Physics 116A- Winter 2018

Mathematical Methods 116 A

S. Shastry, Jan, 18 2018 Notes on Complex numbers

Origin of complex numbers We mentioned the fundamental theorem of algebra. Any polynomial of degree n has exactly n roots. For example

$$f(x) = x^2 + x + 2 \tag{1}$$

can be easily seen to have two roots x = 1, -2 so that f(x) = (x - 1)(x + 2). What about the case

$$f(x) = x^2 + 4, (2)$$

the two roots are non-real. In fact the two roots are $x = \pm 2i$ where $i = \sqrt{-1}$. In EE the variable $i \to j$ since i is reserved for currents. We will use the standard notation i here.

Decomposing complex numbers A complex number is associated with its complex conjugate z^* so that $(z^*)^* = z$. We may write a complex number z in one of many convenient ways

$$z = x + iy$$
, Real and Imaginary parts visualized in 2-dimensions $= re^{i\theta}$, Polar decomposition- again 2-dimensions. (3)

The ranges are $-\infty \le x, y \le \infty$ and $0 \le r \le \infty$ and $0 < \theta \le 2\pi$. Note that with m an integer, θ and $\theta + 2m\pi$ lead to the same z and hence are non-distinct.

These two decompositions can be defined as

$$x = \frac{(z+z^*)}{2} = \Re ez,$$

$$y = \frac{(z-z^*)}{2i} = \Im mz$$

and

$$r = \sqrt{zz^*} = \sqrt{x^2 + y^2}$$

$$\tan(\theta) = \frac{y}{x}.$$
(4)

Here the angle θ is in radians.

Recall conversion π (Radians) = 360° (Degrees). In calculus the variables such as x in $\sin(x)$ are assumed to be in radians.

§Operations with complex numbers.

- \bullet Visualize complex plane: i.e. locate z in the 2-d complex plane.
- Conversion from polar to other (x,y) form
- Add $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$.
- Multiply $z_1 z_2$
- Complex conjugate z^*
- Divide z_1/z_2
- Euler's equation

$$e^{i\theta} = \cos(\theta) + i\sin(\theta).$$

• de Moivre's formula

$$e^{ip\theta} = \cos(p\theta) + i\sin(p\theta).$$

- Powers z^n
- Roots. N roots of $z^N = r$. Here r > 0 is a real number say 1.

$$z^N = re^{i2\pi j}$$

$$z = r^{1/N} e^{i2\pi j/N}, \ j = 0, 1, 2, \dots (N-1),$$

since increasing $j \to j + N$ leads to same number.

Example

$$z^3 = 8$$
,

has 3 solutions

$$z = 2\{1, e^{i2\pi/3}, e^{i4\pi/3}\}.$$

These are written explicitly using de Moivre's theorem as

$$z = 2\{1, -\frac{1}{2} + i\frac{\sqrt{3}}{2}, -\frac{1}{2} - i\frac{\sqrt{3}}{2}\}.$$