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Recall that we calculated the determinant

∆(λ) ≡ det
∣∣M − λ1∣∣ (1)

which is a polynomial in λ of degree d where d is the dimension of the matrix
M . The eigenvalues are the roots of ∆(λ) = 0. This object ∆(λ) is called
the characteristic polynomial of the matrix M .

Recall a simple theorem from determinants that says

detA = detAT (2)

This implies that
§Comment: The eigenvalues of M and MT are the same!!
We saw that a generic i.e. non-symmetric (or non Hermitean) matrix

M 6= MT has eigenvalues given by the condition

M.ψj = λjψj,

and hence taking transpose of both sides

ψT
j .M

T = λjψ
T
j .

This tells us that MT has “eigenvectors” ψT
j with the same eigenvalues

λj. This is consistent with above comment, but brings in a new point: what
is ψT doing to the left of MT .

Question: Could we also have a similar relation for M , rather than MT

with something to its left?
§Left and right eigenfunctions
Answer is yes!!
A non-symmetric matrix M can have for each eigenvalue, a distinct right

and left eigenvector.
Thus

M.ψR = λψR, and also with same eigenvalue ψT
L .M = λψT

L
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In particular

ψL 6= ψR. (3)

§Re-Return to first example of diagonalization
In our old problem

M =

[
4 2
3 −1

]
we saw that there are two eigenvalues λ = λa,b where λa = 5 and λb = −2
and there are two corresponding right eigenvectors, ψa and ψb given by

ψR,a =

[
2√
5
1√
5

]
, and ψR,b =

[
1√
10
−3√
10

]
, (4)

such that

M.ψR,a = λaψR,a, M.ψR,b = λbψR,b. (5)

Question: How about left eigenvectors?

[
a b

]
.

[
4 2
3 −1

]
= λ

[
a b

]
. (6)

This gives us the pair of linear eqns.

(4− λ)a+ 3b = 0, 2a− b(1 + λ) = 0 (7)

The characteristic determinant

∆(λ) = 10 + 3λ− λ2, (8)

with roots λ = 5,−2. Hence the eigenvalues are the same as those from the
right operation.

How about left eigenvectors?

ψT
L,a =

[
3√
10

1√
10

]
, and ψT

L,b =
[

1√
5
−2√
5

]
(9)

Comparing Eq. (9) with Eq. (4)- close but not the same!!
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ψL 6= ψR. (10)

§ Powers of matrices and matrix relations made easy!
We found the diagonal matrix D by computing the “similarity transfor-

mation”

W−1.M.W = D (11)

Recall that

D =


λ1 0 0 . . .
0 λ2 0 . . .
...

...
...

0 . . . 0 λn

 (12)

Therefore

Dm =


λm1 0 0 . . .
0 λm2 0 . . .
...

...
...

0 . . . 0 λmn

 (13)

Now take the mth power of the left hand side of Eq. (15)

(W−1.M.W ).(W−1.M.W ).(W−1.M.W ). . . . (W−1.M.W ) = W−1.Mm.W (14)

Hence we need to calculate the W only once, and this gives us all the powers
of the matrix M in a diagonal form through

W−1.Mm.W = Dm (15)
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We proved:

W−1.Mm.W = Dm

We can use this for many important identities.

1. TrM =
∑n

j=1 λj

2. DetM =
∏n

j=1 λj.

3. DetM = eTr logM

§Cayley-Hamilton theorem
Let us recall that the eigenvalues are the roots of the characteristic poly-

nomial,

∆(λ) = λn + A1λ
n−1 + . . .+ An−1 = 0 (16)

where Aj can be calculated given the matrix M .
Cayley-Hamilton argue that the matrix also satisfies the condition

Mn + A1M
n−1 + . . .+ An−11 = 0 (17)

Proof is immediate, upon using Eq. (15).
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