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Lecture #1. Notes on convergence tests for series

§Introduction

• Geometric Series: Its origin in physical problems:

(i)1 + 2 + 22 + . . . represents fission of single nucleus. Divergent
series. Another example h+ h/2 + h/4 + . . ., the successive heights of
a dropping ball gives a convergent series.

(ii) Infinite series

S = a(r + r2 + r3 + . . . )

(iii) Partial sum

Sn = a(r + r2 + . . .+ rn)

and by a simple calculation

Sn = a(rn+1 − r)/(1− r).

Limiting process gives infinite series.

lim
n−>∞

Sn = S.

Limit exists if r < 1, hence series converges for r < 1.

• Uses of geometric series- rationalizing irrational numbers

2.31429, 21429, 21429, . . . = 2 +
1

10
+ 21429{10−5 + 10−10 + 10−15 + . . .}

= 2 +
1

10
+ 21429× 10−5

1− 10−5
=

257141

111110

• A frequently occurring finite series:

A(N, s) =
∑
j=1,N

js.

A(N, 1) = N(N + 1)/2. (Prove it)
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• Sequences and limits of sequences: Example an =
√
n4+1

3n3−2n2+1
. We can

easily see that limn→∞ an → 1
3n

. Question. Can you find the next
term? i.e. limn→∞ an → 1

3n

(
1 +O( 1

n
)
)
, what is this correction term?

Examples to work out

an = n1/n, log(n)/n, (1 + a/n)n

§Comments on divergent and convergent series

• Let us define a partial sum Sn ≡
∑

j=1,n aj. It is a finite sum by con-
struction. A series converges if the sequence of partial sums S1, S2, . . . Sn . . .
has a finite limit as n→∞

• A common sense idea is that a series can be tested for convergence after
throwing out any finite number of terms.

• Another commonsense idea is that an alternating series has a better
chance of converging than a fixed sign series.

§Different tests for convergence or divergence.
We will write

S =
∞∑
n=1

an.

• (1) Preliminary test for divergence.
If limn→∞ an 6= 0 the series S diverges.

Examples to discuss :

an =
3n

1 + 2n + 3n
,
n! + 3n

(n+ 1)!
,

• (2) Absolute convergence test (for series of positive terms) by compar-
ison.

If we know that the series

S1 =
∞∑
j=1

mj,

with mj > 0 is convergent, and if a series

S2 =
∞∑
j=1

aj,
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has positive coefficients satisfying

aj ≤ mj,

then S2 is also convergent.

It is also obvious that if aj do not have a fixed sign, but |aj| < mj,
then too S2 is convergent. (Why is this so obvious?)

Examples to discuss:

S1 =
∞∑
j=1

1

j!
,

This is easily summed and we know the answer is e = 2.71828 . . .. We
can use it to show the convergence of

S2 =
∞∑
j=1

1

(j + 6)× j!
,

Another example: If we take S2 =
∑∞

j=1
1
j!
, i.e. our old S1 and we want

to know whether it converges (after erasing all memory of previous
calculations!!) we can try as S1 the geometric series

S1 =
∞∑
j=0

1

2j
,

which converges to 2. Now the comparison of the nth term goes as

1

n!
<

1

rn
,

which is true for n ≥ 3. Hence S2 converges with S1.

• (2’) Almost as a corollary we can say that if S1 is known to be divergent,
and if |aj| > mj then S2 =

∑∞
j=1 |aj|, is also divergent. Notice that S2

is now forced to have only positive terms for the theorem to go through.
This implies that if the absolute value of aj is removed, the series S2

has oscillating terms, and might converge for certain cases.

• (3) Integral test:

A series with positive terms

S =
∞∑
n=1

a(n)
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converges or diverges with the integral

SI =

∫ ∞
arb

a(n) dn

where arb is an arbitrary non-infinite variable and the evaluation is
only done at the top limit. The integral is calculated assuming n is
continuous.

Rationale See figures.

Example 1: (from quiz) Series

S =
∞∑
n=1

1

(1 + 3n2 + n4)1/4
,

converges or diverges with integral

SI =

∫ ∞
x0

dx

(1 + 3x2 + x4)1/4

As we know the answer is divergent.

Example 2.

Reimann zeta function

ζ(s) =
∞∑
n=1

1

ns
.

Integral test

SI =

∫ ∞
x0

dx

xs
=

1

1− s

(
1

xs−1

)∞
x0

Converges for s > 1. This includes the very delicate case s = 1+ ε with
ε = .0000001 for instance.

Exs
∞∑
n=1

(
1

n log(n)
,

1

n(1 + log(n))1/3
,

en

9 + e2n

)
• (4) The Ratio Test This is a pretty general test. Given a series

S =
∞∑
n=1

a(n)

we can define ρn = |a(n+1)
a(n)
| and its limiting value ρ = limn→∞ ρn. The

spirit of this test is a comparison with the geometric series.
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We can say that
ρ < 1(orρ > 1)

implies convergence (or divergence). The case ρ = 1 is undecided by
this test.

Examples
an = en/n!, 3n!/(n!2n!)

• (5) A special comparison test.

Suppose S1 =
∑∞

n=1 bn with bn > 0 is convergent, and we have S2 =∑∞
n=1 an with an > 0, with the property that limn→∞ bn/an → constant,

then S2 is convergent. Here and below the constant is assumed non-
zero.

Example:
bn = 1/n2; an = 2/

√
6n4 + 3n3 + 2n2 + 1

• (5’) A corollary of the above is that: if S1 =
∑∞

n=1 bn with bn > 0 is
divergent, and we have S2 =

∑∞
n=1 an with an > 0, with the property

that limn→∞ bn/an → constant, then S2 is divergent.

Example:
bn = 1/n; an = 2/

√
6n2 + 1
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