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Notes on power series and series expansion

Power series: A power series is analogous to the earlier discussed
series but has a new dimension to it, it involves the powers of a variable “x”.
Thus

P (x) =
∞∑
n=0

an x
n, (1)

is a power series in x. If the sum is truncated at some finite order M , we
would get a polynomial of degree M

PM(x) =
M∑
n=0

an x
n.

We could also shift x to x− a and get a power series centered at a. This is
usually a trivial modification.

Convergence or divergence of a power series The convergence test
for power series are limited in scope since they must work with a more general
term involving x. The ratio test is the basic test here.
§The Ratio test The series Eq. (1) converges or diverges as ρ < 1 or

ρ > 1, where we define

ρ = lim
n→∞

ρn

ρn =
|an+1x

n+1|
|anxn|

=
|an+1|
|an|

|x|. (2)

Hence we can say that the power series converges or diverges as |x| < |x0| or
|x| > |x0|, with

|x0| = | lim
n→∞

an
an+1

|. (3)

This provides a region of convergence −x0 < x < x0, this is called the
interval of convergence. When we learn about complex series (where x→ z,
with z a complex variable), the region of convergence is called the radius of
convergence.
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§ Some examples

P (x) =
∞∑
n=0

{(−x)n

2n
,

(−x)n

n
,

(−x)n

n!
}

§Comments on operations with power series If some power series
are known to be convergent, we can take many liberties with them.

• Add two power series to get another power series

• Multiply two power series to get another power series

• Integrate or differentiate the power series w.r.t. x

§Representing a given function by a power series This is an impor-
tant concept: a given function (think sin(x) for example) can be represented
by a unique power series within some region where the power series converges.
This means there is one and only one power series for a given function.

In practice we can do a Taylor expansion to generate an infinite series.
§Taylor and Maclaurin series Given a function f(x) satisfying the con-

dition of being differentiable any number of times, we can expand it around
a point x = a as follows

f(x) = f(a) + (x− a)f ′(a) + (x− a)2
f ′′(a)

2!
+ . . .+ (x− a)n

f (n)(a)

n!
+ . . .

where the nth derivative of f

f (n)(a) =

(
dnf(x)

dxn

)
x=a

.

This called the Taylor series of the function around x = a.
If we specialize to a = 0 we get the Maclaurin series.

f(x) = f(0) + xf ′(0) + x2
f ′′(0)

2!
+ . . .+ xn

f (n)(0)

n!
+ . . .

Comment: Maclaurin versus Taylor series We note that a power
series of the type

∞∑
n=0

an(x− A)n,

can be viewed as an expansion around x = A, and represents the Taylor
expansion of some function. If we set A = 0 we get a shifted series

∑∞
n=0 anx

n,
this is called the Maclaurin series.
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Given a function f(x) we could expand it around any point A (giving a
Taylor expansion of f), if we choose A = 0 we get the Maclaurin series.

One simple example. Consider f(x) = ex. It has a Taylor expansion
around an arbitrary point a

f(x) =
∞∑
n=0

(x− a)nbn,

where bn = ea/n!. (Check this.)
Now the same function has a Maclaurin expansion (by definition around

x = 0)

f(x) =
∞∑
n=0

xncn,

where the coefficients cn = 1/n!. Clearly cn 6= bn for a 6= 0.
§Expanding functions in a Taylor series is to apply the formula

f(x− a) =
∞∑
n=0

(x− a)n
f (n)(a)

n!

where the nth derivative is defined as

f (n)(a) =

(
dnf(x)

dxn

)
x=a

.

In practice we can expand out to some order M and call the rest as the
remainder, thus

f(x− a) =
M∑
n=0

(x− a)n
f (n)(a)

n!
+RM(a).

A formula to estimate the remainder RM can be found from complex inte-
gration theory (done later). We record the answer here

(x− a)M+1f
(M+1)(c)

(M + 1)!
,

where c is a (certain) point lying in the interval of convergence.
§Remainder for alternating series:
We saw that with the definition

S∞ = a0 − a1 + a2 − a3 + . . .
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(we could also multiply aj by xj if needed, but let us drop it for now), we
could easily establish a bound:

S2n ≤ S∞ ≤ S2n + a2n+2

This also leads to an estimate of the remainder for an alternating series. We
may rewrite this as

|S∞ − S2n| ≤ a2n+2.

Hence summing the series to order 2m comes with a remainder that is known.
§Example:
We can use this brute force formula only in a few simple cases such as

the exponential series.
f(x) = ex,

where an expansion around x = a is simple, it requires f (n)(a) = ea by
definition. Hence we get

ex =
∞∑
n=0

(x− a)n
ea

n!
,

as previously argued.
Comment on more complicated functions
It is a good idea to take a few standard power series expansions for func-

tions that are “atoms” (i.e. modules) for complicated functions, and then to
plug in. Consider the following examples.

sinh(x) =
1

2
(ex − e−x) =

∞∑
n=0

x2n+1

(2n+ 1!)

cosh(x) =
1

2
(ex + e−x) =

∞∑
n=0

x2n

(2n!)

sin(x) = (−i) sinh(ix),

cos(x) = cosh(ix)

Another useful operation is division or multiplication of two series to get
another series. We will see such problems in the HW # 2
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It is mandatory to know the series for the following simple functions

sin(x) = x− x3/3! + x5/5!− . . .
cos(x) = 1− x2/2! + x4/4!− . . .

ex =
∞∑
j=0

xj/j!

log(1 + x) = x− x2/2 + x3/3− . . .

(1 + x)n =
n∑
j=0

nCj x
j

(1 + x)α =
∞∑
j=0

αCj x
j if α 6= integer

(4)

where the binomical coefficient

nCj =
n!

j!(n− j)!
αCj =

Γ(α + 1)

j!Γ(α + 1− j)!
(5)

where Γ(α+ 1) is the Γ function. It satisfies Γ(x+ 1) = xΓ(x) for any x and
for integer x coincides with the factorial Γ(n+ 1) = n!

Note that Boas uses a different notation for the combinatorial function.
The two notations are summarized as

nCj ↔
[
j
n

]
(6)

An example of the binomial coefficient for fractional index is useful to
record

αCj =

[
j
α

]
=

(α)(α− 1) . . . (α− j + 1)

j(j − 1)(j − 2) . . . 1
(7)

The case α equal to 1
2

arises when we expand

(1 + x)
1
2 = 1 +

1

2
x+ . . .+

1
2Cj x

j + . . . .

We can specialize Eq (7) further and get

1
2Cj =

[
j
1
2

]
=

(1
2
)(1

2
− 1) . . . (1

2
− j + 1)

j(j − 1)(j − 2) . . . 1
(8)
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Figure 1: The partial sum 4/π × SM of the series for arctan(1) against the
order M. We see that there are two sequences that seem to converge to the
correct answer 1. The sequence with M odd lies below the

We may pull out minus signs and use the double factorial notation

(2j + 1)!! = (2j + 1)(2j − 1) . . . 1,

and obtain

1
2Cj = (−1)n−1

(2n− 3)!!

n!2n
. (9)

§An interesting method involving integration
Consider calculating the series for arctan(x). We know that

arctan(x) =

∫ x

0

dt

1 + t2
,

hence we can expand the integrand and integrate term by term. Thus we get

arctan(x) =

∫ x

0

dt
(
1− t2 + t4 − t6 + t8 − . . .

)
= x− x3

3
+
x5

5
− x7

7
+
x9

9
− . . . (10)

An interesting application of this series is to calculate π from the formula
arctan(1) = π/4. We can take the series for 4/π arctan(1) and truncate it at
the Mth order for various values of M ∈ (3, 31), and find the plot:
§Examples of error estimates
In the case of an alternating series we can use the theorem

|S∞ − S2n| ≤ a2n+2,
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with
S2n = a0 − a1 + a2 − a3 + a4 − a5 + . . .+ a2n − a2n+1

as we proved in class. we can apply this to the series

1 =
4

π
arctan(1) =

4

π

∞∑
j=1

(−1)j+1 1

2j − 1
.

From a computation we find S16 = 1 + .018708, and the theorem says
that the partial sum |S16 − S| ≤ a18 = 0.0363783.

The alternating series test is very useful for the trigonometric functions.
For example

sin(x) = x− x3/3! + x5/5!− . . . ,

so that if we want to approximate by the first two terms only, the remainder
is x5/120. This is small (.26666) for a fairly large value of x ∼ 2.

An example of estimating the remainder for the non-alternating series
next. Consider

S =
∞∑
n=0

anx
n, assumed convergent for |x| < 1 (11)

and with an+1 < an, then we can write

|S −
N∑
n=0

anx
n| = |

∞∑
n=N+1

anx
n| ≤ aN+1|

∞∑
n=N+1

xn|,

= |aN+1x
N+1|/(1− |x|). (12)

This can be helpful if |x| � 1 since xN becomes small rapidly with increasing
N.
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