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Notes on power series and series expansion

Power series: A power series is analogous to the earlier discussed
series but has a new dimension to it, it involves the powers of a variable “x”.
Thus

P(z) = Z a, =", (1)

n=0

is a power series in x. If the sum is truncated at some finite order M, we
would get a polynomial of degree M

We could also shift = to x — a and get a power series centered at a. This is
usually a trivial modification.

Convergence or divergence of a power series The convergence test
for power series are limited in scope since they must work with a more general
term involving x. The ratio test is the basic test here.

§The Ratio test The series Eq. (1) converges or diverges as p < 1 or
p > 1, where we define

p = lim p,
n—oo
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Hence we can say that the power series converges or diverges as |z| < |zg| or
|z| > |xo|, with
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This provides a region of convergence —zy < x < g, this is called the
interval of convergence. When we learn about complex series (where z — z,
with z a complex variable), the region of convergence is called the radius of
convergence.



§ Some examples

P(x):Z{(_zf’;)n’ (_‘r)n7 (_x)n}

n n!

§Comments on operations with power series If some power series
are known to be convergent, we can take many liberties with them.

e Add two power series to get another power series
e Multiply two power series to get another power series
e Integrate or differentiate the power series w.r.t. x

SRepresenting a given function by a power series This is an impor-
tant concept: a given function (think sin(x) for example) can be represented
by a unique power series within some region where the power series converges.
This means there is one and only one power series for a given function.

In practice we can do a Taylor expansion to generate an infinite series.

§Taylor and Maclaurin series Given a function f(z) satisfying the con-
dition of being differentiable any number of times, we can expand it around
a point x = a as follows

f) = F@) + e~ a) (@) + @ —ap D - a)

where the n'" derivative of f
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This called the Taylor series of the function around z = a.
If we specialize to a = 0 we get the Maclaurin series.
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Comment: Maclaurin versus Taylor series We note that a power
series of the type

oo

Z an(z — A)",
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can be viewed as an expansion around x = A, and represents the Taylor
expansion of some function. If we set A = 0 we get a shifted series Y~  a,z",
this is called the Maclaurin series.



Given a function f(z) we could expand it around any point A (giving a
Taylor expansion of f), if we choose A = 0 we get the Maclaurin series.

One simple example. Consider f(z) = e”. It has a Taylor expansion

around an arbitrary point a

oo
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where b, = e®/n!. (Check this.)
Now the same function has a Maclaurin expansion (by definition around

x =0)
o0
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where the coefficients ¢, = 1/n!. Clearly ¢, # b, for a # 0.
gExpanding functions in a Taylor series is to apply the formula

o () (g
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where the nth derivative is defined as

dx™

In practice we can expand out to some order M and call the rest as the
remainder, thus

M (n)
o —a)=3 (- a2 4 Ry(a)
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A formula to estimate the remainder R,; can be found from complex inte-
gration theory (done later). We record the answer here

e ()
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where ¢ is a (certain) point lying in the interval of convergence.
§Remainder for alternating series:
We saw that with the definition

Soo:ao—a1+a2—a3+...



(we could also multiply a; by 27 if needed, but let us drop it for now), we
could easily establish a bound:

S2n S Soo S SQn + A2n+2

This also leads to an estimate of the remainder for an alternating series. We
may rewrite this as
[Soo = Son| < agnqo.

Hence summing the series to order 2m comes with a remainder that is known.
§Example:
We can use this brute force formula only in a few simple cases such as
the exponential series.

f(z) =€,
where an expansion around z = a is simple, it requires f™(a) = e by
definition. Hence we get

a

o e
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as previously argued.

Comment on more complicated functions

It is a good idea to take a few standard power series expansions for func-
tions that are “atoms” (i.e. modules) for complicated functions, and then to
plug in. Consider the following examples.

0 on+l
sinh(z) = =(e" — e ™) = 2% G 10
cosh(z) = =(e* +e ") = Z (;:')

cos(z) = cosh(iz)

Another useful operation is division or multiplication of two series to get
another series. We will see such problems in the HW # 2



It is mandatory to know the series for the following simple functions

sin(z) = x—2°/3+2°/50 — ...
cos(r) = 1—a?/2+2*/4l — ...

R ij/j!
=0
log(l+x) = z—2*/2+2°/3—...
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where I'(av+ 1) is the T" function. It satisfies I'(x + 1) = 2I'(x) for any = and
for integer = coincides with the factorial I'(n + 1) = n!

Note that Boas uses a different notation for the combinatorial function.
The two notations are summarized as

Oy o {fl } (6)

An example of the binomial coefficient for fractional index is useful to
record
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The case a equal to % arises when we expand
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We can specialize Eq (7) further and get
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Series for arctan 1. to order M
4 PartialSum M
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Figure 1: The partial sum 4/7 x Sy, of the series for arctan(1) against the
order M. We see that there are two sequences that seem to converge to the
correct answer 1. The sequence with M odd lies below the

We may pull out minus signs and use the double factorial notation
2+ =2j+1)(2j—-1)...1,

and obtain

1 n— (2%—3)”

§An interesting method involving integration
Consider calculating the series for arctan(z). We know that

Todt
arctan(z) = T

hence we can expand the integrand and integrate term by term. Thus we get

arctan(z) = /dt(l—t2+t4—t6+t8—...)
0
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= T3 + 5 - + g (10)
An interesting application of this series is to calculate 7 from the formula
arctan(1) = m/4. We can take the series for 4/7 arctan(1) and truncate it at
the Mth order for various values of M € (3,31), and find the plot:
sExamples of error estimates
In the case of an alternating series we can use the theorem

’Soo - 52n| S A2n+2,
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with
Sgn:ao—a1+a2—a3+a4—a5+...+a2n—a2n+1

as we proved in class. we can apply this to the series

4 4 &
1 = —arctan(1) = — A —

25 —1°
From a computation we find S = 1 4 .018708, and the theorem says
that the partial sum |S16 — S| < a3 = 0.0363783.
The alternating series test is very useful for the trigonometric functions.
For example
sin(z) =z — 2* /3! + 2° /5! — ...,

so that if we want to approximate by the first two terms only, the remainder
is 2°/120. This is small (.26666) for a fairly large value of z ~ 2.

An example of estimating the remainder for the non-alternating series
next. Consider

S = Z a,z”, assumed convergent for |z| < 1 (11)

and with a,,1 < a,, then we can write

N 00 00
5= el = | S aal <ayal Y a7l
n=0 n=N+1 n=N+1
= lanpa™ /(1 = Jal). (12)

This can be helpful if |#| < 1 since 2V becomes small rapidly with increasing
N.



