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§Required Problems: Each problem has 10 points
E.g. MB 19.16 means problem #16 on page 19 in the book by M. Boas, 3rd

Edition.

1. MB 147.2 For the given sets of vectors, find the dimension of the space
spanned by them and a basis for this space:

(a) (1,−1, 0, 0), (0,−2, 5, 1), (1,−3, 5, 1), (2,−4, 5, 1);

To find the dimension of the space spanned by the set of vectors, we
create a matrix where the vectors are the rows components, and we
put the matrix in reduced row echelon form:

1 −1 0 0
0 −2 5 1
1 −3 5 1
2 −4 5 1

 −→


1 0 −5/2 −1/2
0 1 −5/2 −1/2
0 0 0 0
0 0 0 0

 .

Since there are only two indepedent vectors, the dimension of the

vector space is d = 2 . The basis vectors are given by the top two
row of the reduced matrix. This is a two dimensional vector space V2
embedded in a four dimensional vector space V4 since the vectors have
four componets but only two basis vectors. That means the vectors
can span a two dimensional plane oriented in four dimensional space.

(b) (0, 1, 2, 0, 0, 4), (1, 1, 3, 5,−3, 5), (1, 0, 0, 5, 0, 1), (−1, 1, 3,−5,−3, 3), (0, 0, 1, 0,−3, 0);

Following a procedure similar to part a), we find
0 1 2 0 0 4
1 1 3 5 −3 5
1 0 0 5 0 1
−1 1 3 −5 −3 3
0 0 1 0 −3 0

 −→


1 0 0 5 0 1
0 1 0 0 6 4
0 0 1 0 −3 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

The dimension of the vector space is d = 4 . The basis vectors are
given by the first fours row of the reduced row echelon matrix.

(c) (0, 10,−1, 1, 10), (2,−2,−4, 0,−3), (4, 2, 0, 4, 5), (3, 2, 0, 3, 4), (5,−4, 5, 6, 2) .



Following a procedure similar to part a), we find
0 10 −1 1 10
2 −2 −4 0 −3
4 2 0 4 5
3 2 0 3 4
5 −4 5 6 2

 −→


1 0 0 0 −3
0 1 0 0 1/2
0 0 1 0 −1
0 0 0 1 4
0 0 0 0 0

 .

The dimension of the vector space is d = 4 . The basis vectors are
given by the first fours row of the reduced row echelon matrix.

2. MB 147.4 For each set of basis vectors use the Gram-Schmidt method to
find an orthonormal set:

(a) A = (0, 2, 0, 0), B = (3,−4, 0, 0), C = (1, 2, 3, 4).

To find the first vector, we choose one of the vectors and normalize it.
In this set, A is the simplest vector to normalize:

ê1 = (0, 1, 0, 0) .

Next, we select one of the remaining vectors, in our case we choose B,
and we subtract the projection of B along ê1:

e2 = B− (B · ê1)ê1 = (3, 0, 0, 0) .

This procedure removes the vector component along ê1, thus making
e2 orthogonal to ê1. Then we normalize e2, so that ê2 = (1, 0, 0, 0).

Similarly, we can make C orthogonal to both ê1 and ê2 by subtracting
the projection of ê1 and ê2 from C:

e3 = C− (C · ê1)ê1 − (C · ê2)ê3 = (0, 0, 3, 4) .

This normalizes to ê3 = 1
5 (0, 0, 3, 4) and thus the set of othornomal

vectors are

ê1 = (0, 1, 0, 0), ê2 = (1, 0, 0, 0), ê =
1

5
(0, 0, 3, 4) .

(b) A = (0, 0, 0, 7), B = (2, 0, 0, 5), C = (3, 1, 1, 4). Following a similar
procedure, we have

ê1 = (0, 0, 0, 1), ê2 = (1, 0, 0, 0), ê =
1√
2

(0, 1, 1, 0) .

(c) A = (6, 0, 0, 0), B = (1, 0, 2, 0), C = (4, 1, 9, 2). Following a similar
procedure, we have

ê1 = (1, 0, 0, 0), ê2 = (0, 0, 1, 0), ê =
1√
5

(0, 1, 0, 2) .



Keep in mind there are many possible solutions.

3. MB 147.5 Find the norms of A and B and the inner product of A and B,
and note that the Schwarz inequality is satisfied

(a)
A = (3 + i, 1, 2− i,−5i, i+ 1), B = (2i, 4− 3i, 1 + i, 3i, 1)

The normalization of A is ‖A‖ = (A · A)1/2. The dot product can
thought of as the matrix multiplication of a column vector onto a row
vector:

A ·A =
(
3 + i 1 2− i −5i i+ 1

)


3 + i
1

2− i
−5i
i+ 1

 = 43 .

Note that the row vector is the complex conjugate tranpose of the

column vector. Hence, ‖A‖ =
√

43 .

The normalization of B is

B ·B =
(
−2i 4 + 3i 1− i −3i 1

)


2i
4− 3i
1 + i

3i
1

 = 46; .

Hence, ‖B‖ =
√

46 .

The inner product of A ·B is

A ·B =
(
3 + i 1 2− i −5i i+ 1

)


2i
4− 3i
1 + i

3i
1

 = −7 + 5i .

Thus, |A ·B| =
√

74 .

The Schwarz inequality is

√
74 = |A ·B| ≤ ‖A‖‖B‖ =

√
41
√

46 =
√

1886 .



(b)

A = (2, 2i− 3, 1 + i, 5i, i− 2)

B = (5i− 2, 1, 3 + i, 2i, 4)

The normalization of A is

A ·A =
(
2 −2i− 3 1− i −5i −i− 2

)


2
2i− 3
1 + i

5i
i− 2

 = 49 .

Thus, ‖A‖ = 7 . The normalization of B is

B ·B =
(
−5i− 2 1 3− i −2i 4

)


5i− 2
1

3 + i
2i
4

 = 60 .

Thus, ‖B‖ = 2
√

15 . The dot product of a A and B is

A ·B =
(
2 −2i− 3 1− i −5i −i− 2

)


5i− 2
1

3 + i
2i
4

 = 2i− 1 .

The Schwarz inequality is

√
5 = |A ·B| ≤ ‖A‖‖B‖ = 14

√
15 .

4. MB 159.7

(a) Show that if C is a 3× 3 matrix whose columns are the components
(x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) of the three perpendicular vec-
tors each of unit length, then C is an orthogonal matrix.

Recall that for orthogonal matrix, O, that OT = O−1, such that
OTO = 1. In matrix form CTC isx1 y1 z1

x2 y2 z2
x3 y3 z3

x1 x2 x3
y1 y2 y3
z1 z2 z3

 . (1)



Notice that each step of matrix multiplication in Eq. (1) is equivalent
to taking the dot product of a row and column:

xnxm + ynym + znzm =

{
1 n = m

0 n 6= m .

Hence,

CTC =

1 0 0
0 1 0
0 0 1

 ,

and C is an orthongal matrix.

(b) Show that if C is an n×n matrix whose columns are the components
(C11, C21, . . . , Cn1), (C21, C22, . . . , Cn2), . . . (C1n, C2n, . . . , Cnn) of
the n perpendicular vectors each of unit length, then C is an orthog-
onal matrix.

Just as in part a), the matrix C is orthogonal if CTC = 1. In
index notation the matrix product is written as

(CTC)ij =

n∑
k=0

(CT )ikCkj = δij ,

where
∑n

k=0(CT )ikCkj is essentially the dot product between unit
vectors i and j. Since the unit vectors are all perpendicular to each
other, the dot product between any two is zero expect when a vector
is dotted with itself. Hence, C is orthogonal.

5. MB 159.18 Find the eigenvalues and eigenvectors of the following matrix:

A =

−1 1 3
1 2 0
3 0 2

 ,

The eigenvalues are the values of λ that correspond to the zeroes of the
characteristic polynomial, i.e. det(A− λ1) = 0. In this case the charac-
tersistic polynomial is −λ3 + 3λ2 + 10λ−24 = 0. If we factor this we have
(λ− 4)(λ− 2)(λ+ 3) = 0. Hence, the eigenvalues are

λ = 4, 2, −3 .

We find the eigenvectors by solving the set of linear equations given by
Av = λv for each eigenvalue λ. Recall that there are three possible cases
for the solution to a set of equations: no solution, one solution, and in-
finitely many solutions. For λ = 4 the set of equations is



−5a+ b+ 3c = 0 (2)

a− 2b = 0 (3)

3a− 2c = 0 . (4)

By inspecting Eq. (4), we can see that c = 3a/2 and b is free to take on
any value and by examining Eq. (3), we can see that b = a/2. And a is
free to take on any value. Note that a = 0 is the trivial solution. Hence,
the eigenvector correpsonding to this matrix is

v4 = (1, 1/2, 3/2)a

.

Similarly, for λ = 2 we have

−3a+ b+ 3c = 0 (5)

a = 0 (6)

3a = 0 . (7)

By inspecting Eq. (6) and Eq. (7), we can see that a = 0, b and c are free
to take on any value and by examining Eq. (5), we can see that c = −b/3.
Hence, the eigenvector correpsonding to this matrix is

v2 = (0, 1,−1/3)b .

For λ = −3

2a+ b+ 3c = 0 (8)

a− b = 0 (9)

3a− c = 0 . (10)

By inspecting Eq. (10), we can see that c = 3a and b is free to take on
any value and by examining Eq. (9), we can see that b = a. Hence, the
eigenvector corresponding to this matrix is

v−3 = (1, 1/2, 3/2)a .

6. MB 159.19 Find the eigenvalues and eigenvectors of the following matrix:

A =

1 2 2
2 3 0
2 0 3

 ,

Following a similar procedure to that described for problem MB 159.18, we

find the eigenvalues to be λ = 5, 3,−1 and the normalized eigenvectors

are respectively:



v5 =
1√
3

(1, 1, 1)

v3 =
1√
2

(0,−1, 1)

v−1 =
1√
6

(−2, 1, 1) .

7. MB 160.42

Verify that the matrix is Hermitian. Find its eigenvalues and eigenvectors,
write a unitary matrix U which diagonalizes H by a similarity transfor-
mation, and show that U−1HU is the diagonal matrix of eigenvalues.

H =

(
3 1− i

1 + i 2

)
.

To show that the matrix is Hermitian we take the conjugate transpose of
the matrix and show that H = H†:

H† =

(
3 1− i

1 + i 2

)
.

To find the eigenvalues, we compute the zeroes of the characteristic poly-
nomial, det(H − λ1) = 0:

det(H − λ1) =

∣∣∣∣3− λ 1− i
1 + i 2− λ

∣∣∣∣ = λ2 − 5λ+ 4 = (λ− 4)(λ− 1) = 0 ,

so the eigenvalues are λ = 4, 1. The eigenvectors are the characteristic vec-
tors that satitfy the relation (H−λ1))v = 0 for λ = 4, 1 where v = (a, b).
Usually, we can solve this by inspecion; however, we can find the eigen-
vector systematic manner, by writting (H − λ1))v = 0 as an augmented
matrix and then tranforming the matrix into reduced row echelon form:(

−1 1− i 0
1 + i −2 0

)
−→
(

1 −(1− i) 0
0 0 0

)
.

(Keep in mind that on an exam it is usually faster to find the eigenvector
of a 2×2 or 3×3 matrix by inspection, i.e. guess and check as we showed
in MB 159.18.)

Now, we have the equation−a+(1+i)b = 0, which tells that an eigenvector
is v4 = (1, (1 + i)/2)a and the normalized eigenvector is

v̂4 =
1√
3/2

(1, (1 + i)/2) .



Using a similar procedure for λ = 1, we have(
2 1− i 0

1 + i 1 0

)
−→
(

1 (1− i)/2 0
0 0 0

)
.

This tells that a+ (1− i)b/2 = 0 an eigenvector is v1 = (1,−(1 + i))a and
the normalized eigenvector is

v̂1 =
1√
3

(1,−(1 + i)) .

The unitary matrix is constructed from the normalized eigenvectors:

U =

(
1/
√

3 1/
√

3/2

−(1 + i/
√

3) −(1 + i)/
√

3/2

)
,

and the inverse is just the conjugate transpose (if and only if the matrix
is Hermitian)

U† =

(
1/
√

3 −(1− i)/
√

3

1/
√

3/2 (1− i)/2
√

3/2

)
.

Now we can show that

U†HU =

(
1 0
0 4

)
.

8. Find the right and left eigenvectors the following matrix:

M =

(
1 3
2 2

)
.

We find eigenvalues to beλ = 4,−1 by solving for the zeroes of the char-
acteristic polynomial: det(M − λ(1)) = 0.

i) The right eigenvectors satisfy the relation: Mv = λv where v = (a, b)
is column vector. For λ = 4, the augmented matrix is(

−3 3 0
2 −2 0

)
Row reduce the matrix to get(

1 −1 0
0 0 0

)
.



This gives us the equation −3a+ 3b = 0, which tells us that the first
normalized right eigenvector

v̂R,4 =
1√
2

(
1
1

)
.

Similarly, for λ = −1, the augemented matrix is(
2 3 0
2 3 0

)
.

Row reduce the matrix to get:(
1 3/2 0
0 0 0

)
.

From the equation a + 3/2b = 0 we get the second normalized right
eigenvector

v̂R,−1 =
1√
11/2

(
1

2/3

)
.

ii) The left eigenvectors satisfy the relation: vM = vλ where v = (a, b)
is row vector. For λ = 4, the matrix relation is(

a b
)(−3 3

2 −2

)
=
(
4a 4b

)
.

Of course, we can solve this by inspection, but for more difficult cases
a systematic method is useful. If we take the tranpose of both side of
the matrix relation, we can put this in a more familiar form:(

1 2
3 2

)(
a
b

)
=

(
4a
4b

)
Now, we can write this as an augmented matrix:(

−3 2 0
3 −2 0

)
,

and we can row reduce the matrix to get(
1 −2/3 0
0 0 0

)
.

This is gives us the relation a− (2/3)b = 0, so we can see normalized
left vector is

v̂L,4 =
1√
11/2

(1, 3/2) .

Using the procedure described above, we find the left eigenvector for
λ = −1 to be

v̂L,−1 =
1√
2

(1, 1) .



9. Consider the matrix

M =

[
2 1 + ε

1− ε 3

]
Calculate its right and left eigenvectors for an arbitrary ε. Show that these
coincide when ε → 0. Find the value of ε below which the eigenvalues
become real.

First we find the eigenvalues by solving the zeroes of the characteristic
polynomial, det(M − λ1) = 0:∣∣∣∣2− λ 1 + ε

1− ε 3− λ

∣∣∣∣ = (2− λ)(3− λ)− (1− ε)(1 + ε) = 0

Next, if we write this relation in powers of λ, we get

λ2 − 5λ+ 6− (1− ε2) = 0 .

Now, we can write this as a quadratic equation

λ± =
5

2
±
√

5− 4ε2

2
.

We can see that for |ε| <
√

5/4 the eigenvalues are real.

i) The right eigenvectors satisfy the relation Mv = λv. For λ+, by
inspecting the equations:

(−1/2−
√

5− 4ε2/2)a+ (1 + ε)b = 0

(1− ε)a+ (1/2−
√

5− 4ε/2)b = 0 ,

we can see that vR,+ = (−1/2 +
√

5− 4ε2/2, 1− ε) is the right eigen-
vector. For λ−, by inspecting the equations:

(−1/2 +
√

5− 4ε2/2)a+ (1 + ε)b = 0

(1− ε)a+ (1/2 +
√

5− 4ε/2)b = 0 ,

we can see that vR,− = (−1/2−
√

5− 4ε2/2, 1− ε) is the other eigen-
vector.

ii) The left eigenvectors satisfy the relation vM = vλ. For λ+, we have
the equations:

(−1/2−
√

5− 4ε2/2)a+ (1− ε)b = 0

(1 + ε)a+ (1/2−
√

5− 4ε/2)b = 0 .



and by inspection we can see that vL,+ = (−1/2−
√

5− 4ε2/2, 1 + ε)
is a left eigenvector. For λ−, we have the equations:

(−1/2 +
√

5− 4ε2/2)a+ (1− ε)b = 0

(1 + ε)a+ (1/2 +
√

5− 4ε/2)b = 0 .

and by inspection we can see that vL,− = (−1/2−
√

5− 4ε2/2, 1 + ε)
is the eigenvector left eigenvector. As we can see as ε → 0, the right
and left eigenvalue are the same:

vR,+ = vL,+ = (−1/2−
√

5/2, 1)

vR,+ = vL,− = (−1/2 +
√

5/2, 1) .


