitary point
(x, y) on the ellipse must satify the condition that the sum of the distances
from each foci to the arbitary point be equal to twice the length of semi-
major axis.

4. MB 56.68

Find the speed (v) and magnitude of acceleration (a) if z = cos(2t) +
i sin(2t) and describe the motion. Let’s start by taking the first and second
derivatives of z:

dz

dt
= −2 sin2(2t) + 2i cos(2t) = −2iz

and

d2z

dt2
= −4 cos(2t)− 4i sin(2t) = −4z .

The speed is

v =

∣∣∣∣dzdt
∣∣∣∣ =

√
4 sin2(2t) + 4 cos2(2t) = 2

and the magnitude of the acceleration is

a =

∣∣∣∣d2z

dt2

∣∣∣∣ =

√
16 cos2(2t) + 16 sin2(2t) = 4 .

The particle moves in a uniform circle of radius 1 centered about the origin,
the tangential velocity of the particle is 2 and centripetal acceleration is
4.



5. MB 59.7 Find the convergence of the complex power series

∞∑
n=0

(−1)nz2n

(2n)!
.

Use the ratio test:

ρ = lim
n→∞

∣∣∣∣ z2n+2

(2n+ 2)!
÷ z2n

(2n)!

∣∣∣∣
= lim
n→∞

∣∣∣∣ z2

(2n+ 2)(2n+ 1)

∣∣∣∣
= lim
n→∞

∣∣∣∣ (z/n)2

(2 + 2/n)(2 + 1/n)

∣∣∣∣ = 0 .

Since ρ = 0 < 1, the series is convergent for all |z| <∞.

6. Express the following complex numbers in the form x+ iy.

a) MB 63.15 Given that z = (1 + i)2 + (1 + i)4, we can simpify this
expression by putting 1+i into polar form. This can be done inour head
if we recognize that 1 + i makes 45− 45− 90 triangle with hypotenuse
of 2, i.e. r = 2 and θ = π/4:

z =
(√

2eiπ/4
)2

+
(√

2eiπ/4
)4

= 2eiπ/2 + 4eiπ

= 2i− 4 = −4 + 2i .

b) MB 63.18 Given that z(1+ i)/(1− i), similarly to the previous problem
we can simplify this expression by putting 1 + i and 1 − i into polar
form. This can be done quickly by recognizing that 1 − i is also a
45 − 45 − 90 triangle with hypotenuse of 2; however, this time r = 2
and θ = −π/4:

z =

(
2eiπ/4

2e−iπ/4

)4

=
(
eiπ/2

)4

= e2π = 1 .

7. MB 67.31 Show that the sum of the N roots of the Nth root of any
complex number z is zero. The N roots of z can be represented as

z1/N = r1/Neiθ/Nei2πm/N for all integers m ∈ [0, N − 1].



The sum of the N roots is expressed as

SN ≡ r1/Neiθ/N
N−1∑
m=0

ei2πm/N .

The sum is a partial geometric series:

r1/Neiθ/N
N−1∑
m=0

wm = a
1− wN

1− w
,

where w = ei2π/N and a = r1/Neiθ/N . We note that wN = ei2π = 1, hence

SN = a
1− wN

1− w
= 0 ,

unless N = 1 in which case S1 = a.

8. MB 69.18 Evaluate
∫
e(a+ib)xdx and take the imaginary part to show that∫

eax sin bxdx =
eax(a sin bx− b cos bx)

a2 + b2
.

Using Euler’s formula (eiθ = cos θ + i sin θ) we can show that

Im

{∫
e(a+ib)x

}
=

∫
eax sin bxdx .

Integrate∫
e(a+ib)xdx =

e(a+ib)x

a+ ib

=
e(a+ib)x

a+ ib

a− ib
a− ib

=
eax(cos bx+ i sin bx)(a− ib)

a2 + b2

= eax[(a cos bx+ b sin bx) + i(a sin bx− b cos bx)] .

(2)

Take the imaginary part of Eq. (2):

Im

{∫
ea+ibdx

}
= eax(a sin bx− b cos bx) .

9. MB 77.4 In this problem, z(t) represents the path of particle on the (x, y)
plane as a function of time. Find the speed, the magnitude of the accel-
eration and describe the motion of the function given by

z(t) = (1 + i)t− (2 + i)(1− t) .



We can show that the path is linear by expressing the function in param-
eteric form

z(t) = (3t− 2, 2t− 1) ,

where the slope m = 2/3 and the initial position of the particle is (−2,−1).
The speed is ∣∣∣∣dzdt

∣∣∣∣ = |(1 + i)− (2 + i)| =
√

13 ,

and the magnitude of the acceleration is∣∣∣∣d2z

dt2

∣∣∣∣ = 0 .

10. MB 79.11

Prove that

cos θ + cos 3θ + cos 5θ + · · ·+ cos(2n− 1)θ =
sin 2nθ

2 sin θ
, (3)

and

sin θ + sin 3θ + sin 5θ + · · ·+ sin(2n− 1)θ =
sin2 2nθ

sin θ
. (4)

Using Euler’s formula we can compactly express the above two series as
the expression

S ≡ eθ + e3θ + e5θ + · · ·+ e(2n−1)θ ,

where the Re{S} is equal to Eq. (3) and the Im{S} is equal to Eq. (4).
This geometric progression can be written in the form of MB Eq. 16.17,
where t = θ and δ = 2θ. From MB Eq. 16.20, we have

S ≡ ei{t+(n−1)δ/2} sinnδ/2

sin δ/2
. (5)

Next, we plug t = θ and δ = 2θ back into Eq. (5) to find

S = ei2nθ
sinnθ

sin θ

= (cos 2nθ + i sin 2nθ)
sinnθ

sin θ
.

Using the trigonometric identity sin 2θ = 2 sin θ cos θ, we can conclude
that

Re{S} = cos θ + cos 3θ + cos 5θ + · · ·+ cos(2n− 1)θ =
sin 2nθ

2 sin θ
,

and

Im{S} = sin θ + sin 3θ + sin 5θ + · · ·+ sin(2n− 1)θ =
sin2 nθ

sin θ
.



§Recommended Supplementary problems: No scores

S(1) MB 74.22

Evalute the following in rectangular form (x + iy) and compare with a
computer solution:

w = sin

[
i ln

(√
3 + i

2

)]
. (6)

The simpliest way to evaluate Eq. (6) is to put z =
√

3+i
2 in polar form. We

can do this in our head if we recognize that z forms a 30− 60− 90 triangle
in the complex plane, where r = 1 and θ = π/6 + 2πn for all n ∈ Z. Next
we take the natural log to get

ln
(
ei(π/6+2πn)

)
= i(π/6 + 2πn)

Notice that since z in polar form is periodic, there are an infinite number
of ways of expressing the same complex-value z. In order to make the
function of z one to one, we must perfrom a branch cut, where a branch
cut is a restrict of the domain of z to a single period such that every
complex-value in the target is mapped only once. However, we need not
concern ourselves with complication since

sin(−π/6− 2πn) = −1/2 ,

for all branches of ln(z). However, a computer program requires that we
choose a branch cut for the natural log function. The branch cut of the
natural log in Mathematica is choosen to be along the negative real axis,
i.e. θ ∈ [π,−π).

S(2) MB 74.23 Evalute the following in rectangular form (x+ iy) and compare
with a computer solution:

w = (1−
√

2i)i .

The first step would be to compute the square root by putting z = eiθ+2πn

into polar from. In this case there are two unique roots of z given by√
2eiπ/4+nπ for n = 0, 1. Notice that eiπn = (−1)n, and

√
2eiπ/4 = 1 + i

so that z = (1 + i)(−1)n. Using the relation

ab = eb ln(a)

we can re-express Eq. (2) as

ei ln(1−z) .

Now we can plug in n and z for the two cases and solve to find

w =

{
eπ/2 if n = 0

ei ln(5)/2e− arctan[1/2] if n = 1
.



S(3) MB 77.5 In this problem, z(t) represents the path of particle on the (x, y)
plane as a function of time. Find the speed, the magnitude of the acceler-
ation and describe the motion of the function given by

z(t) = z1t− z2(1− t) .

We can show that the path is linear first expressing z1 and z2 in rectan-
gular form as zn = xn + iyn and then we can expressing the function in
parameteric form

z(t) = (x1 − x2)t+ x1, (y1 − y2)t+ y2) ,

where the slope m = (y1 − y2)t/(x1 − x2)t and the initial position of the
particle is (x2, y2). The speed is∣∣∣∣dzdt

∣∣∣∣ = |z1 − z2|

=
√

(z1 − z2)(z̄1 − z̄2)

= z1z̄1 − z̄2z2 − z1z̄2 − z2z̄1 ,

and the magnitude of the acceleration is∣∣∣∣d2z

dt2

∣∣∣∣ = 0 .

S(4) MB 81.28 Evaluate the following absolute square of a complex number.
Assume a and b are real. Express your answer in term of a hyperbolic
function.

∣∣∣∣ (a+ ib)eb − (a− ib)2e−b

4abie−ia

∣∣∣∣2 (7)

The first step is to expand (a+bi)2 and (a−bi)2 in the numerator and then
group terms using the relations 2 cosh b = eb + e−b and 2i sinh b = eb− e−b
such that Eq. (7) becomes∣∣∣∣( cosh(b)e−ia +

b2 − a2

2ab
sinh(b)i

)
eia
∣∣∣∣2 .

We can simplify the algebra in Eq. (4) by setting A = cosh b and B =
(b2 − a2)/(2ab) sinh b:

|(A+Bi)eia)|2

Expanding the above expression and taking the absolute value gives

(A cos a−B sin a)2 + (B cos a+A sin a)2 .



Next we can expand the expression and cancel like terms find

A2 +B2 = cosh2 b+
(b2 − a2)

2ab
sinh2 b .

We can put this in terms a single hyperbolic function using the hyberbolic
identity cosh2 b− sinh2 b = 1 such that

1 +

(
2ab

2ab

)2

sinh2 b+

(
(b2 − a2)

2ab

)2

sinh2 b .

If we do a little algebra magic, we can show that (b2 − a2)2 + (2ab)2 =
(b2 + a2), so a solution simplified to a single hyperbolic term is

1 +

(
b2 + a2

2ab

)
sinh2 b .

S(5) MB 81.25 Prove the following:

a) Show that cos z = cos z̄.

Note that z̄ is the complex conjugate of z and we can find the complex
conjugate of a complex number by setting i→ −i. Let’s set w = cos z.
Using Euler’s idenity for cos z we have

w̄ =

(
eiz + e−iz

2

)
=

(
e−iz̄ + eiz̄

2

)
= cos z̄

b) Is sin z = sin z̄? Let w = sin z and use Euler identity for sin z to check
that

w̄ =

(
eiz − e−iz

2i

)
=

(
e−iz̄ − eiz̄

−2i

)
= sin z̄

Yes, sin z = sin z̄.

c) If f(z) = 1 + iz then is f(z) = f(z̄)? Let’s check:

f(z) = 1 + iz = 1− iz̄ .

No, because 1− iz̄ 6= 1 + iz̄



d) If f(z) is expanded in a power series with real coefficients (cn), show
that f(z) = f(z̄).

Note that cnzn = cnz̄
n because the coefficients are real and complex

conjugate operator is distributive, i.e. z1 + z2 = z̄1 + z̄2, where z1 and
z2 are complex numbers. Hence,

f(z) =

∞∑
n=0

cnzn =

∞∑
n=0

cnz̄
n = f(z̄) .

e) Using part (d), without computing it’s value, show that g(z) = i[sinh(1 + i)−
sinh(1− i)] is real.

Let f(z) = sinh(z) and z = 1 + i, such that g(z) = i[f(z)− f(z̄)]. Note
that if g(z) = g(z), then g(z) is real. Let’s check:

g(z) = i[f(z)− f(z̄)] = −i[f(z̄)− f(z)] = g(z .)

Hence, g(z) is real.

S(6) MB 81. 17 to 24

Solutions to the remaining exercises are available upon request during the
TA office hours or the discussion sections.


