Physics 116A- Winter 2018

Mathematical Methods in Physics 116 A

S. Shastry, Jan 9, 2018

Lecture #1. Notes on convergence tests for series

§Introduction

- Geometric Series: Its origin in physical problems:
 - (i)1 + 2 + 2² + ... represents fission of single nucleus. Divergent series. Another example h + h/2 + h/4 + ..., the successive heights of a dropping ball gives a convergent series.
 - (ii) Infinite series

$$S = a(r + r^2 + r^3 + \dots)$$

(iii) Partial sum

$$S_n = a(r + r^2 + \ldots + r^n)$$

and by a simple calculation

$$S_n = a(r^{n+1} - r)/(1 - r).$$

Limiting process gives infinite series.

$$\lim_{n \to \infty} S_n = S.$$

Limit exists if r < 1, hence series converges for r < 1.

• Uses of geometric series- rationalizing irrational numbers

$$2.31429, 21429, 21429, \ldots = 2 + \frac{1}{10} + 21429\{10^{-5} + 10^{-10} + 10^{-15} + \ldots\}$$

$$=2+\frac{1}{10}+21429\times\frac{10^{-5}}{1-10^{-5}}=\frac{257141}{111110}$$

• A frequently occurring finite series:

$$A(N,s) = \sum_{j=1,N} j^s.$$

$$A(N,1) = N(N+1)/2$$
. (Prove it)

• Sequences and limits of sequences: Example $a_n = \frac{\sqrt{n^4+1}}{3n^3-2n^2+1}$. We can easily see that $\lim_{n\to\infty} a_n \to \frac{1}{3n}$. Question. Can you find the next term? i.e. $\lim_{n\to\infty} a_n \to \frac{1}{3n} \left(1 + O(\frac{1}{n})\right)$, what is this correction term? Examples to work out

$$a_n = n^{1/n}, \log(n)/n, (1 + a/n)^n$$

§Comments on divergent and convergent series

- Let us define a partial sum $S_n \equiv \sum_{j=1,n} a_j$. It is a finite sum by construction. A series converges if the sequence of partial sums $S_1, S_2, \ldots S_n \ldots$ has a finite limit as $n \to \infty$
- A common sense idea is that a series can be tested for convergence after throwing out any finite number of terms.
- Another commonsense idea is that an alternating series has a better chance of converging than a fixed sign series.

§Different tests for convergence or divergence.

We will write

$$S = \sum_{n=1}^{\infty} a_n.$$

• (1) Preliminary test for divergence. If $\lim_{n\to\infty} a_n \neq 0$ the series S diverges.

Examples to discuss:

$$a_n = \frac{3^n}{1+2^n+3^n}, \ \frac{n!+3n}{(n+1)!},$$

• (2) Absolute convergence test (for series of positive terms) by comparison.

If we know that the series

$$S_1 = \sum_{j=1}^{\infty} m_j,$$

with $m_j > 0$ is convergent, and if a series

$$S_2 = \sum_{j=1}^{\infty} a_j,$$

has positive coefficients satisfying

$$a_i \leq m_i$$

then S_2 is also convergent.

It is also obvious that if a_j do not have a fixed sign, but $|a_j| < m_j$, then too S_2 is convergent. (Why is this so obvious?)

Examples to discuss:

$$S_1 = \sum_{j=1}^{\infty} \frac{1}{j!},$$

This is easily summed and we know the answer is e = 2.71828... We can use it to show the convergence of

$$S_2 = \sum_{j=1}^{\infty} \frac{1}{(j+6) \times j!},$$

Another example: If we take $S_2 = \sum_{j=1}^{\infty} \frac{1}{j!}$, i.e. our old S_1 and we want to know whether it converges (after erasing all memory of previous calculations!!) we can try as S_1 the geometric series

$$S_1 = \sum_{j=0}^{\infty} \frac{1}{2^j},$$

which converges to 2. Now the comparison of the n^{th} term goes as

$$\frac{1}{n!} < \frac{1}{r^n},$$

which is true for $n \geq 3$. Hence S_2 converges with S_1 .

- (2') Almost as a corollary we can say that if S_1 is known to be divergent, and if $|a_j| > m_j$ then $S_2 = \sum_{j=1}^{\infty} |a_j|$, is also divergent. Notice that S_2 is now forced to have only positive terms for the theorem to go through. This implies that if the absolute value of a_j is removed, the series S_2 has oscillating terms, and might converge for certain cases.
- (3) Integral test:

A series with positive terms

$$S = \sum_{n=1}^{\infty} a(n)$$

converges or diverges with the integral

$$S_I = \int_{arb}^{\infty} a(n) \, dn$$

where arb is an arbitrary non-infinite variable and the evaluation is only done at the top limit. The integral is calculated assuming n is continuous.

Rationale See figures.

Example 1: (from quiz) Series

$$S = \sum_{n=1}^{\infty} \frac{1}{(1+3n^2+n^4)^{1/4}},$$

converges or diverges with integral

$$S_I = \int_{x_0}^{\infty} \frac{dx}{(1+3x^2+x^4)^{1/4}}$$

As we know the answer is divergent.

Example 2.

Reimann zeta function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Integral test

$$S_I = \int_{x_0}^{\infty} \frac{dx}{x^s} = \frac{1}{1-s} \left(\frac{1}{x^{s-1}} \right)_{x_0}^{\infty}$$

Converges for s > 1. This includes the very delicate case $s = 1 + \epsilon$ with $\epsilon = .0000001$ for instance.

Exs

$$\sum_{n=1}^{\infty} \left(\frac{1}{n \log(n)}, \frac{1}{n(1 + \log(n))^{1/3}}, \frac{e^n}{9 + e^{2n}} \right)$$

• (4) The Ratio Test This is a pretty general test. Given a series

$$S = \sum_{n=1}^{\infty} a(n)$$

we can define $\rho_n = \left| \frac{a(n+1)}{a(n)} \right|$ and its limiting value $\rho = \lim_{n \to \infty} \rho_n$. The spirit of this test is a comparison with the geometric series.

We can say that

$$\rho < 1(or \rho > 1)$$

implies convergence (or divergence). The case $\rho=1$ is undecided by this test.

Examples

$$a_n = e^n/n!, 3n!/(n!2n!)$$

• (5) A special comparison test.

Suppose $S_1 = \sum_{n=1}^{\infty} b_n$ with $b_n > 0$ is convergent, and we have $S_2 = \sum_{n=1}^{\infty} a_n$ with $a_n > 0$, with the property that $\lim_{n \to \infty} b_n/a_n \to \text{constant}$, then S_2 is convergent. Here and below the constant is assumed non-zero.

Example:

$$b_n = 1/n^2$$
; $a_n = 2/\sqrt{6n^4 + 3n^3 + 2n^2 + 1}$

• (5') A corollary of the above is that: if $S_1 = \sum_{n=1}^{\infty} b_n$ with $b_n > 0$ is divergent, and we have $S_2 = \sum_{n=1}^{\infty} a_n$ with $a_n > 0$, with the property that $\lim_{n\to\infty} b_n/a_n \to \text{constant}$, then S_2 is divergent.

Example:

$$b_n = 1/n; \ a_n = 2/\sqrt{6n^2 + 1}$$