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§ Powers of matrices and matrix relations made easy!
We found the diagonal matrix D by computing the “similarity transfor-

mation”

W−1.M.W = D (1)

Recall that

D =


λ1 0 0 . . .
0 λ2 0 . . .
...

...
...

0 . . . 0 λn

 (2)

§Cayley-Hamilton theorem
Let us recall that the eigenvalues are the roots of the characteristic poly-

nomial,

∆(λ) = λn + A1λ
n−1 + . . .+ An−1 = 0

=
n∏

j=1

(λ− λj) (3)

where Aj can be calculated given the matrix M and yield the n eigenvalues
λj.

Cayley-Hamilton argue that the matrix also satisfies the condition

Mn + A1M
n−1 + . . .+ An−11 = 0 (4)

How does one prove such a theorem?
Call

L = Mn + A1M
n−1 + . . .+ An−11 (5)

and observe

W−1.L.W = Dn + A1D
n−1 + . . .+ An−11. (6)
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Proof

Therefore we take the explicit form of D into account and hence Eq. (6)
is a diagonal matrix. Take the jth element of that hence(

W−1.L.W
)
jj

= λnj + A1λ
n−1
j + . . .+ An−1

= 0. on using Eq. (3) (7)

§Important properties of Hermitean matrices
We will show a few important properties of Hermitean matrices, i.e. ma-

trices H = H†. Recall
(H†)ij = (Hji)

∗,

and these are of great importance in QM. Also recall that real symmetric
matrices are special cases if Hermitean.

§Eigenvalues of Hermitean matrices are real
Let us consider the eigenvalue,

Hψj = λjψj (8)

so we can take the Hermitean adjoint of this equation and get

ψ†jH
† = ψ†jH = ψ†jλ

∗
j . (9)

Keep in mind that ψ† is a row-vector found by taking the complex conjugate
and transpose of ψj.

Now using both these equations we get

ψ†j .H.ψj = λjψ
†
j .ψj

= λ∗jψ
†
j .ψj (10)

Hence

λj = λ∗j . (11)

§Eigenvectors of Hermitean matrices with distinct eigenvalues
are orthogonal to each other.

Suppose we have two eigenvalues and their eigenvectors as

H.ψi = λiψi

H.ψj = λjψj

(12)
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with

λi 6= λj (13)

We can show that

ψ†i .ψj = 0. (14)

Proof: Consider

ψ†i .H.ψj ?

= λi ψ
†
i .ψj

= λj ψ
†
i .ψj (15)

hence the result.
§Degeneracy
An eigenvalue is called degenerate if we can find two independent eigen-

vectors for the same eigenvalue. This implies basically that the characteristic
polynomial has repeated roots.

For Hermitean matrices, we can find as many eigenvectors as the dimen-
sion of matrices, degenerate or otherwise. Gram-Schmit is useful if degener-
acy is found.
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§Re-Return to first example of diagonalization
In our old problem

M =

[
4 2
3 −1

]
we saw that there are two eigenvalues λ = λa,b where λa = 5 and λb = −2
and there are two corresponding right eigenvectors, ψa and ψb given by

ψR,a =

[
2√
5
1√
5

]
, and ψR,b =

[
1√
10
−3√
10

]
, (16)

Also we found two left eigenvectors.

ψT
L,a =

[
3√
10

1√
10

]
, and ψT

L,b =
[

1√
5
−2√
5

]
(17)

We commented: Comparing Eq. (17) with Eq. (16)- close but not the
same!!

ψL 6= ψR. (18)

Can we say something more here about orthogonality?
Consider

ψT
L,a.M.ψR,b =

ψT
L,b.M.ψR,a =
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§One example of diagonalizing a Hermitean matrix
Consider

M =

[
2 2i
−2i −1

]

Eigenvalues : λ1 = 3, λ2 = −2.

Eigenvectors.

ψ1 =
1√
5

[
2i
1

]
, ψ2 =

1√
5

[
−i
2

]
(19)

Matrix of eigenvectors. U = [ψ1, ψ2]
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§Application of matrix diagonalization to physical problems
Consider three coupled particles

H =
m

2

(
(u̇1)

2 + (u̇2)
2 + (u̇3)

2
)

+
k

2

(
(u1 − u2)2 + (u3 − u2)2

)
(20)

Assume harmonic motion, i.e. u1 = aeiωt, u2 = beiωt, u3 = ceiωt, where
a, b, c are three amplitudes of oscillation.

EOM:

mω2a− k(a− b) = 0

mω2b− k(2b− a− c) = 0

mω2c− k(c− b) = 0 (21)

we may define

Λ =
mω2

k
, (22)

and rearrange this as a matrix equationΛ− 1 1 0
1 Λ− 2 1
0 1 Λ− 1

 .
ab
c

 = 0 (23)

This is our favorite matrix equation and hence we can turn the crank. The
eigenvalues written in terms of Λ are

Λ = 3, 1, 0 (24)

and the un-normalized eigenfunctions are

ψ1 =

 1
−2
1

 , ψ2 =

−1
0
1

 , ψ3 =

1
1
1

 (25)
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