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Notes on convergence tests for series

§: Alternating series
The convergence test for alternating series given in Boas can be reformu-

lated as follows:
Let S∞ stand for the alternating infinite series

S∞ = a0 − a1 + a2 − a3 + . . . ,

with the terms
an > 0

and a monotonically decreases to zero, i.e.

an+1 < an; lim
n→∞

an = 0.

With the above conditions, the series S∞ converges.
Since this is an important test for convergence of the alternating series,

it is worth understanding better the origin of the theorem, and also its proof
(missing in Boas’s book).
§Initial Comments This theorem is valid if the first several terms are

ill behaved (i.e. do not satisfy the stated conditions), provided that for large
enough index n, the an settle down to satisfy these conditions. This follows
from the fact that we can throw out any finite number of terms from a series,
and the convergence is unaffected.
§Proof Let us define a partial sum for integer m

S2m = a0 − a1 + . . . + a2m − a2m+1.

As m→∞ this is becomes the required sum S2m → S∞.
We will now consider two integers m > n so that

S2m − S2n = a2n+2 − a2n+3 + . . . + a2m − a2m+1.

This is the sum over positive terms and hence

S2m − S2n ≥ 0.
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We can safely rearrange this finite sum as

S2m−S2n = a2n+2−(a2n+3−a2n+4)−(a2n+5−a2n+6)−. . .−(a2m−1−a2m)−a2m+1.

From the monotonic decrease condition all the terms in brackets are positive
a2j+1 − a2j > 0 and hence we fine the bound

S2m − S2n ≤ a2n+2 − a2m+1.

Combining the two bounds we get

S2n ≤ S2m ≤ S2n + (a2n+2 − a2m+1).

We keep n finite and take m→∞ and hence get

S2n ≤ S∞ ≤ S2n + a2n+2. ......(A)

We have used a2m+1 → 0 from monotonicity of the a′s. We can rearrange
Eq(A) and write it in the form of a useful bound

0 ≤ (S − S2n) ≤ a2n+2.

This is slightly better bound than Eq. (14.3) in Boas (page 34). Proceeding
further we may set n = 0 where S0 = a0 − a1, and thus

a0 − a1 ≤ S∞ ≤ a0 − a1 + a2 − a∞. ........(B)

This proves the finiteness of S∞, it is a positive number bounded from below
and above by positive finite numbers. ( I note that Boas does not provide
the bound Eq. (B) in the textbook- please check the bound in some examples
and make sure our calculation is sensible.)
§Dangers of rearranging an infinite alternating series
An alternating series S =

∑
n(−1)nan < ∞ can be rearranged (i.e.

its terms can be shuffled around) provided it is absolutely convergent, i.e.
Sabsolute =

∑
n |an| < ∞. For many alternating series this is not true, e.g.∑

n(−1)n/n is convergent but
∑

n 1/n is divergent. An example where it is
true would be

∑
n(−1)n/n2. In the above example we rearranged the terms

of a finite series, which is safe because of its finiteness. However in the case
of an infinite alternating series, where the absolute series does not converge,
there is a dangerous theorem which says that by rearranging the terms, one
can make the series tend to any real value one chooses. I will not discuss this
in class, but interested students can look up examples in advanced books.
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One example (taken from wiki) can help see the dangers. We know from
the series for log(1 + x) that

log(2) = 1− 1/2 + 1/3− 1/4 + . . .

By rearranging we can “apparently” (and clearly wrongly) prove that log(2) =
0. To see this bravely (and wrongly, as we will show) rearrange the series
and write

log(2) = (1− 1/2)− 1/4 + (1/3− 1/6)− 1/8 + (1/5− 1/10)− 1/12 + . . .

or by simplifying the terms in brackets

log(2) = 1/2− 1/4 + 1/6− 1/8 + 1/10− 1/12 + . . .

or taking out a common factor

log(2) =
1

2
(1− 1/2 + 1/3− 1/4 + 1/5− . . .)

and thus fallaciously conclude that

log(2) = (?!)
1

2
log(2).
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