Mathematical Methods of Physics 116A- Winter 2018
Physics 116A

Home Work # 8 Solutions
Posted on Mar 1, 2018
Due in Class Mar 8, 2018

SRequired Problems: Each problem has 10 points
E.g. MB 19.16 means problem #16 on page 19 in the book by M. Boas, 3rd
Edition.

1. MB 147.2 For the given sets of vectors, find the dimension of the space
spanned by them and a basis for this space:

(a) (1,-1,0,0), (0,—2,5,1), (1,-3,5,1), (2,—4,5,1);
To find the dimension of the space spanned by the set of vectors, we
create a matrix where the vectors are the rows components, and we
put the matrix in reduced row echelon form:

1 -1 0 0 1 0 —5/2 —1/2
0 -2 5 1| [0 1 -52 —1/2
1 -3 5 1 00 0 0
2 —4 5 1 00 0 0

Since there are only two indepedent vectors, the dimension of the
vector space is . The basis vectors are given by the top two
row of the reduced matrix. This is a two dimensional vector space V5
embedded in a four dimensional vector space Vj since the vectors have
four componets but only two basis vectors. That means the vectors
can span a two dimensional plane oriented in four dimensional space.

(b) (Oa 1) 27 07 Ov 4)3 (la 17 37 57 _33 5)7 (17 07 Oa 5a Oa 1)7 (_17 1a Sa _57 _33 3)7 (07 07 17 Oa _37 0)7
Following a procedure similar to part a), we find

0 1.2 0 0 4 1005 0 1
113 5 -3 5 01 00 6 4
1 o0 5 0 1] =100 10 -3 0
-11 3 -5 -3 3 0000 0 O
0 01 0 -3 0 0000 0 O

The dimension of the vector space is . The basis vectors are
given by the first fours row of the reduced row echelon matrix.

(C) (O’ 10, _17 17 10)? (27 _25 _47 Oa _3)7 (47 27 07 4a 5)7 (35 27 07 3a 4)3 (5a _47 57 6? 2) .



Following a procedure similar to part a), we find

0 10 -1 1 10 1000 -3
2 -2 —4 0 -3 010 0 1/2
4 2 0 4 5|=|o0 10 <1
3 2 0 3 4 0001 4
5 —4 5 6 2 0000 0

The dimension of the vector space is . The basis vectors are
given by the first fours row of the reduced row echelon matrix.

2. MB 147.4 For each set of basis vectors use the Gram-Schmidt method to
find an orthonormal set:

(a)

(c)

A= (0727030)’ B = (37743030)7 C= (1527374)

To find the first vector, we choose one of the vectors and normalize it.
In this set, A is the simplest vector to normalize:

&, =(0,1,0,0) .

Next, we select one of the remaining vectors, in our case we choose B,
and we subtract the projection of B along €&;:

€2 :B—(Bél)él = (3,0,0,0).

This procedure removes the vector component along &;, thus making
eo orthogonal to &;. Then we normalize es, so that & = (1,0,0,0).

Similarly, we can make C orthogonal to both &; and é; by subtracting
the projection of &; and & from C:

e3=C—(C-&)& —(C-82)&; =(0,0,3,4) .

This normalizes to é3 = %(0707 3,4) and thus the set of othornomal
vectors are

1
&1 =(0,1,0,0), & = (1,0,0,0), 8= £(0.0,3,4) |.

A =(0,0,0,7), B =(2,0,0,5), C = (3,1,1,4). Following a similar
procedure, we have

1

él = (070707 1)7 é2 = (1307070)7 €= (07 17170) .
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A = (6,0,0,0), B =(1,0,2,0), C = (4,1,9,2). Following a similar
procedure, we have

1

él = (1707 0’ 0)7 é2 = (0’ 07170)’ é = (0) 1707 2) N

S

5




Keep in mind there are many possible solutions.

3. MB 147.5 Find the norms of A and B and the inner product of A and B,
and note that the Schwarz inequality is satisfied

(a)
A=(3+i,1,2—1i,-5i,i+1), B=(2i,4—3i,1+1,3i,1)

The normalization of A is |A|| = (A - A)'/2. The dot product can
thought of as the matrix multiplication of a column vector onto a row
vector:

341

1
A-A=(3B+i 1 2—i =5 i+1)[2—i|=43.

—5i

i+1

Note that the row vector is the complex conjugate tranpose of the
column vector. Hence, | [|A] = v43 |

The normalization of B is

21
4— 31
B-B= (-2 4+3 1-i -3i 1)| 1+i |=46;.
3i
1
Hence, | |B|| = V46 |.
The inner product of A - B is
21
4—3i
A-B=(3+i 1 2—i =5 i+1)| 1+i |=|-7+5i].
3i

1

Thus, | |A-B|=VT74|

The Schwarz inequality is

V7i=|A -B| < | A[l|B] = VALV = VIS5 .




A=(2,2—3,1+1i5ii—2)
B = (5i —2,1,3+1,2i,4)

The normalization of A is

2
2 —3
A-A=(2 —20-3 1—i —bi —i—2)| 1+i |=49.
5i
i—2
Thus, | ||A|| = 7| The normalization of B is
5i — 2
1
B-B=(-5i—-2 1 3—i —2i 4)| 3+i |=60.
2
4

Thus, | ||B]| = 2v'15|. The dot product of a A and B is

5i — 2
1

AB=(2 -2i-3 1—-i —5i —i—2)|3+i |[=[20i—1].
2i
4

The Schwarz inequality is

V5= |A-B| < ||A][B] = 14V15 .

4. MB 159.7

(a) Show that if C' is a 3 x 3 matrix whose columns are the components
(x1,y1,721), (T2,Y2, 22) and (x3,ys, 23) of the three perpendicular vec-
tors each of unit length, then C' is an orthogonal matrix.

Recall that for orthogonal matrix, O, that OT = O~!, such that
OT0O = 1. In matrix form CTC is

1 Y1 21 xr1 T2 I3
T2 Y2 22 Y Y2 Y3 . (1)
xr3 Ys =3 21 %2 Z3



Notice that each step of matrix multiplication in Eq. (1) is equivalent
to taking the dot product of a row and column:

1 n=m

Ty Lo + + 2p2m =

Hence,

10 0
ctc=1(0 1 o},
0 0 1

and C is an orthongal matrix.

(b) Show that if C' is an n x n matrix whose columns are the components
(C11,Co1,...,Cn1), (Co1,Ca2,...,Cp2), ... (Cin,Con,...,Crp) of
the n perpendicular vectors each of unit length, then C' is an orthog-
onal matrix.

Just as in part a), the matrix C is orthogonal if CTC = 1. In
index notation the matrix product is written as

n

(CTC)ij =D (CT)ikChj = 615 ,
=0

where Y} (CT);,Cy; is essentially the dot product between unit

vectors ¢ and j. Since the unit vectors are all perpendicular to each

other, the dot product between any two is zero expect when a vector
is dotted with itself. Hence, C' is orthogonal.

5. MB 159.18 Find the eigenvalues and eigenvectors of the following matrix:

-1
A:

SN =
N O W

1
3
The eigenvalues are the values of A that correspond to the zeroes of the
characteristic polynomial, i.e. det(A — Al) = 0. In this case the charac-

tersistic polynomial is —A3 +3A2 4+ 10\ — 24 = 0. If we factor this we have
(A =4)(A—2)(A + 3) = 0. Hence, the eigenvalues are

A=4, 2 -3|.

We find the eigenvectors by solving the set of linear equations given by
Av = \v for each eigenvalue \. Recall that there are three possible cases
for the solution to a set of equations: no solution, one solution, and in-
finitely many solutions. For A = 4 the set of equations is



—5a+b+3c=0 (2)

a—2b=0 (3)

3a—2c=0. (4)

By inspecting Eq. (4), we can see that ¢ = 3a/2 and b is free to take on
any value and by examining Eq. (3), we can see that b = a/2. And a is

free to take on any value. Note that a = 0 is the trivial solution. Hence,
the eigenvector correpsonding to this matrix is

Vi =(1,1/2,3/2)a]

Similarly, for A = 2 we have

—3a+b+3c=0 (5)
a=0 (6)
3a=0. (7)

By inspecting Eq. (6) and Eq. (7), we can see that a = 0, b and ¢ are free
to take on any value and by examining Eq. (5), we can see that ¢ = —b/3.
Hence, the eigenvector correpsonding to this matrix is

]vz - (0,1,—1/3)b\.

For A\ = -3
2a+b+3c=0 (8)
a—b=0 9)
3a—c=0. (10)

By inspecting Eq. (10), we can see that ¢ = 3a and b is free to take on
any value and by examining Eq. (9), we can see that b = a. Hence, the
eigenvector corresponding to this matrix is

(vos=(1,1/2,3/2)al.

. MB 159.19 Find the eigenvalues and eigenvectors of the following matrix:

1
A=12
2

S W N

2
0f,
3

Q.

Following a similar procedure to that described for problem MB 159.18, we

find the eigenvalues to be | A = 5,3, —1| and the normalized eigenvectors

are respectively:



1
vy = —(1,1,1
5 \/g( )
1
- (0,-1,1
V3 \/5( )
1
Vo= —(=2,1,1).
(=21

7. MB 160.42

Verify that the matrix is Hermitian. Find its eigenvalues and eigenvectors,
write a unitary matrix U which diagonalizes H by a similarity transfor-
mation, and show that U 'HU is the diagonal matrix of eigenvalues.

3 1—1
(3.
To show that the matrix is Hermitian we take the conjugate transpose of
the matrix and show that H = H':

3 1—1
t—
w=(4 )

To find the eigenvalues, we compute the zeroes of the characteristic poly-
nomial, det(H — A1) = 0:

3—A 1—4

—\2 _ _ _ _ _
L4i 2 =N TRAHA=A A -1 =0,

det(H — A1) = ‘

so the eigenvalues are A = 4, 1. The eigenvectors are the characteristic vec-
tors that satitfy the relation (H —A1))v = 0 for A = 4,1 where v = (a, b).
Usually, we can solve this by inspecion; however, we can find the eigen-
vector systematic manner, by writting (H — A1))v = 0 as an augmented
matrix and then tranforming the matrix into reduced row echelon form:

(5 -6 ).

(Keep in mind that on an exam it is usually faster to find the eigenvector
of a 2 x 2 or 3 x 3 matrix by inspection, i.e. guess and check as we showed
in MB 159.18.)

Now, we have the equation —a+(14)b = 0, which tells that an eigenvector
is vy = (1,(1 4 4)/2)a and the normalized eigenvector is

W= ——=(1,(1+9)/2) .

NCE




Using a similar procedure for A = 1, we have

2 1-i 0\ _ (1 (1-i)/2 0
1+¢ 1 0 0 0 0) -
This tells that a + (1 —4)b/2 = 0 an eigenvector is v = (1, —(1+¢))a and
the normalized eigenvector is

= 1t

V3

The unitary matrix is constructed from the normalized eigenvectors:

U_( 1/V3 1/y/3/2 >
—(14i/V3) —(1+14)/,/3/2

and the inverse is just the conjugate transpose (if and only if the matrix

is Hermitian)
Ut — V3 —(1-9)/V3
(e o o)

Now we can show that

1 0
T _
v (3 )

. Find the right and left eigenvectors the following matrix:

1 3

u-(19).

We find eigenvalues to beA = 4, —1 by solving for the zeroes of the char-
acteristic polynomial: det(M — A(1)) = 0.

i) The right eigenvectors satisfy the relation: Mv = Av where v = (a, b)
is column vector. For A\ = 4, the augmented matrix is

-3 3 0
2 =20

Row reduce the matrix to get

1 -1 0
0 0 0)°



ii)

This gives us the equation —3a + 3b = 0, which tells us that the first
normalized right eigenvector

)
R4 7\
Similarly, for A = —1, the augemented matrix is

2 30
2 3 0/)°
Row reduce the matrix to get:
1 3/2 0
0 0 0/°

From the equation a + 3/2b = 0 we get the second normalized right
eigenvector

w7 o)

The left eigenvectors satisfy the relation: vM = v\ where v = (a, b)
is row vector. For A\ = 4, the matrix relation is

(a b) (23 _32> (40 4b) .

Of course, we can solve this by inspection, but for more difficult cases
a systematic method is useful. If we take the tranpose of both side of
the matrix relation, we can put this in a more familiar form:

1 2 a\ _ (4a
3 2)\b)  \4
Now, we can write this as an augmented matrix:
-3 2 0
3 -2 0/~
and we can row reduce the matrix to get
1 -2/3 0
0 0 0/ "

This is gives us the relation a — (2/3)b = 0, so we can see normalized
left vector is

0= 111 51,3/2) |

\V)

Using the procedure described above, we find the left eigenvector for
A= —1to be

Vp,—-1=

)

(1,1)].

Sl




9. Consider the matrix
M- { 2 14+ e}

1—c¢ 3

Calculate its right and left eigenvectors for an arbitrary e. Show that these
coincide when ¢ — 0. Find the value of € below which the eigenvalues
become real.

First we find the eigenvalues by solving the zeroes of the characteristic
polynomial, det(M — A1) = 0:

2-NB-AN-(1-e1+e=0

2—X 1+4e¢ —
1—€e 3—=X\

Next, if we write this relation in powers of A, we get
AN —B5A+6—(1-€)=0.
Now, we can write this as a quadratic equation

\/ _42

We can see that for | || < 4/5/4 | the eigenvalues are real.

i) The right eigenvectors satisfy the relation Mv = Av. For A;, by
inspecting the equations:

(—=1/2 = /5 —42/2)a+ (1 + )b =0
(I—-€ea+(1/2—V5—4¢/2)b=0

we can see that vp 4 = (—1/2+ V5 — 4€2/2,1 — ¢) is the right eigen-
vector. For A_, by inspecting the equations:

(—=1/2+ /5 —4e2/2)a+ (1 + )b =0
(1—€)a+(1/2—|—\/5—46/2) =0,

we can see that v = (=1/2— /5 — 4€2/2,1 —€) is the other eigen-
vector.

ii) The left eigenvectors satisfy the relation vM = vA. For A;, we have
the equations:

(=1/2 = /5 —4€2/2)a+ (1 —€)b =0
(1+6)a+(1/27\/574e/2) =



and by inspection we can see that v+ = (=1/2 -5 —4€2/2,1 +¢)
is a left eigenvector. For A\_, we have the equations:

(—1/2+ 5 —4€?/2)a+ (1 —€)b=0
(1+ea+(1/2+ V5 —4€¢/2)b=0.
and by inspection we can see that vy — = (=1/2 -5 —4€2/2,1+¢)

is the eigenvector left eigenvector. As we can see as € — 0, the right
and left eigenvalue are the same:

VR+ =VL 4+ = (—]./2 - \/5/2, 1)
vpt =vrp_ = (-1/2+5/2,1) .




