
Mathematical Methods of Physics 116A- Winter 2018

Physics 116A

Home Work # 7 Solutions
Posted on Feb 22, 2018

Due in Class Mar 1, 2018

§Required Problems: Each problem has 10 points
E.g. MB 19.16 means problem #16 on page 19 in the book by M. Boas, 3rd

Edition.

1. MB 131.20 Verify equation(
X ′

Y ′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
X
Y

)
.

The postion vector in the new coordinate system is r′ = X i′+Y j′. If we
take the dot product of r′ = Xi′+Y j′ with respect to the basis vectors of
the new coordinate system, i′ and j′; we can find the matrix elements of
the transformation matrix from old coordinates to new coordinates:

X ′ = i′ · r′ = X i′ · i′ + Y i′ · j′

where i′ · i′ = cos θ and i′ · j′ = cos(π/2− θ) = sin θ and

Y ′ = j′ · r′ = X j′ · i′ + Y j′ · j′

where j′ · i′ = cos(θ + π/2) = − sin θ and j′ · j′ = cos θ. Writing these two
equations in matrix form we get(

X ′

Y ′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
X
Y

)
.

2. 131.29 Construct the matrix corresponding to a rotation of 90◦ about the
y axis together with a reflection through the x− z plane.

Note that a 90◦ rotation about the y axis cooresponds to a clockwise
rotation. This is a matter of convention where we say that θ increases as
we rotate a vector from the x axis to the z axis. The clockwise rotation
matrix about the y axis is

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ





and a reflection about the z − x plane is given by the matrix

Px−z =

1 0 0
0 −1 0
0 0 1


We order the sequence of matrix transformations from right to left and
then matrix multiply:

Px−zRy(90◦) =

1 0 0
0 −1 0
0 0 1

 0 0 1
0 1 0
−1 0 0

 =

 0 0 1
0 −1 0
−1 0 0

 .

3. MB 132.34

For the following matrix,

A =

1 0 0
0 0 −1
0 −1 0


find its determinate to see whether it produces a reflection or a rotation.
If it is a reflection, find the reflecting plane and then the rotation (if any)
about the normal of the reflecting plane.

The determinate is

det(A) =

∣∣∣∣∣∣
1 0 0
0 0 −1
0 −1 0

∣∣∣∣∣∣ = −1 .

Because the determinate is −1, we know this is an improper rotation:
a rotation followed by a reflection or vice versa. In this case, first we
reflect and then we rotate about n, the normal vector to a some plane,
i.e. A = RnPn. A vector v parallel to the normal of the reflecting plane
satisife the relations Av = −v. If v = (a, b, c) then we solve for the v by
examining the relations a = −a, −c = −b, and −b = −c which tells us
that a = 0 and b = c. This vector normalized is

1√
2

(0, 1, 1) .

Hence, the reflecting plane is y + z = 0 . The reflection transformation

in matrix form is

Pn =

1 0 0
0 0 −1
0 −1 0

 ,



so clearly, no further rotations is necessary. We can find this matrix explic-
itly by taking the matrix for a known reflection, Pn, and use some rotation
matrix, Rr(θ), to rotate the normal vector of the plane into the new ori-
entation, Pn′ . The transformation rule for this is Pn′ = Rr(θ)PnR

−1
r (θ).

4. 135.2

Find out whether the give vector are dependent or independent:

(1,−2, 3), (1, 1, 1), (−2, 1,−4), (3, 0, 5)

if they are dependent find a linearly independent subset and write each
given vector as a linear combination of the independent vectors.

1 −2 3
1 1 1
−2 1 −4
3 0 5

 R2→R2−R1−−−−−−−−→
R3→R3+2R1


1 −2 3
0 3 −2
0 −3 2
3 0 5

 R4→R4−R1−−−−−−−−→


1 −3 3
0 3 −2
0 −3 2
0 6 −4


Notice that R3 and R4 are porporational to R2. Hence, they are linearly
dependent, so we can reduce those bottom two row to zero:

1 −2 3
0 3 −2
0 −3 2
3 0 5

 R4→R4−2R1−−−−−−−−→
R3→R3+R2


1 −2 3
0 3 −2
0 0 0
0 0 0

 .

Next, we normalize the pivot element (boxed below) of R2:
1 −2 3

0 3 −2
0 0 0
0 0 0

 R2→1/3R2−−−−−−−→


1 −2 3
0 1 −2/3
0 0 0
0 0 0

 .

Finally, we row reduce the element above the pivot element:
1 −2 3

0 1 −2/3
0 0 0
0 0 0

 R1→R1+2R2−−−−−−−−→


1 0 5/3
0 1 −2/3
0 0 0
0 0 0

 .

The subset of linearly indpendent vectors are v1 = (1, 0, 5/9) and v2 = (0, 1,−2/3)

and the expand of the these vector in term of v1 and v2 are

(1,−2, 3) = v1 − 2v2

(1, 1, 1) = v1 + v2

(1,−2, 3) = −2v1 + v2

(1, 1, 1) = 3v1

.



5. 136.5 Show that any vector V in a plane can be written as a linear com-
bination of two non-parallel vectors A and B in the plance, that is, find
a and b so that v = aA + bB.

We start by taking the cross product of the vector V with respect to
the basis vectors:

A×V = aA×A + bA×B

B×V = aB×A + bB×B
(1)

Recall that A×A = 0 and B×B = 0. Next, we take the projection of
(A×V) and (B×V) onto the normal vector, n = (A×B)/|A×B|:

(A×V) · n = b(A×B) · n
(B×V) · n = a(B×A) · n .

(2)

Finally, we solve for a and b:

a =
(B×V) · n
(B×A) · n

, b =
(A×V) · n
(A×B) · n .

Notice that (A×B) · n gives the area of parallelogram formed by A and
B.

6. 137.22 Find a condition for three lines in a plane to intersect at one point.

We can write the equation of the three lines as
a11x+ a12y = b1

a21x+ a22y = b2

a31x+ a32y = b3

where aij and bi are constants. The row vectors must be linearly indepen-

dent. In other words, there must exist a single solution to the augmented matrix.

7. 137.25 Find the eigenvalues and the cooresponding eigenvectors for the
following set of equations:

−(1 + λ)x+ y + 3z = 0

x+ (2− λ)y = 0

3x+ (2− λ)z = 0

.

In matrix form this is

A− λI =

−(1 + λ) 1 3
1 (2− λ) 0
3 0 (2− λ)

 , (3)



where I is the idenity matrix. We can find the eigenvalues of the matrix
by evaluating det(A− λI) = 0 and solving for λ. Evaluating the matrix
using any method, we find the determinate is

det(A− λI) = −λ3 + 3λ2 + 10λ+ 3λ− 24 = 0 .

Next, we factor to find that

(λ− 4)(λ− 2)(λ+ 3) = 0 .

Hence the eigenvalues are r = (4, 2,−3) . The corresponding eigenvectors

are found by plugging λ into A−λI = 0 and solving the augmented matrix.

We find for λ = 4: v = (2y, y, 3y) , λ = 2: v = (0,−3z, z) and λ = −3:

v = (−5y, y, 3y) .

8. 141.3 Find the transpose, the inverse, the complex conjugate of

A =

 1 0 5i
−2i 2 0

1 1 + i 0

 .

and verify that AA−1 = A−1A = I, where I is a unit matrix.

The transpose is

AT =

 1 −2i 1
0 2 1 + i
5i 0 0

 .

Another way to find the inverse is by row reducting this augmented matrix:

AT =

 1 0 5i 1 0 0
−2i 2 0 0 1 0

1 1 + i 0 0 0 1

 .

We start by row reducing the elements below the pivot element (boxed)
of the first row:

AT =

 1 0 5i 1 0 0
−2i 2 0 0 1 0

1 1 + i 0 0 0 1

 R2→R2+2iR3−−−−−−−−−→
R3→R3−R1

1 0 5i 1 0 0
0 2 −10 2i 1 0
0 1 + i −5i −1 0 1


Next, we row reduce the elements below the pivot element of the second
row:1 0 5i 1 0 0

0 2 −10 2i 1 0
0 1 + i −5i −1 0 1

 R3→R3−(1+i)/2R2−−−−−−−−−−−−−→

1 0 5i 1 0 0
0 2 −10 2i 1 0
0 0 5 −i −i/2 1





Now, we normalize the pivot element of the third row:1 0 5i 1 0 0
0 2 −10 2i 1 0

0 0 5 −i −i/2 1

 R3→R3−(1+i)/2R2−−−−−−−−−−−−−→

1 0 5i 1 0 0
0 2 −10 2i 1 0
0 0 1 −i/5 −i/10 1/5


Next, we row reduce the elements above the pivot element of the third
row:1 0 5i 1 0 0

0 2 −10 2i 1 0

0 0 1 −i/5 −i/10 1/5

 R2→R2+10R1−−−−−−−−−→
R1→R1−5iR3

1 0 0 0 −1/2 + i/2 −i
0 2 0 0 −i 2
0 0 1 −i/5 −i/10 1/5


Finally, we normalize the pivot element of the second row:1 0 0 0 −1/2 + i/2 −i

0 2 0 0 −i 2
0 0 1 −i/5 −i/10 1/5

 R2→R2+10R1−−−−−−−−−→
R1→R1−5iR3

1 0 0 0 −1/2 + i/2 −i
0 1 0 0 −i/2 1
0 0 1 −i/5 −i/10 1/5


So the inverse matrix is

A−1 =

 0 −1/2 + i/2 −i
0 −i/2 1
−i/5 −i/10 1/5

 .

Now we can matrix multiply to show that A−1A = AA−1 = I:

AA−1 =

 1 0 5i
−2i 2 0

1 1 + i 0

 0 −1/2 + i/2 −i
0 −i/2 1
−i/5 −i/10 1/5

 =

1 0 0
0 1 0
0 0 1



A−1A =

 0 −1/2 + i/2 −i
0 −i/2 1
−i/5 −i/10 1/5

 1 0 5i
−2i 2 0

1 1 + i 0

 =

1 0 0
0 1 0
0 0 1


Hence, A−1A = AA−1 = I .

The complex conjugate

A∗ =

 1 0 −5i
2i 2 0
1 1− i 0

 .

The complex conjugate

(A∗)T =

 1 2i 1
0 2 1− i
−5i 0 0

 .



9. 141.13 Show that the following matrix is a unitary matrix.

U =

(1 + i
√

3)/4

√
3

2
√

2
(1 + i)

−
√

3

2
√

2
(1 + i) (

√
3 + i)/4

 .

For a unitary matrix UU† = U†U = I where † indicates we take the
complex transpose of the matrix and I is the identity matrix.

U† =

(1− i
√

3)/4
−
√

3

2
√

2
(1− i)

√
3

2
√

2
(1− i) (

√
3− i)/4

 .

Now matrix multiply to show that

UU† =

(1 + i
√

3)/4

√
3

2
√

2
(1 + i)

−
√

3

2
√

2
(1 + i) (

√
3 + i)/4


(1− i

√
3)/4

−
√

3

2
√

2
(1− i)

√
3

2
√

2
(1− i) (

√
3− i)/4

 =

(
1 0
0 1

)
.

10. 142.22 Show that a unitary matrix is a normal matrix, that is, it commutes
with its transpose conjugate. Also show that orthogonal, symmetric, anti-
symetric, Hermitian, and anti-Hermitian matrices are normal.

The complex tranpose of a unitary matrix is (Uij)
† = U∗ji = (U−1)ij .

The commutator is

[U,U†] = UU† − U†U = 0 ,

where 0 is a zero matrix. In index notation this is

([U,U†])ij =
∑
k

UikU
∗
kj −

∑
k

U∗ikUkj

=
∑
k

Uik(U−1)kj −
∑
k

(U−1)ikUkj

= δij − δij = 0 .

Hence, the matrix is normal. Similarly, the complex tranpose of an or-
thogal matrix is O†ij = (O−1)ij , a symmetric matrix S†ij = Sji, an anti-

symmetric matrix A†ij = −Aij , a Hermitian matrix H†ij = Hji, and an

anti-Hermitian G†ij = −Gji. In all case,

([M,M†])ij =
∑
k

MikMkj −
∑
k

MikMkj = 0 .



Hence, all these matrices are normal.


