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1. Find the general solution of the following first-order differential equa-
tion: ... [20]
(1+e")y + 2"y = (1+¢e%)e” .

§Solution For a linear equation in the form of ¥/ + P(z)y = Q(x), we
can find a solution using the formula y = e™! [ Qe’dx + ce! where
I = [ P(x)dz. In this case we obtain

I= /P(:v)d:p = 2log(1 +€")

where P = 2x/(1 4 €). A simple way to compute this integral is to
use the substitution © = 1 + e”. Next we compute

/Qefd:c = /ex(l +e")? = (1+¢€%)%/3,

where () = e” and again we use the same substitution to solve. Hence,
the general solution is

y(x) = (1 +e)/3+c/(1+e)?|.

2. Find the general solution to the following non-linear differential equa-
tion: ... [15]

dy _

0.
dx

(2ze™ + €”) + (322 — y?)

§Solution

If we suppose there exists a function, F'(x,y) = constant, such that
dF = Mdy + Ndz = 0 where M = (2ze* + ) and N = 3z%e¥ — ¢,
we can solve the equation using the following method. First we check

this equation is exactly solvable, i.e., %ij = %—];7:
oM ON
—— =6re® = — .
ox oy

Since it is exactly solvable, next we integrate

/Mdy = 2%e® + y* /3 + h(x)



and
/Ndx = 2% + e + g(y)

and we set integrals equal such that h(z) = e and g(y) = —y*/3.
Hence, the general solution is

F(z,y) = C = 2% +¢" —y*/3]|.

. Find the general solution of following inhomogenenous differential equa-
tion: .. [15]

y' — 2y +y=2cosx .

§Solution

To find the complementary solution, we start with the guess that e™
is a solution of the homogeneous differential equation when

(rP*—2r+1)e“=0= (r—172=0.

Since the roots of the characteristic equation are equal the first solution
is * and the second independent solution is ze® . Recall that the
real part of the solution, Y, = Ce’, to an inhomogenous differential
equation of the form y” + p(z)y’ + q(x)y = 2™ is equivalent to the
solution, y,, of the inhomogeneous differential equation y” + p(x)y’ +
q(x)y = 2cos(x). Inserting Y, in differential equation, we obtain

(—e™ —2e"™ + 7)) =2e" = (C =1,

and we find Y, = icos(z) — sin(z) where the real part is —sin(x)s.
Hence, the general solution is

y(r) = Ae” + Bxe® —sin(z) |.

. By using the method Laplace Transforms find the general solution of
following inhomogenenous differential equation: ... [20]

Y'+2y+y=e"—2", yo=1 yp=-1.



§Solution First we take the Laplace transform of both sides of the
differential equation:

1 2

2 !
Y — pyo — yy + 2pY — 2y + Y = - .

Next we insert the initial conditions and group terms:

1 2
I+p (1+p)?

(pP+1)*Y —p—-1=

Solving for Y we obtain:

12
C(1+p? (A+pt (I+p)

Lastly, we do the inverse Laplace transformation to find the general
solution:
y(t) = e '+ (1/2)t%e — (1/3)t%e™"

. Find J, for n = 1, 2,3 by integrating around a contour consisting of a
circle of radius 2 encircling the orgin: ... [15]

1 1—2)?
Jo= o ]{ L=,
2w Jo, 2"
§Solution

We can find the solution using residue theorem, i.e., [ f(z)dz = 2mi )y R(2):

lei (1_;) 2m(]§dz/z—2%dz+7{zdz>—l

Note that only the first contour integral is non-zero, that is § dz/z =
271.

J2=2im,j§(1;z) - (j{dz/z —Qj{dz/z+j{dz):_

Here only the second contour integral is non-zero.




ngﬁ (1;—2’2)2zzim(j{dz/z3—2]{dz/z2+j§dz/z):1.

In this last one, we see that only that last contour integral is non-zero.

. Find the Laurent series and the residue for the following function at
the indicated point: ... [15]

sin 2z

T at 2= 0.

z
In order to find the Laurent series, we first identify the singularities
in the function. In this case there is only one singularity at z = 0.

. n+1 . . .

We note that sinz = Zfzo(—l)"% = 0 and it is analytic for all
|z| < o0, so the Laurent series is

sin 2 > z
= B D
24 Z( ) (2n+ 1)’




Table of Laplace Transforms 469

Table of Laplace Transforms

y=f(), t>0

Y=L =F@) = [ i
ly=/f({t)=0, t <0 0
1
L1 1 — Re p>0
p
1
L2 e—at Py Re (p+a) >0
L3 sin at ]ﬁ Re p>|Im a
4 cos at ]ﬁ Re p > |Im
k! I(k+1)
k
L5 th k> —1 P or P Re p>0
k! T(k+1)
k_ —at
L6 tfem % k> —1 PR or o) Re (p+a) >0
efat o 67bt 1
L7 £ e S Re (p+a)>0
b—a (p+a)(p+0) Re (p+b) >0
I8 ae” % — be~ bt _r Re (p+a)>0
a—b (p+a)(p+0b)
Re (p+0)>0
L9 sinh at 172%02 Re p > |Re qf
L10 cosh at ]ﬁ Re p > |Re qaf
2
L11 tsinat ﬁ Re p>|Im a
2 _ 2
L12 t cos at ﬁ Re p>|Im a
. b
L13 efat sin bt m Re (era) > |IIH b|
—a pta
L14 e tCOSbt m Re (p—I—a) > |Im b|
2
L15 1 — cosat p(p2a+ ) Re p > |Im al
3
. a
L16 at — sinat TPy Re p > |Im a]
2 3
L7 sin at — at cos at a Re p>|Im a




