Mathematical Methods of Physics 116A- Winter 2018
Physics 116A

Home Work # 7 Solutions
Posted on Feb 22, 2018
Due in Class Mar 1, 2018

SRequired Problems: Each problem has 10 points
E.g. MB 19.16 means problem #16 on page 19 in the book by M. Boas, 3rd
Edition.

1. MB 131.20 Verify equation

X"\ [ cosf sinf) (X

Y']  \—sinf cosf)\Y )"
The postion vector in the new coordinate system isr’ = X i’ +Y j'. If we
take the dot product of r' = Xi’ +Yj’ with respect to the basis vectors of

the new coordinate system, i’ and j’; we can find the matrix elements of
the transformation matrix from old coordinates to new coordinates:

X =i vV=Xii{+Yij
where i’ -1 = cosf and i’ - j = cos(7w/2 — 0) = sinf and
Y/:j/'r/:Xj/'i/+Yj/'j/

where j' -1’ = cos(§ + 7/2) = —sinf and j’ - j’ = cosf. Writing these two
equations in matrix form we get

X"\ [ cosf sind X
Y')  \—sin® cosf) \Y

2. 131.29 Construct the matrix corresponding to a rotation of 90° about the
y axis together with a reflection through the x — z plane.

Note that a 90° rotation about the y axis cooresponds to a clockwise
rotation. This is a matter of convention where we say that 6 increases as
we rotate a vector from the z axis to the z axis. The clockwise rotation
matrix about the y axis is

cos@ 0 sinf
R,(6) = 0 1 0
—sinf 0 cos@



and a reflection about the z — z plane is given by the matrix

1 0 0
P,.=[0 -1 0
0 0 1

We order the sequence of matrix transformations from right to left and
then matrix multiply:

1 0 0\ /0 01 0 0 1
PR, (90°)=(0 -1 o) |0 1 0o|l=[[0 -1 0
0 0o 1/\-1 00 -1 0 0

. MB 132.34

For the following matrix,

find its determinate to see whether it produces a reflection or a rotation.
If it is a reflection, find the reflecting plane and then the rotation (if any)
about the normal of the reflecting plane.

The determinate is
1
det(A)=10 0 —1]=-1.
0

Because the determinate is —1, we know this is an improper rotation:
a rotation followed by a reflection or vice versa. In this case, first we
reflect and then we rotate about n, the normal vector to a some plane,
ie. A= RyP,. A vector v parallel to the normal of the reflecting plane
satisife the relations Av = —v. If v = (a, b, ¢) then we solve for the v by
examining the relations a = —a, —¢ = —b, and —b = —c which tells us
that a = 0 and b = ¢. This vector normalized is

1
—(0,1,1)|.
~(0,1,1)

Hence, the reflecting plane is . The reflection transformation

in matrix form is




so clearly, no further rotations is necessary. We can find this matrix explic-
itly by taking the matrix for a known reflection, P,, and use some rotation
matrix, R.(#), to rotate the normal vector of the plane into the new ori-
entation, P,/. The transformation rule for this is Py = Ry (0) PaRy 1 (6).

. 135.2
Find out whether the give vector are dependent or independent:

(1’ _27 3)7 (17 ]-7 1); (_27 ]-a _4)7 (Sa 0; 5)

if they are dependent find a linearly independent subset and write each
given vector as a linear combination of the independent vectors.

1 -2 3 1 -2 3 1 -3 3
1 1 1 Ro—Ry—Ry 0o 3 =2 Ri—R,—R, |0 3 =2
—2 1 —4| Rs—Rs+2rR, [0 -3 2 0 -3 2
3 0 5 3 0 5 0 6 —4

Notice that Rs and R4 are porporational to Rs. Hence, they are linearly
dependent, so we can reduce those bottom two row to zero:

1 -2 3 1 -2 3
0o 3 -2 Rys—R4—2R; |0 3 =2
0o -3 2 R3—Rs+Rs 0 0 0
3 0 5 0 0 0

Next, we normalize the pivot element (boxed below) of Rs:

1 -2 3 1 -2 3
0 2| Reoipre [0 1 —2/3
0 0 0 "o 0o 0
0 0 0 00 0

Finally, we row reduce the element above the pivot element:

1 -2 3 10 5/3
0 —2/3| Ri»Ri+2R, |0 1 —2/3
0 0 0 00 O
0 0 0 00 O

The subset of linearly indpendent vectors are’ vi =(1,0,5/9) ‘and’ vy = (0,1,-2/3) ‘
and the expand of the these vector in term of v, and v, are

(1, —2, 3) =V — 2V2
(1,1,1) =vVv1+ Vs
(1,72,3) = 72V1 + Vo
(1,1,1)  =3v;



5. 136.5 Show that any vector V in a plane can be written as a linear com-
bination of two non-parallel vectors A and B in the plance, that is, find
a and b so that v =aA + 0B.

We start by taking the cross product of the vector V with respect to
the basis vectors:
AXV=adAXA+bAXB

1
BXxV=aBXxXxA+bBxB (1)

Recall that A X A =0 and B X B = 0. Next, we take the projection of
(A X V) and (B x V) onto the normal vector, n = (A X B)/|A X BJ:

(AXV) n=bAXB)-n

BxV) n=aBXxA)n. (2)

Finally, we solve for a and b:

~ (BxV)'n b
ai(BXA)-n’ ~ (AxB)'n

Notice that (A X B) - n gives the area of parallelogram formed by A and
B.

6. 137.22 Find a condition for three lines in a plane to intersect at one point.
We can write the equation of the three lines as

a11T + apy =by
a21% + a2y = bo

az1x + azay = b3

where a;; and b; are constants. The row vectors must be linearly indepen-

dent. | In other words, there must exist a single solution to the augmented matrix.

7. 137.25 Find the eigenvalues and the cooresponding eigenvectors for the
following set of equations:

—1+XNz+y+3z =0

z+(2-Ny =0 .
3+ (2—X)z =0
In matrix form this is
—(14X) 1 3
A— )X = 1 (2-2X) 0 , (3)

3 0 (2-))



where [ is the idenity matrix. We can find the eigenvalues of the matrix
by evaluating det(A — AI) = 0 and solving for A\. Evaluating the matrix
using any method, we find the determinate is

det(A— M) =—-X>+3 2 +10A+3X—24=0.
Next, we factor to find that

A—4)(A—2)(A\+3)=0.

Hence the eigenvalues are | r = (4,2, —3) | The corresponding eigenvectors
are found by plugging A into A—AI = 0 and solving the augmented matrix.

We find for A =4: |v = (2y,9,3y) |, A=2: |v=(0,—-3%,2)|and A = —3:

v = (=5y.5.3y) |

. 141.3 Find the transpose, the inverse, the complex conjugate of

1 0 5%
A= | -2 2 0
1 144 0

and verify that AA=' = A='A = I, where I is a unit matrix.

The transpose is

1 -2 1
AT=(0 2 1+
5 0 0

Another way to find the inverse is by row reducting this augmented matrix:

1 0 5|1 0 0
AT=-2 2 01]0 1 0
1 1+4 0|0 0 1

We start by row reducing the elements below the pivot element (boxed)
of the first row:

0 5|1 o0\ . (L 0 5 [1 0
AT =2 2 0|0 1 of Z2fet2fis g 2 _10| 20 1
1 144 o]0 o 1) f7B~B \o 144 —5i|-1 0

Next, we row reduce the elements below the pivot element of the second
row:

Lo s 100y 0 s [10
0 10| 2 1 o B2tEOER G o j0 )2 1
0 1+i —5i|-1 0 1 00 5 |—i —if2

= o O

—_



Now, we normalize the pivot element of the third row:

L0 s [ 10 0\ 10 5|1 0 0
0 2 —10]2 1 o] BezBem@dRR [ o5 49| 9 1 0
0 0 —i —i/2 1 00 1 |—i/5 —i/10 1/5

Next, we row reduce the elements above the pivot element of the third
Trow:

10 5 | 1 0 0 10 0| 0 =—1/2+4i/2 —i
0 2 —10| 2 1 0 | fezfatlOf, fg 5 o o — 9
00 —i/5 —i/10 1/5) MY o 0 1| —i/5  —i/10 15

Finally, we normalize the pivot element of the second row:

L0 0 0 —1/244/2 =i\ 10 0] 0 —1/24i/2 —i
0 0| o —i 2 | 2 (01 0 0 —i/2 1
0 0 1|—i/5 —ijto 1/5) BTRTE R0 0 1| /5 —i/10  1/5

So the inverse matrix is

0 —1/2+4i/2 —i
Al=1 0 —i/2 1
—-i/5  —i/10  1/5

Now we can matrix multiply to show that A=A = AA~ ! =1T:

—
o
o

1 0 5i 0 —1/2+i/2 —i
AAT Y =-20 2 0 0 —i/2 1
1 144 0) \-i/5 —i/l0  1/5

o
—
o

o
—

A'A=1 0 —i/2 1 -2 2 0

0 —1/24i/2 —i 1 0 5 100
0
—i/5  —i/10 1/5) \ 1 1+i 0

AA= A4 =],

The complex conjugate

Hence,

1 0 —51
A" =2 2 0
1 1—-¢ 0
The complex conjugate
1 2 1
A= 0 2 1-i
=5t 0 0




9. 141.13 Show that the following matrix is a unitary matrix.

V3

23
(1+1) (V3+i0)/4

(1+iV3)/4
V3
2V2

For a unitary matrix UUT = UTU = I where t indicates we take the
complex transpose of the matrix and I is the identity matrix.

: -3 :
(1\[—2\@)/4 ﬁ(l—@)
3 . .
ﬁ(l—l) (V3—1i)/4

Now matrix multiply to show that

(1+4)
U=

(1+iv3)/4 £(1+i) (1—iv3)/4 —=(1—1)
UUT = 3 2v/2 Y <
27\/5(1‘1'1) (V3+1i)/4 2\@(1—1) (V3 —1i)/4

10. 142.22 Show that a unitary matrix is a normal matrix, that is, it commutes
with its transpose conjugate. Also show that orthogonal, symmetric, anti-
symetric, Hermitian, and anti-Hermitian matrices are normal.

The complex tranpose of a unitary matrix is (Uy;)! = Uy = (U™1)y;.
The commutator is
U,UT | =vUt -UU =0,

where 0 is a zero matrix. In index notation this is

([U,U)i = UnlUpy; = > Ui Us;
k k

=Y Uin(U )iy = Y (U ")irUs;
k

k
=055 — 035 =0.
Hence, the matrix is normal. Similarly, the complex tranpose of an or-
thogal matrix is Ojj = (071);j, a symmetric matrix Sjj = Sji, an anti-
symmetric matrix Ajj = —A;;, a Hermitian matrix H;rj = Hj;, and an

anti-Hermitian ij = —Gj;. In all case,

(IM, M)y = MipMyj — > MiMy; =0
k k



Hence, all these matrices are normal.



